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Abstract 
TCP (Transmission Control Protocol) with its well-established 

congestion control mechanism is the prevailing transport layer 

protocol for non-real time data in current IP (Internet Protocol) 

networks. It would be desirable to transmit any type of 

multimedia data using TCP in order to take advantage of the 

extensive operational experience behind TCP in the Internet. 

However, some features of TCP including retransmissions and 

variations in throughput and delay, although not catastrophic 

for non-real time data, may result in inefficiencies for video 

streaming applications. In this paper, we propose an 

architecture which consists of an input buffer at the server side, 

coupled with the congestion control mechanism of TCP at the 

transport layer, for efficiently streaming stored video in the 

best-effort Internet. The proposed buffer management scheme 

selectively discards low priority frames from its head-end, 

which otherwise would jeopardize the successful playout of 

high priority frames. Moreover, the proposed discarding policy 

is adaptive to changes in the bandwidth available to the video 

stream. 

Key words:  
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1. Introduction 

Transmission of high quality video over the IP (Internet 

Protocol) networks has become commonplace due to 

recent progresses in video compression and networking 

disciplines, the development of efficient video 

coders/decoders, the increasing interest in applications 

such as video on demand, videophone, and video 

conferencing, and the ubiquity of the Internet. However, 

that are certain technical challenges to be overcome for 

efficiently transmitting video over IP networks; see for 

example the references [1] and [2] for an introduction to 

the topic. These challenges stem from the mismatch 

between the strict bandwidth, delay, and loss 

requirements of the video applications and the best-effort 

current Internet, which was originally 

designed around data applications that can tolerate loss 

and delay. Moreover, the instantaneous bandwidth 

available to a certain user or application changes in all 

time scales because of the very dynamic nature of the 

Internet, making the problem evens more challenging. 

These characteristics of the Internet led to the rise of 

network-adaptive video applications for providing 

smooth playout at the receiving client. 

This paper addresses the problem of TCP-friendly on-

demand streaming of temporally scalable stored video 

over the Internet using server-side adaptive frame 

discarding. In a stored video-on-demand system, the 

server prestores the encoded video and transmits it on 

demand to a client for playout in real time. The client 

buffers the data and starts playout after a short delay in 

the order of seconds (called the playout delay and 

denoted by Tp). We assume a fixed Tpthroughout the 

paper as opposed to the adaptive playout schemes where 

the client buffering delay is varied with respect to the 

network conditions [3],[4]. It is this tolerability to larger 

playout delays that distinguishes the stored video 

streaming problem from other video networking 

applications like video phony, video conferencing, and 

live video streaming. It is also very desirable that once 

the playout begins, it should be able to playout without 

any interruption (i.e., smooth playout) until the end of 

the video streaming session. Moreover, such a 

transmission strategy should not jeopardize the data 

flows on the same network path which use TCP as their 

transport protocol, which is referred to as the “TCP-

friendliness” requirement [5],[6],[7]. 

For network-adaptive video transmission over IP 

networks, the server adapts its video injection rate into 

the network to the instantenous available bandwidth in 

the network. Several mechanisms are proposed for rate 

adaptation including stream switching as in the 

SureStream technology provided by RealSystem G2 

[8],[9], rate-adaptive video encoding/transcoding [1], or 

joint use of scalable coding (i.e., layered coding) and rate 
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shaping via server-side selective frame discard [10]. 

Bitstream switching does not offer a fine granularity 

since there are only a few bitstreams available among 

which the streaming server can switch. Rate-adaptive 

encoding is more appropriate for live video streaming or 

interactive video applications as opposed to the stored 

video streaming problem we discuss in this paper. In our 

work, we therefore focus on rate adaptation using 

scalable encoded bitstreams. Scalable video codecs 

generate two or more bit streams, one carrying the most 

vital video information, called the Base Layer (BL), and 

the others carrying the residual information to enhance 

the quality of the base layer, which is referred to as the 

Enhancement Layers (EL) [11]. If there is a single EL, 

then the corresponding scalable coding is called 2-layer. 

Several scalable video-coding techniques have been 

proposed over the past few years for real-time Internet 

applications in the form of several video compression 

standards such as MPEG-2/4 and H.263/H.264 

[11],[12],[13],[14]. The types of scalability which are 

defined in these standards can be categorized as temporal, 

spatial, SNR, and object (only for MPEG4) scalability; 

In these structures, base and enhancement layers are 

precoded at encoding time, and therefore their rates 

cannot be adjusted at transmission time. Therefore, 

server-side selective frame discard mechanisms are 

proposed for rate adaptation of scalable video. These 

discard mechanisms intelligently decide to drop some EL 

frames with the goal of increasing the overall quality of 

the video by taking network constraints and client QoS 

requirements into consideration [10]. The more recent 

Fine Grain Scalability (FGS) coding  in which the 

enhancement frame can be encoded independently with 

an arbitrary number of bits and the bit rate can thus be 

adjusted at transmission time for finer granularity is left 

outside the scope of the current paper. We limit the focus 

of this paper by using a 2-layer temporal scalability 

video encoding scheme provided by H.263 version 2 

(H.263+) [13] although we note that our results also 

apply to other 2-layer scalable video encoding schemes. 

Besides network adaptivity, another challenging issue for 

the stored video streaming problem over the Internet is to 

provide inter-protocol fairness. TCP (Transmission 

Control Protocol) is the de-facto transport protocol for 

data in the current Internet. TCP is designed to offer a 

fully reliable service which is suitable for applications 

like file transfers, e-mail, etc. On the other hand, the 

alternative transport protocol UDP (User Datagram 

Protocol) used by many current streaming applications 

does not possess congestion control. Consequently, when 

UDP and TCP flows share the same link, TCP flows 

reduce their rates in case of a packet drop. This leaves 

most of the available bandwidth to unresponsive UDP 

flows leading to starvation of TCP traffic in case of 

substantial UDP load. Some believe that the current trend 

in using UDP as the transport layer without congestion 

control can lead to a congestion collapse of the Internet 

due to the rapid growth of such applications like Internet 

telephony, streaming video, and on-line games [5]. 

Taking into consideration the dominance of TCP in 

today’s Internet traffic, it is therefore desirable that the 

throughput of a video streaming session be similar to that 

of a TCP flow under the same network circumstances 

(i.e., two sessions simulatenously using the same 

network path). Such a mechanism is called TCP-friendly 

and TCP friendly schemes need to be designed to be 

cooperative with TCP flows by appropriately reacting to 

congestion [5]. There are a number of TCP-friendly 

congestion control algorithms which have recently been 

proposed, such as the rate-based RAP (Rate Adaptation 

Protocol), equation-based TFRC (TCP-Friendly Rate 

Control) [6],[7], and window-based BCC (Binomial 

Congestion Control). The transmission rates of the 

proposed TCP-friendly algorithms are generally 

smoother than that of TCP under stationary conditions at 

the expense of reduced responsiveness to changes in the 

network state (e.g., a new session arrival/departure 

to/from the bottleneck link). Moreover, these TCP-

friendly mechanisms do not provide reliable transfer as 

TCP does, making them more suitable for real-time 

applications. DCCP, the Datagram Congestion Control 

Protocol, is a new transport protocol being developed by 

the IETF that provides a congestion-controlled flow of 

unreliable datagrams. TCP-like congestion control 

without reliability and the equation based TFRC [7] form 

the basis for the two congestion control profiles ID 2 and 

ID 3, respectively, in the DCCP protocol suite The stored 

video streaming problem over resource constrained 

networks, like the Internet, has attacted the attention of 

many researchers. Given network bandwidth and client 

buffer constraints, a dynamic programming algorithm 

with reportedly significant computational complexity is 

developed for the optimal selective frame discard 

problem in [10] as well as several heuristic algorithms. 

However, this study is unable to accomodate the 

bandwidth variability patterns of the Internet since the 
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network bandwidth is assumed to be fixed and a-priori 

known. On a similar ground, rate-distortion 

optimization-based video streaming algorithms have 

been developed, that obtain scheduling policies for both 

new and retransmitted frames using stochastic control 

principles but the proposed methods are relatively 

complex and their feasability remain to be seen. The 

reference [16] considers a practical frame dropping 

algorithm for MPEG streams over best-effort networks 

but they neither use a TCP-friendly congestion control 

algorithm nor they take into account the deadlines of 

frames. A dynamic frame dropping filter for MPEG 

streams is proposed in a network environment where the 

available bandwidth changes dynamically but this work 

also lacks the TCP-friendliness component. A number of 

studies focus on streaming video using new TCP-friendly 

transport protocols [7] while others employing TCP itself. 

One common objection to use of TCP for streaming 

applications is the fully reliable service model of TCP 

through retransmissions. While delays due to 

retransmissions may not be tolerable for interactive 

applications, the service model for TCP may not be 

problematic for video on demand applications. Moreover, 

the use of ECN (Explicit Congestion Notification) allows 

TCP to perform congestion avoidance without losses, 

limiting further the potential adverse effect of the TCP 

service model. 

In this paper, we propose a stored video streaming 

system architecture which consists of an input buffer at 

the server side coupled with the congestion control 

scheme of TCP at the transport layer, for efficiently 

streaming stored video over the best effort Internet. The 

proposed method can be made to work with other 

transport protocols including DCCP but our choice of 

TCP in the current paper as the under- 

lying transport protocol stems from the following 

reasons: 

• Slowly-responding TCP-friendly algorithms perform 

reasonably well in terms of video goodput in stationary 

conditions. However, responsiveness is especially critical 

in the core of the Internet today which appears to be 

operating in the transient rather than in the stationary 

regime due to the large session arrival and/or departure 

rates to/from the network. On the other hand, TCP 

congestion control has a well-established responsiveness 

to changing network state and may be more appropriate 

in rapidly changing environments. 

• TCP with its original congestion control but with its full 

reliability feature replaced with selective reliability 

would be a more appropriate fit as a transport protocol 

for the underlying problem but the standards in this 

direction have not finalized and are still evolving. We 

note that TCP’s insistence on reliable delivery without 

timing considerations would adversely affect the 

performance of the system under packet losses especially 

for (near) real-time applications (e.g., applications 

requiring short playout delays). In this paper, we study 

the regimes for which TCP performance for stored video 

streaming is acceptable but also identify regimes for 

which TCP performs poorly and a new transport protocol 

would be needed. 

• TCP is currently used for streaming applications in order 

to get through some firewalls that block UDP traffic. 

• The choice of TCP as the transport protocol eliminates 

the unnecessary burden on the application-level designer 

by providing congestion control at the transport layer. 

• Another key advantage related to providing congestion 

control at the transport layer (i.e., TCP) rather than 

“above UDP” is that the proposed scheme can make use 

of the services provided by the standard-based Explicit 

Congestion Notification (ECN) mechanism which 

provides a means of explicitly sending a “congestion 

experienced” signal towards the TCP sender in TCP 

acknowledgment packets. We note that explicit feedback 

significantly reduces the losses in the network and is 

therefore particularly useful in  scenarios such as video 

streaming where the frequency of retransmissions due to 

losses is to be kept at a minimum. 

In our proposed architecture, the buffer management 

scheme selectively discards low priority frames from its 

head-end which otherwise would jeopardize the 

successful playout of high priority frames. Moreover, the 

proposed discarding policy is adaptive to changes in the 

bandwidth available to the video stream. Contrary to 

many of the previously proposed adaptive transmission 

algorithms, the proposed Selective Frame Discard (SFD) 

strategy is simple and is easily implementable at the 

application layer by allowing additional information 

exchange between the transport layer and the application 

layer. Moreover, our proposed server-side frame 

discarding algorithm only needs to know the playout 

delay Tpand several network related variables which are 

made available by using the services of TCP and the 

playout buffer occupancy does not need to fed back to 

the server in this proposed scheme. Our simulation 

results emonstrate that scalable stored video can 
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efficiently be streamed over TCP with the proposed 

adaptive frame discarding strategy if the client playout 

delay is large enough to absorb the fluctuations in the 

TCP estimation of the available bandwidth. We also 

study the impact using Explicit Congestion Notification 

(ECN) in the network in terms of attained video quality. 

Finally, we compare the proposed edge-based server-side 

frame discarding solution with the core-based 

Differentiated Services (Diffserv) Assured Forwarding 

(AF) Per-Hop-Behavior (PHB) architecture  in the 

context of stored video streaming and identify regimes in 

which the former architecture outperforms the latter. 

The rest of the paper is organized as follows. In Section 2, 

the proposed architecture including the scalable coding 

model and the selective frame discard schemes are 

presented. The simulation platform and the numerical 

results are given in Section 3. We conclude in the final 

section. 

2. Video Streaming Architecture 

In this section, we first describe our video encoding 

model and then present the details of the proposed input 

buffer management scheme based on selective frame 

discarding. 

The main goal of scalable coding of video is to flexibly 

support a heteregoneous set of receivers with different 

access bandwidths and display capabilities. Furthermore, 

scalable coding provides a layered video bit stream 

which is amenable to prioritized transmission. In this 

paper, we assume that the stored video is encoded into 

two layers, the BL and the EL, using the Reference 

Picture Selection mode of H.263 version 2 [13],[14]. In 

this structure, the BL is composed of Intra (I) and anchor 

P (predicted) frames whereas the EL is composed of the 

remaining P frames. P frames in the EL are estimated 

using the anchor P frames or I frames in the BL where 

anchor P frames are chosen using the Reference Picture 

Selection mode. Throughout the rest of this paper, we 

will denote the base layer frames by H (High- priority), 

and enhancement layer frames as L (Low-priority). A 

schematic diagram of the employed scalable video 

coding structure is shown in Figure 1. We leave the study 

of different temporal scalability models and other video 

coding standards for future research but we believe that 

the proposed architecture is applicable to other 2-layer 

scalable video codecs. 

 

 
Fig. 1. Base and enhancement layers in temporal 

scalability mode 

2.2  Selective Frame Discarding 

As stated in the previous section, we assume that video 

encoders generate H- and L- frames. If the available 

network bandwidth cannot accommodate the 

transmission of all frames, then it would be desirable to 

discard to discard some of L- frames on the behalf of H- 

frames. While making a L-frame discarding decision ,our 

goal is to maximize the number of transported L-frames 

subject to the constraint that the loss rate for the H-

frames would be minimal. In this definition, a loss refers 

to a missed frame at the client either because the frame is 

not transmitted by the server or is transmitted but 

partially/completely lost in the network or the frame is 

received by the client but after its deadline. For this 

purpose, we propose an input buffer implemented at the 

application layer of the sender which dynamically and 

intelligently discards L-frames from its headend and this 

scheme is depicted in Fig. 2. 

We use the RTP/TCP/IP protocols stack in this study. 

We propose in this architecture that the stored video 

frames arrive at the input buffer at a frequency f = 1/T 

frames per second, which is the frame generation rate of 

the underlying video session. These frames wait in the 

input buffer until they reach the headend of the buffer 

and a decision is then made by the Selective Frame 

Discard (SFD) block whether the corresponding frame 

should be passed towards the transport layer or is simply 

discarded. In cases of discard, the SFD block will make 

subsequent discard decisions until an acceptance decision 

is made. When a frame is accepted by the SFD module, it 

is segmented into video packets (or RTP packets) of 

length at most L where we fix L to 1 Kbytes in this study. 

In our simulation studies, QCIF videos are encoded at 

around 30 dB quality and a typical video packet can 

carry 1-3 P-frames depending on the compression 

efficiency of the frame (i.e. high/low motion) and a 
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typical I-frame can be transported by 2-3 video packets. 

Video packets of accepted frames are first placed in the 

partial frame buffer which is then drained by the TCP 

layer. We suggest that whenever a TCP packet begins to 

take its first journey towards the network, the TCP layer 

immediately retrieves a packet from the partial frame 

buffer if the buffer is nonempty. Otherwise, it queries the 

SFD module to make an acceptance/rejection decision on 

the head-end frame. The acceptance/rejection decision is 

made as follows: The decision epoch for the ith frame is 

denoted by tiirrespective of the outcome of the decision. 

The waiting time or the shaping delay in the input buffer 

for frame i, denoted by Di,S, is the difference between 

tiand the injection time for the i
th
frame to the input buffer. 

Let Di,Ndenote the network delay for the ith frame 

injected into the input buffer. Recalling that frames are 

generated by the encoder at integer multiples of T , the 

injection time for the ith frame to the input buffer will be 

t0+ iT , where t0is the injection time of the 0th frame. The 

ith frame will then wait in the input buffer for 

Di,Sseconds and the SFD module will make an 

admit/discard decision for the ith frame at time epoch 

ti=
4
t0+ iT + Di,S. If the ith frame is admitted by the SFD 

module into the transport layer then that frame will be 

delayed an additional Di,T CP and Di,N seconds in 

the TCP buffer and in the network, respectively. It is 

clear that the ith frame must arrive at the receiver before 

its playout time t0+ D0,N
+
Tp+ iT  where Tpis the initial 

buffering time of the playout buffer which starts 

accumulation as soon as the frame 0 arrives. So the 

following inequality should be satisfied for every 

accepted frame i > 0 for its succesful playout: 

 

Di,S≤ Tp− (Di,N− D0,N
)
− Di,T CP                     (1) 

 

In the above inequality, Di,Sand Tpare known to the SFD 

module, however one needs to find estimates for the last 

two terms on the right hand side of the inequality. In this 

study, we suggest to estimate the one-way network delay 

difference ∆i= Di,N− D0,N using the TCP Timestamps 

option (TSopt) in TCP headers. In the TCP  Timestamps 

Option, while transmitting packet m, the sender puts the 

transmission instant timestamp in the TSval (Timestamp 

Value) field. After receiving packet m, the receiver 

generates an  acknowledgement packet denoted by ack m, 

by setting its TSval field with the current time of the 

receiver and by copying the TSval field of packet m to 

the TSecr (Timestamp Echo Reply) field of ack m. In this 

way, the SFD module will have an estimate of the one-

way network delay difference using the TCP timestamp 

option for the last acknowledged TCP packet before time 

tiwhen it needs to make a decision for frame i. On the 

other hand, the last term Di,T CP is not known in 

advance but is relatively small compared to  Tpunless 

there are TCP losses because of the mechanism described 

for initiating a data transfer from the application layer 

into the TCP layer. We therefore introduce a safety 

parameter α, 0 < α < 1 to account for the errors due to 

inaccuracies due to estimations to be used in the 

inequality (1) as follows. In order for an admission 

decision for frame i to take place, the following new 

inequality should be checked by the SFD block: 

 

Di,S ≤ α(Tp − ∆i)            (2) 

 

The inequality (2) can be used to select which frames to 

discard for nonscalable video but it needs to be modified 

for layered video. This modification is studied next. 
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2.3 Static and Adaptive Selective Frame Discard 

Algorithms 

We propose to use two different safety parameters αLand 

αHfor the L-frames and the H-frames, respectively, for 

preferential treatment for H-frames. Such a treatment is 

possible by choosing αL < αH . This choice makes αL 

not only a safety parameter but also a prioritization 

instrument. We summarize the general SFD algorithm at 

decision epoch tiin Table 1. 

The choice of the algorithm parameters αLand αHare key 

to the success of the proposed architecture. In Static SFD 

(SSFD), fixed αLand αHvalues are used throughout the 

video streaming session. However, such a fixed policy 

may not work well in all possible traffic scenarios. For 

example in cases where the instantenous available 

bandwidth is close to the the BL rate then the L-frames 

should aggressively be discarded (i.e., αL → 0) in 

order to minimize the loss probability of the BL frames. 

On the other hand, if the available bandwidth happens to 

be close to or exceeds the total rate of the BL and the EL 

frames, then the L-frames should conservatively be 

discarded (i.e. αL → αH ) . The very dynamic nature of 

the Internet may lead to significant variations in the 

available bandwidth even during the lifetime of a video 

session. Moreover the instaneous BL and EL rates for 

VBR encoded video may substantially deviate from their 

long-run average values. These observations lead us to 

an adaptive version of the SFD algorithm. For this 

purpose, we define C(t) as a smoothed estimate of the 

bandwidth available to the session at time t, where Ci = 

C(ti) is simply the weighted average of Ci−1 and the 

instantaneous rate of TCP which is found by cwndi/RT Ti. 

Also we let RL(t) and RH(t) be the smoothed estimates of 

the EL and the BL, respectively, by monitoring the frame 

arrivals to the input buffer. We also let C, RL and RH 

denote the time averages of of the wave- Table 1 

 

The pseudo-code for the SFD algorithm at time ti 

if ((frame i == L-frame) && (Di,S< αL(Tp− ∆i) ) { 

Admit(); 

} else if ((frame i == H-frame) && (Di,S< αH(Tp− 

∆i) ) { 

Admit(); 

} else Discard(); 

 

forms C(t), RH(t), and RL(t), respectively. We then 

propose the simple Adaptive SFD (ASFD) scheme 

depicted in Fig. 3. We fix αHand use it only as a safety 

parameter (αHset to 0.7 in this study). The choice of αLis 

less straighforward:  αLis zero when              C(t)< RH(t), 

αLequals αHwhen C(t) > RH(t) + RL(t) and it changes 

linearly within between these two end regimes. The 

notation SSFD(x) denotes the SSFD algorithm with αH= 

0.7 and αLset to x. 

 
Fig. 3. Adaptive choice of αLin the ASFD algorithm 

3. Simulation Results 

In this section, we study the performance of the proposed 

stored video streaming architecture using simulation. We 

use ns-2 for simulations with a number of enhancements 

required for the video streaming architecture given in Fig. 

2. We use the single bottleneck topology in Fig. 4 for all 

the simulation experiments. In all simulations, N video 

sessions (of length 780 seconds) share a single 

bottleneck link with capacity Ctot(set to 1 Mbps), where 

N will be varied to account for the variability of the 

available bandwidth to each user. The buffer 

management mechanism for the bottleneck link is 

assumed to be RED (Random Early Detect). We use the 

RED parameters (minth, maxth, maxp) = (20, 60, 0.1) and 

the RED smoothing parameter set to 0.002 unless 

otherwise stated.   
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The first N/2 sessions are sinked at dest1and the 

remaining ones at dest2. Each video source employs TCP 

Reno with the same set of parameters and options and 

each source streams the same video clip. There is one 

tagged source we monitor among the N sources for 

PSNR (Peak Signal-Noise Ratio) plots. Each source 

starts streaming at random points in the video clip in 

order to prevent synchronization among the sources. 

Throughout the simulations, the bit rate of the VBR 

encoded video has substantial oscillations while the 

average rates are RL≈ 82.6 kbps and RH≈ 35.0 kbps (see 

Figure 5). Given that the original video frequency is f = 

25 frames/sec, the two layer scalable video is composed 

of a single I and 9 anchor-P frames as the base layer for 

each two-seconds interval (i.e., Group of Pictures (GOP) 

duration). The remaining 40 are plain P frames that 

constitute the enhancement layer as given in Fig. 1. In 

our simulations, the average PSNR is used as the 

performance metric. For lost frames the concealment is 

done at the receiver by replicating the most recently 

decoded frame. Since we are using a temporally scalable 

bitstream, the PSNR of the received frames reflects the 

degradation in system performance due to losses only in 

the BL. Using PSNR for bothreceived and lost frames 

enables us to see the degradation in the system 

performance caused by both the L-frame and H-frame 

losses. In all of our experiments, the bottleneck link with 

capacity Ctotis shared among N sources where N ∈ 

{6, .., 40} and the expected fair bandwidth share per flow, 

which is C ≈ Ctot/N , changes in the range {25, . . . , 

166} kbps. 

 
Fig. 5. Smoothed bit rates for the BL and EL for the 

layered video used in the simulations 

 

In our first experiment, we compare and contrast the 

performance of the ASFD algorithm with the SSFD 

algorithm with three settings for αL∈ {0.05, 0.4, 0.7}. For 

this purpose, we vary the number of video sessions N 

and thus change the fair share of each session C ≈ Ctot/N 

and obtain the corresponding PSNR value for the SSFD 

and ASFD algorithms. The playout delay Tpis set to 5 sec 

in this study. The results are depicted in Fig. 6. The ideal 

curve is obtained by allowing the system to transmit and 

play all the scheduled frames, in other words for a given 

bandwidth it is assumed that there is enough playout 

buffering to tolerate the latency due to retransmissions 

and the video bitrate is properly matched to the constant 

available bandwidth in the network so that the scheduled 

frames never miss their playout times. In our simulations, 

the EL and/or BL frames are discarded sequentially for 

the computation of the ideal curve and the corresponding 

bitrate is calculated. The sequence used for discarding is 

the same for each GOP. The selection of a conservative 

SSFD policy (i.e., SSFD(0.05)) gives the best results for 

the heavy load case (i.e., C < 100 kbps) when 

compared to all other schemes. However, in the light 

load case when C gets close to or beyond RL+ RH, the 

PSNR performance of SSFD(0.05) degrades 

substantially compared to the less conservative policies 

SSFD(0.4) and SSFD(0.7). On the other hand, the 

adaptive version ASFD is robust with respect to the 

changes in the available bandwidth per user and it 

compares reasonably well with the best performing static 

policy in each case. The advantage of the ASFD is that 

the video server can find a policy very close to the 

optimal frame discarding policy using local 

measurements even when the available bandwidth per 

user changes significantly during the lifetime of the video 

session. This behavior can definitely not be obtained with 

static policies. 

 
Fig. 6. Comparison of SSFD vs ASFD for the case Tp= 5 

sec 

 

In our second simulation experiment, we study the 

impact of the RED parameters on the ASFD performance. 
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The results are given in Fig. 7. The cases with three 

different RED configurations outperformed the drop-tail 

policy with the buffer size set to 120 packets. This 

observation can be explained by the fact that drop-tail 

buffer management causes synchronized losses and the 

resulting overshoots and undershoots in the resulting 

buffer occupancy yield substantial performance 

degradation relative to that of RED. We generally 

obtained quite robust results with RED but we also 

observed performance degradation with RED(10,30,0.1) 

in the heavy load case compared to the other two RED 

systems. This degradation is due to the relatively 

conservative choice of minthand maxthin this system 

when a fairly large number of sources are multiplexed. 

 

 
Fig. 7. Effect of RED parameters on ASFD performance 

with Tp= 5 sec. 

              

In the third simulation experiment, we study the impact 

of using ECN for which the RED module at the 

bottleneck link marks the packets with the corresponding 

probabilities as opposed to discarding them. This 

congestion information is then fed back in the TCP 

acknowledgements via which the TCP sources adjust 

their window sizes. Since all TCP senders are using ECN 

and all respond to congestion before actually loosing a 

packet they tend to experience less the undesired data or 

timer driven loss recovery phases of TCP. This 

behaviour, as one might expect, leads to a singnificant 

performance improvement especially in congested 

network scenarios and for small initial playout delays. 

This situation is depicted in Fig. 8 in which Tp is 

set to 2 sec. and the performance of using TCP Reno 

without ECN and TCP Reno with ECN are shown in 

terms of the average PSNR values for varying C. For the 

heavy load case, the performance gain with ECN is 

remarkable (up to 2 db). The Tp = 5 sec. case is 

depicted in Fig. 9 for which the ECN gains are smaller 

compared to the Tp= 2 sec. case. For small playout delays, 

it is more likely that a larger percentage of the TCP’s 

retransmissions arrive at the receiver later than their 

corresponding deadlines. With ECN, losses in the 

network are reduced and so are retransmissions. This is 

why the performance gain of ECN is more significant in 

cases with small playout delays. As shown in Fig. 8, Tp= 

2 sec. of buffering cannot tolerate the timer driven 

retransmissions occuring in TCP, therefore a significant 

PSNR degredation is observed if ECN is not employed 

as compared to the Tp= 5 sec. case. 

 

 
Fig. 8. Impact of ECN on streaming performance for 

ASFD with Tp= 2 sec. 

            

 In the fourth experiment, we study the impact of the 

playout delay Tpwhich is used in order to compensate for 

the oscillations in the video bit rate and available 

network bandwidth per user. The playout delay Tpis 

varied from 1 sec. to 30 sec. The PSNR curves saturate at 

around Tp = 15 sec. beyond which buffering only 

slightly improves the PSNR performance. For small 

Tp(i.e., Tp= 1 or 2 sec.), the playout delay is comparable 

to the delays encountered in TCP’s data/timer driven 

retransmissions and a larger percentage of the network 

losses result in missed playouts and thus reduced PSNRs. 

With TCP, increasing Tpfrom 2 to 5 sec. increases the 

streaming performance substantially by up to 3 dB. 
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Fig. 9. Effect of ECN on streaming performance for 

ASFD with Tp= 5 sec 

 

In our final simulation experiment, we compare the 

proposed edge-based server-side frame discarding 

solution with the core-based Differentiated Services 

(Diffserv) Assured Forwarding (AF) Per-Hop-Behavior 

(PHB) architecture in the context of stored video 

streaming and identify regimes in which the former 

architecture outperforms the latter. For the Diffserv 

scenario, we mark packets belonging to H- frames as 

AF11 and those of L-frames as AF12. We use Weighted 

RED (WRED) with the RED parameters (20, 60, 0.1) 

and (10, 30, 0.25) for AF11 and AF12, respectively. We 

do not impose the use of any traffic conditioner in this 

experiment but we make use of only the differentiated 

forwarding paradigm of Diffserv. We use UDP (User 

Datagram Protocol) for the transport layer for this 

scenario. We will refer to the combined scheme as 

Diffserv+UDP. which demonstrates that when the client 

playout delay Tpis small and comparable to one Round 

Trip Time (RTT), the Diffserv+UDP solution 

outperforms the proposed ASFD+TCP approach. 

However, when Tpis increased to 5 sec., then the 

ASFD+TCP solution gives better results than that of the 

Diffserv+UDP solution (see Figure 10). The reason for 

this behaviour is that when the client playout delay is 

large enough then the TCP sender can retransmit not 

ACKed packets without them missing their deadlines (as 

opposed to the Tp= 1 sec. case). Moreover, it is the 

application layer that intelligently decides on which 

frames to discard in ASFD+TCP by taking into 

consideration their playout deadlines. We’re led to 

believe that when the playout delays are sufficiently large 

(i.e., Tp> 5 sec.) then the proposed edge-based adaptive 

approach is superior to the network-based Diffserv+UDP 

scheme which is static in its parameter settings and 

which is not aware of the playout 

deadlines.

 
Fig. 10. PSNR plots using Diffserv+UDP and 

ASFD+TCP scheme for Tp= 5sec. scenario 

4. Conclusions 

Motivated by the extensive operation experience behind 

TCP, we propose in this paper an easily implementable 

stored video streaming system using TCP transport. The 

proposed system consists of an input buffer implemented 

at the application layer of the server coupled with the 

congestion control scheme of TCP at the transport layer. 

The proposed frame discarding strategy dynamically and 

intelligently discards low priority frames from its head-

end. Moreover, it is adaptive to changes in the bandwidth 

available to the video stream. Our simulation results 

demonstrate that scalable stored video can efficiently be 

streamed over TCP with the proposed adaptive frame 

discarding strategy if the client playout delay is large 

enough to absorb the fluctuations in the TCP estimation 

of the available bandwidth. As expected, the use of 

Explicit Congestion Notification (ECN) in the network is 

shown to slightly improve the throughput especially in 

congested network scenarios and for small initial playout 

delays. Finally, we compare the proposed edge-based 

server-side frame discarding solution with the core-based 

Differentiated Services (Diffserv) AF PHB architecture 

and identify regimes in which the former architecture 

outperforms the latter. We show through a number of 

simulations that if the playout delay is sufficiently long 

(i.e., Tp > 5 sec.) then the proposed edge-based solution 

outperforms the core-based Diffserv solution whereas 

this relationship is reversed otherwise. 
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