
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

154

Manuscript received January 5, 2010

Manuscript revised January 20, 2010

Architecture for efficiently streaming stored video Architecture for efficiently streaming stored video Architecture for efficiently streaming stored video Architecture for efficiently streaming stored video usingusingusingusing TCPTCPTCPTCP

G.Srinivasa Rao, P.Satish Kumar, K.Devi Prasad, M.Supraja, G.Vinay Kumar, V.S.V.S.Murthy, M.Praveen

Kumar, D.Rajesh, S.Lavanya, P.Ananda Deepthi, Ch.Pavan Satish

GITAM University

Abstract
TCP (Transmission Control Protocol) with its well-established

congestion control mechanism is the prevailing transport layer

protocol for non-real time data in current IP (Internet Protocol)

networks. It would be desirable to transmit any type of

multimedia data using TCP in order to take advantage of the

extensive operational experience behind TCP in the Internet.

However, some features of TCP including retransmissions and

variations in throughput and delay, although not catastrophic

for non-real time data, may result in inefficiencies for video

streaming applications. In this paper, we propose an

architecture which consists of an input buffer at the server side,

coupled with the congestion control mechanism of TCP at the

transport layer, for efficiently streaming stored video in the

best-effort Internet. The proposed buffer management scheme

selectively discards low priority frames from its head-end,

which otherwise would jeopardize the successful playout of

high priority frames. Moreover, the proposed discarding policy

is adaptive to changes in the bandwidth available to the video

stream.

Key words:
Video streaming, Congestion control, Adaptive frame

discarding, explicit congestion notification, Differentiated

services

1. Introduction

Transmission of high quality video over the IP (Internet

Protocol) networks has become commonplace due to

recent progresses in video compression and networking

disciplines, the development of efficient video

coders/decoders, the increasing interest in applications

such as video on demand, videophone, and video

conferencing, and the ubiquity of the Internet. However,

that are certain technical challenges to be overcome for

efficiently transmitting video over IP networks; see for

example the references [1] and [2] for an introduction to

the topic. These challenges stem from the mismatch

between the strict bandwidth, delay, and loss

requirements of the video applications and the best-effort

current Internet, which was originally

designed around data applications that can tolerate loss

and delay. Moreover, the instantaneous bandwidth

available to a certain user or application changes in all

time scales because of the very dynamic nature of the

Internet, making the problem evens more challenging.

These characteristics of the Internet led to the rise of

network-adaptive video applications for providing

smooth playout at the receiving client.

This paper addresses the problem of TCP-friendly on-

demand streaming of temporally scalable stored video

over the Internet using server-side adaptive frame

discarding. In a stored video-on-demand system, the

server prestores the encoded video and transmits it on

demand to a client for playout in real time. The client

buffers the data and starts playout after a short delay in

the order of seconds (called the playout delay and

denoted by Tp). We assume a fixed Tpthroughout the

paper as opposed to the adaptive playout schemes where

the client buffering delay is varied with respect to the

network conditions [3],[4]. It is this tolerability to larger

playout delays that distinguishes the stored video

streaming problem from other video networking

applications like video phony, video conferencing, and

live video streaming. It is also very desirable that once

the playout begins, it should be able to playout without

any interruption (i.e., smooth playout) until the end of

the video streaming session. Moreover, such a

transmission strategy should not jeopardize the data

flows on the same network path which use TCP as their

transport protocol, which is referred to as the “TCP-

friendliness” requirement [5],[6],[7].

For network-adaptive video transmission over IP

networks, the server adapts its video injection rate into

the network to the instantenous available bandwidth in

the network. Several mechanisms are proposed for rate

adaptation including stream switching as in the

SureStream technology provided by RealSystem G2

[8],[9], rate-adaptive video encoding/transcoding [1], or

joint use of scalable coding (i.e., layered coding) and rate

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

155

shaping via server-side selective frame discard [10].

Bitstream switching does not offer a fine granularity

since there are only a few bitstreams available among

which the streaming server can switch. Rate-adaptive

encoding is more appropriate for live video streaming or

interactive video applications as opposed to the stored

video streaming problem we discuss in this paper. In our

work, we therefore focus on rate adaptation using

scalable encoded bitstreams. Scalable video codecs

generate two or more bit streams, one carrying the most

vital video information, called the Base Layer (BL), and

the others carrying the residual information to enhance

the quality of the base layer, which is referred to as the

Enhancement Layers (EL) [11]. If there is a single EL,

then the corresponding scalable coding is called 2-layer.

Several scalable video-coding techniques have been

proposed over the past few years for real-time Internet

applications in the form of several video compression

standards such as MPEG-2/4 and H.263/H.264

[11],[12],[13],[14]. The types of scalability which are

defined in these standards can be categorized as temporal,

spatial, SNR, and object (only for MPEG4) scalability;

In these structures, base and enhancement layers are

precoded at encoding time, and therefore their rates

cannot be adjusted at transmission time. Therefore,

server-side selective frame discard mechanisms are

proposed for rate adaptation of scalable video. These

discard mechanisms intelligently decide to drop some EL

frames with the goal of increasing the overall quality of

the video by taking network constraints and client QoS

requirements into consideration [10]. The more recent

Fine Grain Scalability (FGS) coding in which the

enhancement frame can be encoded independently with

an arbitrary number of bits and the bit rate can thus be

adjusted at transmission time for finer granularity is left

outside the scope of the current paper. We limit the focus

of this paper by using a 2-layer temporal scalability

video encoding scheme provided by H.263 version 2

(H.263+) [13] although we note that our results also

apply to other 2-layer scalable video encoding schemes.

Besides network adaptivity, another challenging issue for

the stored video streaming problem over the Internet is to

provide inter-protocol fairness. TCP (Transmission

Control Protocol) is the de-facto transport protocol for

data in the current Internet. TCP is designed to offer a

fully reliable service which is suitable for applications

like file transfers, e-mail, etc. On the other hand, the

alternative transport protocol UDP (User Datagram

Protocol) used by many current streaming applications

does not possess congestion control. Consequently, when

UDP and TCP flows share the same link, TCP flows

reduce their rates in case of a packet drop. This leaves

most of the available bandwidth to unresponsive UDP

flows leading to starvation of TCP traffic in case of

substantial UDP load. Some believe that the current trend

in using UDP as the transport layer without congestion

control can lead to a congestion collapse of the Internet

due to the rapid growth of such applications like Internet

telephony, streaming video, and on-line games [5].

Taking into consideration the dominance of TCP in

today’s Internet traffic, it is therefore desirable that the

throughput of a video streaming session be similar to that

of a TCP flow under the same network circumstances

(i.e., two sessions simulatenously using the same

network path). Such a mechanism is called TCP-friendly

and TCP friendly schemes need to be designed to be

cooperative with TCP flows by appropriately reacting to

congestion [5]. There are a number of TCP-friendly

congestion control algorithms which have recently been

proposed, such as the rate-based RAP (Rate Adaptation

Protocol), equation-based TFRC (TCP-Friendly Rate

Control) [6],[7], and window-based BCC (Binomial

Congestion Control). The transmission rates of the

proposed TCP-friendly algorithms are generally

smoother than that of TCP under stationary conditions at

the expense of reduced responsiveness to changes in the

network state (e.g., a new session arrival/departure

to/from the bottleneck link). Moreover, these TCP-

friendly mechanisms do not provide reliable transfer as

TCP does, making them more suitable for real-time

applications. DCCP, the Datagram Congestion Control

Protocol, is a new transport protocol being developed by

the IETF that provides a congestion-controlled flow of

unreliable datagrams. TCP-like congestion control

without reliability and the equation based TFRC [7] form

the basis for the two congestion control profiles ID 2 and

ID 3, respectively, in the DCCP protocol suite The stored

video streaming problem over resource constrained

networks, like the Internet, has attacted the attention of

many researchers. Given network bandwidth and client

buffer constraints, a dynamic programming algorithm

with reportedly significant computational complexity is

developed for the optimal selective frame discard

problem in [10] as well as several heuristic algorithms.

However, this study is unable to accomodate the

bandwidth variability patterns of the Internet since the

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

156

network bandwidth is assumed to be fixed and a-priori

known. On a similar ground, rate-distortion

optimization-based video streaming algorithms have

been developed, that obtain scheduling policies for both

new and retransmitted frames using stochastic control

principles but the proposed methods are relatively

complex and their feasability remain to be seen. The

reference [16] considers a practical frame dropping

algorithm for MPEG streams over best-effort networks

but they neither use a TCP-friendly congestion control

algorithm nor they take into account the deadlines of

frames. A dynamic frame dropping filter for MPEG

streams is proposed in a network environment where the

available bandwidth changes dynamically but this work

also lacks the TCP-friendliness component. A number of

studies focus on streaming video using new TCP-friendly

transport protocols [7] while others employing TCP itself.

One common objection to use of TCP for streaming

applications is the fully reliable service model of TCP

through retransmissions. While delays due to

retransmissions may not be tolerable for interactive

applications, the service model for TCP may not be

problematic for video on demand applications. Moreover,

the use of ECN (Explicit Congestion Notification) allows

TCP to perform congestion avoidance without losses,

limiting further the potential adverse effect of the TCP

service model.

In this paper, we propose a stored video streaming

system architecture which consists of an input buffer at

the server side coupled with the congestion control

scheme of TCP at the transport layer, for efficiently

streaming stored video over the best effort Internet. The

proposed method can be made to work with other

transport protocols including DCCP but our choice of

TCP in the current paper as the under-

lying transport protocol stems from the following

reasons:

• Slowly-responding TCP-friendly algorithms perform

reasonably well in terms of video goodput in stationary

conditions. However, responsiveness is especially critical

in the core of the Internet today which appears to be

operating in the transient rather than in the stationary

regime due to the large session arrival and/or departure

rates to/from the network. On the other hand, TCP

congestion control has a well-established responsiveness

to changing network state and may be more appropriate

in rapidly changing environments.

• TCP with its original congestion control but with its full

reliability feature replaced with selective reliability

would be a more appropriate fit as a transport protocol

for the underlying problem but the standards in this

direction have not finalized and are still evolving. We

note that TCP’s insistence on reliable delivery without

timing considerations would adversely affect the

performance of the system under packet losses especially

for (near) real-time applications (e.g., applications

requiring short playout delays). In this paper, we study

the regimes for which TCP performance for stored video

streaming is acceptable but also identify regimes for

which TCP performs poorly and a new transport protocol

would be needed.

• TCP is currently used for streaming applications in order

to get through some firewalls that block UDP traffic.

• The choice of TCP as the transport protocol eliminates

the unnecessary burden on the application-level designer

by providing congestion control at the transport layer.

• Another key advantage related to providing congestion

control at the transport layer (i.e., TCP) rather than

“above UDP” is that the proposed scheme can make use

of the services provided by the standard-based Explicit

Congestion Notification (ECN) mechanism which

provides a means of explicitly sending a “congestion

experienced” signal towards the TCP sender in TCP

acknowledgment packets. We note that explicit feedback

significantly reduces the losses in the network and is

therefore particularly useful in scenarios such as video

streaming where the frequency of retransmissions due to

losses is to be kept at a minimum.

In our proposed architecture, the buffer management

scheme selectively discards low priority frames from its

head-end which otherwise would jeopardize the

successful playout of high priority frames. Moreover, the

proposed discarding policy is adaptive to changes in the

bandwidth available to the video stream. Contrary to

many of the previously proposed adaptive transmission

algorithms, the proposed Selective Frame Discard (SFD)

strategy is simple and is easily implementable at the

application layer by allowing additional information

exchange between the transport layer and the application

layer. Moreover, our proposed server-side frame

discarding algorithm only needs to know the playout

delay Tpand several network related variables which are

made available by using the services of TCP and the

playout buffer occupancy does not need to fed back to

the server in this proposed scheme. Our simulation

results emonstrate that scalable stored video can

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

157

efficiently be streamed over TCP with the proposed

adaptive frame discarding strategy if the client playout

delay is large enough to absorb the fluctuations in the

TCP estimation of the available bandwidth. We also

study the impact using Explicit Congestion Notification

(ECN) in the network in terms of attained video quality.

Finally, we compare the proposed edge-based server-side

frame discarding solution with the core-based

Differentiated Services (Diffserv) Assured Forwarding

(AF) Per-Hop-Behavior (PHB) architecture in the

context of stored video streaming and identify regimes in

which the former architecture outperforms the latter.

The rest of the paper is organized as follows. In Section 2,

the proposed architecture including the scalable coding

model and the selective frame discard schemes are

presented. The simulation platform and the numerical

results are given in Section 3. We conclude in the final

section.

2. Video Streaming Architecture

In this section, we first describe our video encoding

model and then present the details of the proposed input

buffer management scheme based on selective frame

discarding.

The main goal of scalable coding of video is to flexibly

support a heteregoneous set of receivers with different

access bandwidths and display capabilities. Furthermore,

scalable coding provides a layered video bit stream

which is amenable to prioritized transmission. In this

paper, we assume that the stored video is encoded into

two layers, the BL and the EL, using the Reference

Picture Selection mode of H.263 version 2 [13],[14]. In

this structure, the BL is composed of Intra (I) and anchor

P (predicted) frames whereas the EL is composed of the

remaining P frames. P frames in the EL are estimated

using the anchor P frames or I frames in the BL where

anchor P frames are chosen using the Reference Picture

Selection mode. Throughout the rest of this paper, we

will denote the base layer frames by H (High- priority),

and enhancement layer frames as L (Low-priority). A

schematic diagram of the employed scalable video

coding structure is shown in Figure 1. We leave the study

of different temporal scalability models and other video

coding standards for future research but we believe that

the proposed architecture is applicable to other 2-layer

scalable video codecs.

Fig. 1. Base and enhancement layers in temporal

scalability mode

2.2 Selective Frame Discarding

As stated in the previous section, we assume that video

encoders generate H- and L- frames. If the available

network bandwidth cannot accommodate the

transmission of all frames, then it would be desirable to

discard to discard some of L- frames on the behalf of H-

frames. While making a L-frame discarding decision ,our

goal is to maximize the number of transported L-frames

subject to the constraint that the loss rate for the H-

frames would be minimal. In this definition, a loss refers

to a missed frame at the client either because the frame is

not transmitted by the server or is transmitted but

partially/completely lost in the network or the frame is

received by the client but after its deadline. For this

purpose, we propose an input buffer implemented at the

application layer of the sender which dynamically and

intelligently discards L-frames from its headend and this

scheme is depicted in Fig. 2.

We use the RTP/TCP/IP protocols stack in this study.

We propose in this architecture that the stored video

frames arrive at the input buffer at a frequency f = 1/T

frames per second, which is the frame generation rate of

the underlying video session. These frames wait in the

input buffer until they reach the headend of the buffer

and a decision is then made by the Selective Frame

Discard (SFD) block whether the corresponding frame

should be passed towards the transport layer or is simply

discarded. In cases of discard, the SFD block will make

subsequent discard decisions until an acceptance decision

is made. When a frame is accepted by the SFD module, it

is segmented into video packets (or RTP packets) of

length at most L where we fix L to 1 Kbytes in this study.

In our simulation studies, QCIF videos are encoded at

around 30 dB quality and a typical video packet can

carry 1-3 P-frames depending on the compression

efficiency of the frame (i.e. high/low motion) and a

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

158

typical I-frame can be transported by 2-3 video packets.

Video packets of accepted frames are first placed in the

partial frame buffer which is then drained by the TCP

layer. We suggest that whenever a TCP packet begins to

take its first journey towards the network, the TCP layer

immediately retrieves a packet from the partial frame

buffer if the buffer is nonempty. Otherwise, it queries the

SFD module to make an acceptance/rejection decision on

the head-end frame. The acceptance/rejection decision is

made as follows: The decision epoch for the ith frame is

denoted by tiirrespective of the outcome of the decision.

The waiting time or the shaping delay in the input buffer

for frame i, denoted by Di,S, is the difference between

tiand the injection time for the i
th
frame to the input buffer.

Let Di,Ndenote the network delay for the ith frame

injected into the input buffer. Recalling that frames are

generated by the encoder at integer multiples of T , the

injection time for the ith frame to the input buffer will be

t0+ iT , where t0is the injection time of the 0th frame. The

ith frame will then wait in the input buffer for

Di,Sseconds and the SFD module will make an

admit/discard decision for the ith frame at time epoch

ti=
4
t0+ iT + Di,S. If the ith frame is admitted by the SFD

module into the transport layer then that frame will be

delayed an additional Di,T CP and Di,N seconds in

the TCP buffer and in the network, respectively. It is

clear that the ith frame must arrive at the receiver before

its playout time t0+ D0,N
+
Tp+ iT where Tpis the initial

buffering time of the playout buffer which starts

accumulation as soon as the frame 0 arrives. So the

following inequality should be satisfied for every

accepted frame i > 0 for its succesful playout:

Di,S≤ Tp− (Di,N− D0,N
)
− Di,T CP (1)

In the above inequality, Di,Sand Tpare known to the SFD

module, however one needs to find estimates for the last

two terms on the right hand side of the inequality. In this

study, we suggest to estimate the one-way network delay

difference ∆i= Di,N− D0,N using the TCP Timestamps

option (TSopt) in TCP headers. In the TCP Timestamps

Option, while transmitting packet m, the sender puts the

transmission instant timestamp in the TSval (Timestamp

Value) field. After receiving packet m, the receiver

generates an acknowledgement packet denoted by ack m,

by setting its TSval field with the current time of the

receiver and by copying the TSval field of packet m to

the TSecr (Timestamp Echo Reply) field of ack m. In this

way, the SFD module will have an estimate of the one-

way network delay difference using the TCP timestamp

option for the last acknowledged TCP packet before time

tiwhen it needs to make a decision for frame i. On the

other hand, the last term Di,T CP is not known in

advance but is relatively small compared to Tpunless

there are TCP losses because of the mechanism described

for initiating a data transfer from the application layer

into the TCP layer. We therefore introduce a safety

parameter α, 0 < α < 1 to account for the errors due to

inaccuracies due to estimations to be used in the

inequality (1) as follows. In order for an admission

decision for frame i to take place, the following new

inequality should be checked by the SFD block:

Di,S ≤ α(Tp − ∆i) (2)

The inequality (2) can be used to select which frames to

discard for nonscalable video but it needs to be modified

for layered video. This modification is studied next.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

159

2.3 Static and Adaptive Selective Frame Discard

Algorithms

We propose to use two different safety parameters αLand

αHfor the L-frames and the H-frames, respectively, for

preferential treatment for H-frames. Such a treatment is

possible by choosing αL < αH . This choice makes αL

not only a safety parameter but also a prioritization

instrument. We summarize the general SFD algorithm at

decision epoch tiin Table 1.

The choice of the algorithm parameters αLand αHare key

to the success of the proposed architecture. In Static SFD

(SSFD), fixed αLand αHvalues are used throughout the

video streaming session. However, such a fixed policy

may not work well in all possible traffic scenarios. For

example in cases where the instantenous available

bandwidth is close to the the BL rate then the L-frames

should aggressively be discarded (i.e., αL → 0) in

order to minimize the loss probability of the BL frames.

On the other hand, if the available bandwidth happens to

be close to or exceeds the total rate of the BL and the EL

frames, then the L-frames should conservatively be

discarded (i.e. αL → αH) . The very dynamic nature of

the Internet may lead to significant variations in the

available bandwidth even during the lifetime of a video

session. Moreover the instaneous BL and EL rates for

VBR encoded video may substantially deviate from their

long-run average values. These observations lead us to

an adaptive version of the SFD algorithm. For this

purpose, we define C(t) as a smoothed estimate of the

bandwidth available to the session at time t, where Ci =

C(ti) is simply the weighted average of Ci−1 and the

instantaneous rate of TCP which is found by cwndi/RT Ti.

Also we let RL(t) and RH(t) be the smoothed estimates of

the EL and the BL, respectively, by monitoring the frame

arrivals to the input buffer. We also let C, RL and RH

denote the time averages of of the wave- Table 1

The pseudo-code for the SFD algorithm at time ti

if ((frame i == L-frame) && (Di,S< αL(Tp− ∆i)) {

Admit();

} else if ((frame i == H-frame) && (Di,S< αH(Tp−

∆i)) {

Admit();

} else Discard();

forms C(t), RH(t), and RL(t), respectively. We then

propose the simple Adaptive SFD (ASFD) scheme

depicted in Fig. 3. We fix αHand use it only as a safety

parameter (αHset to 0.7 in this study). The choice of αLis

less straighforward: αLis zero when C(t)< RH(t),

αLequals αHwhen C(t) > RH(t) + RL(t) and it changes

linearly within between these two end regimes. The

notation SSFD(x) denotes the SSFD algorithm with αH=

0.7 and αLset to x.

Fig. 3. Adaptive choice of αLin the ASFD algorithm

3. Simulation Results

In this section, we study the performance of the proposed

stored video streaming architecture using simulation. We

use ns-2 for simulations with a number of enhancements

required for the video streaming architecture given in Fig.

2. We use the single bottleneck topology in Fig. 4 for all

the simulation experiments. In all simulations, N video

sessions (of length 780 seconds) share a single

bottleneck link with capacity Ctot(set to 1 Mbps), where

N will be varied to account for the variability of the

available bandwidth to each user. The buffer

management mechanism for the bottleneck link is

assumed to be RED (Random Early Detect). We use the

RED parameters (minth, maxth, maxp) = (20, 60, 0.1) and

the RED smoothing parameter set to 0.002 unless

otherwise stated.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

160

The first N/2 sessions are sinked at dest1and the

remaining ones at dest2. Each video source employs TCP

Reno with the same set of parameters and options and

each source streams the same video clip. There is one

tagged source we monitor among the N sources for

PSNR (Peak Signal-Noise Ratio) plots. Each source

starts streaming at random points in the video clip in

order to prevent synchronization among the sources.

Throughout the simulations, the bit rate of the VBR

encoded video has substantial oscillations while the

average rates are RL≈ 82.6 kbps and RH≈ 35.0 kbps (see

Figure 5). Given that the original video frequency is f =

25 frames/sec, the two layer scalable video is composed

of a single I and 9 anchor-P frames as the base layer for

each two-seconds interval (i.e., Group of Pictures (GOP)

duration). The remaining 40 are plain P frames that

constitute the enhancement layer as given in Fig. 1. In

our simulations, the average PSNR is used as the

performance metric. For lost frames the concealment is

done at the receiver by replicating the most recently

decoded frame. Since we are using a temporally scalable

bitstream, the PSNR of the received frames reflects the

degradation in system performance due to losses only in

the BL. Using PSNR for bothreceived and lost frames

enables us to see the degradation in the system

performance caused by both the L-frame and H-frame

losses. In all of our experiments, the bottleneck link with

capacity Ctotis shared among N sources where N ∈

{6, .., 40} and the expected fair bandwidth share per flow,

which is C ≈ Ctot/N , changes in the range {25, . . . ,

166} kbps.

Fig. 5. Smoothed bit rates for the BL and EL for the

layered video used in the simulations

In our first experiment, we compare and contrast the

performance of the ASFD algorithm with the SSFD

algorithm with three settings for αL∈ {0.05, 0.4, 0.7}. For

this purpose, we vary the number of video sessions N

and thus change the fair share of each session C ≈ Ctot/N

and obtain the corresponding PSNR value for the SSFD

and ASFD algorithms. The playout delay Tpis set to 5 sec

in this study. The results are depicted in Fig. 6. The ideal

curve is obtained by allowing the system to transmit and

play all the scheduled frames, in other words for a given

bandwidth it is assumed that there is enough playout

buffering to tolerate the latency due to retransmissions

and the video bitrate is properly matched to the constant

available bandwidth in the network so that the scheduled

frames never miss their playout times. In our simulations,

the EL and/or BL frames are discarded sequentially for

the computation of the ideal curve and the corresponding

bitrate is calculated. The sequence used for discarding is

the same for each GOP. The selection of a conservative

SSFD policy (i.e., SSFD(0.05)) gives the best results for

the heavy load case (i.e., C < 100 kbps) when

compared to all other schemes. However, in the light

load case when C gets close to or beyond RL+ RH, the

PSNR performance of SSFD(0.05) degrades

substantially compared to the less conservative policies

SSFD(0.4) and SSFD(0.7). On the other hand, the

adaptive version ASFD is robust with respect to the

changes in the available bandwidth per user and it

compares reasonably well with the best performing static

policy in each case. The advantage of the ASFD is that

the video server can find a policy very close to the

optimal frame discarding policy using local

measurements even when the available bandwidth per

user changes significantly during the lifetime of the video

session. This behavior can definitely not be obtained with

static policies.

Fig. 6. Comparison of SSFD vs ASFD for the case Tp= 5

sec

In our second simulation experiment, we study the

impact of the RED parameters on the ASFD performance.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

161

The results are given in Fig. 7. The cases with three

different RED configurations outperformed the drop-tail

policy with the buffer size set to 120 packets. This

observation can be explained by the fact that drop-tail

buffer management causes synchronized losses and the

resulting overshoots and undershoots in the resulting

buffer occupancy yield substantial performance

degradation relative to that of RED. We generally

obtained quite robust results with RED but we also

observed performance degradation with RED(10,30,0.1)

in the heavy load case compared to the other two RED

systems. This degradation is due to the relatively

conservative choice of minthand maxthin this system

when a fairly large number of sources are multiplexed.

Fig. 7. Effect of RED parameters on ASFD performance

with Tp= 5 sec.

In the third simulation experiment, we study the impact

of using ECN for which the RED module at the

bottleneck link marks the packets with the corresponding

probabilities as opposed to discarding them. This

congestion information is then fed back in the TCP

acknowledgements via which the TCP sources adjust

their window sizes. Since all TCP senders are using ECN

and all respond to congestion before actually loosing a

packet they tend to experience less the undesired data or

timer driven loss recovery phases of TCP. This

behaviour, as one might expect, leads to a singnificant

performance improvement especially in congested

network scenarios and for small initial playout delays.

This situation is depicted in Fig. 8 in which Tp is

set to 2 sec. and the performance of using TCP Reno

without ECN and TCP Reno with ECN are shown in

terms of the average PSNR values for varying C. For the

heavy load case, the performance gain with ECN is

remarkable (up to 2 db). The Tp = 5 sec. case is

depicted in Fig. 9 for which the ECN gains are smaller

compared to the Tp= 2 sec. case. For small playout delays,

it is more likely that a larger percentage of the TCP’s

retransmissions arrive at the receiver later than their

corresponding deadlines. With ECN, losses in the

network are reduced and so are retransmissions. This is

why the performance gain of ECN is more significant in

cases with small playout delays. As shown in Fig. 8, Tp=

2 sec. of buffering cannot tolerate the timer driven

retransmissions occuring in TCP, therefore a significant

PSNR degredation is observed if ECN is not employed

as compared to the Tp= 5 sec. case.

Fig. 8. Impact of ECN on streaming performance for

ASFD with Tp= 2 sec.

 In the fourth experiment, we study the impact of the

playout delay Tpwhich is used in order to compensate for

the oscillations in the video bit rate and available

network bandwidth per user. The playout delay Tpis

varied from 1 sec. to 30 sec. The PSNR curves saturate at

around Tp = 15 sec. beyond which buffering only

slightly improves the PSNR performance. For small

Tp(i.e., Tp= 1 or 2 sec.), the playout delay is comparable

to the delays encountered in TCP’s data/timer driven

retransmissions and a larger percentage of the network

losses result in missed playouts and thus reduced PSNRs.

With TCP, increasing Tpfrom 2 to 5 sec. increases the

streaming performance substantially by up to 3 dB.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

162

Fig. 9. Effect of ECN on streaming performance for

ASFD with Tp= 5 sec

In our final simulation experiment, we compare the

proposed edge-based server-side frame discarding

solution with the core-based Differentiated Services

(Diffserv) Assured Forwarding (AF) Per-Hop-Behavior

(PHB) architecture in the context of stored video

streaming and identify regimes in which the former

architecture outperforms the latter. For the Diffserv

scenario, we mark packets belonging to H- frames as

AF11 and those of L-frames as AF12. We use Weighted

RED (WRED) with the RED parameters (20, 60, 0.1)

and (10, 30, 0.25) for AF11 and AF12, respectively. We

do not impose the use of any traffic conditioner in this

experiment but we make use of only the differentiated

forwarding paradigm of Diffserv. We use UDP (User

Datagram Protocol) for the transport layer for this

scenario. We will refer to the combined scheme as

Diffserv+UDP. which demonstrates that when the client

playout delay Tpis small and comparable to one Round

Trip Time (RTT), the Diffserv+UDP solution

outperforms the proposed ASFD+TCP approach.

However, when Tpis increased to 5 sec., then the

ASFD+TCP solution gives better results than that of the

Diffserv+UDP solution (see Figure 10). The reason for

this behaviour is that when the client playout delay is

large enough then the TCP sender can retransmit not

ACKed packets without them missing their deadlines (as

opposed to the Tp= 1 sec. case). Moreover, it is the

application layer that intelligently decides on which

frames to discard in ASFD+TCP by taking into

consideration their playout deadlines. We’re led to

believe that when the playout delays are sufficiently large

(i.e., Tp> 5 sec.) then the proposed edge-based adaptive

approach is superior to the network-based Diffserv+UDP

scheme which is static in its parameter settings and

which is not aware of the playout

deadlines.

Fig. 10. PSNR plots using Diffserv+UDP and

ASFD+TCP scheme for Tp= 5sec. scenario

4. Conclusions

Motivated by the extensive operation experience behind

TCP, we propose in this paper an easily implementable

stored video streaming system using TCP transport. The

proposed system consists of an input buffer implemented

at the application layer of the server coupled with the

congestion control scheme of TCP at the transport layer.

The proposed frame discarding strategy dynamically and

intelligently discards low priority frames from its head-

end. Moreover, it is adaptive to changes in the bandwidth

available to the video stream. Our simulation results

demonstrate that scalable stored video can efficiently be

streamed over TCP with the proposed adaptive frame

discarding strategy if the client playout delay is large

enough to absorb the fluctuations in the TCP estimation

of the available bandwidth. As expected, the use of

Explicit Congestion Notification (ECN) in the network is

shown to slightly improve the throughput especially in

congested network scenarios and for small initial playout

delays. Finally, we compare the proposed edge-based

server-side frame discarding solution with the core-based

Differentiated Services (Diffserv) AF PHB architecture

and identify regimes in which the former architecture

outperforms the latter. We show through a number of

simulations that if the playout delay is sufficiently long

(i.e., Tp > 5 sec.) then the proposed edge-based solution

outperforms the core-based Diffserv solution whereas

this relationship is reversed otherwise.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

163

References
[1] D. Wu, Y. T. Hou, Y. Q. Zhang, Transporting real-time

video over the Internet: Challenges and approaches,

Proceedings of the IEEE 88 (12) (2000) 1855–1875.

[2] M. Civanlar, A. Luthra, S. Wenger, W. Zhu, Introduction

to the special issue on streaming video, IEEE Trans.

Circuits Syst. Video Technol. 12 (2001) 265–268.

[3] N. Laoutaris, I. Stavrakakis, Intrastream synchronization

for continuous media streams: A survey of playout

schedulers, IEEE Network Magazine 16 (3) (2002) 30–40.

[4] M. Kalman, E. Steinbach, B. Girod, Rate-distortion

optimized video streaming with adaptive playout, in:

Proceedings of ICIP, Vol. 3, Rochester, NY, 2002, pp.

189–192.

[5] S. Floyd, K. Fall, Promoting the use of end-to-end

congestion control in the Internet, IEEE/ACM

Transactions on Networking 7 (4) (1999) 458–472.

[6] J.Padhye, V. Firoiu, D. Towsley, J. Kurose, Modeling

TCP Reno performance: A simple model and its empirical

validation, IEEE/ACM Transactions on Networks 8 (2)

(2000) 133–145.

[7] S. Floyd, M. Handley, J. Padhye, J. Widmer, Equation-

based congestion control for unicast applications, in: ACM

SIGCOMM, Stockholm, Sweden, 2000, pp. 43–56.

[8] A. Lippman, Video coding for multiple target audiences,

in: SPIE Conference on Visual Communications and

Image Processing, Vol. 3653, 1999, pp. 780–782.

[9] G. J. Conklin, G. S. Greenbaum, K. O. Lillevold, A. F.

Lippman, Y. A. Reznik, Video coding for streaming media

delivery on the Internet, IEEE Trans. Circuits Syst. Video

Technol. 11 (3) (2001) 269–281.

[10] Z.-L. Zhang, S. Nelakuditi, R. Aggarwal, R. P. Tsang,

Efficient selective frame discard algorithms for stored

video delivery across resource constrained networks, in:

INFOCOM, Vol. 2, 1999, pp. 472–479.

[11] B. G. Haskell, A. Puri, A. N. Netravali, Digital Video: An

Introduction to MPEG-2, Kluwer Academic Publishers,

1996.

[12] A. Puri, T. Chen, Multimedia Systems, Standards, and

Networks, Marcel Dekker Inc., New York/Basel, 2000.

[13] Video coding for low bit rate communication, ITU-T

Recommendation H.263 (February 1998).

[14] G. Cote, B. Erol, M. Gallant, F. Kossentini, H.263+: video

coding at low bit rates, IEEE Trans. Circuits Syst. Video

Technol. 8 (7) (1998) 849–866.

[15] A. Luthra, G. J. Sullivan, T. Wiegand, Introduction to the

special issue on the H.264/AVC video coding standard,

IEEE Transactions on Circuits and Systems for Video

Technology 13 (7) (2003) 557–726.

[16] M. Hemy, U. Hengartner, P. Steenkiste, MPEG systems in

best-effort networks, in: Packet Video Workshop, New

York, 1999.

1. Mr.G.Srinivasa Rao,

M.Tech,(Ph.D)., Sr.Asst.Professor.

He has Submitted Ph.D thesis in

M.U., Over 10 Years of teaching

experience with GITAM University,

handled courses for B.Tech, M.Tech.

Research areas include Computer

Networks And Data

Communications. published 6 papers

in various National and International Conferences and Journals.

2. P.Satish Kumar M.Sc., pursuing M.Tech(IT) from GITAM

University.

3. K.Devi Prasad M.Sc., pursuing M.Tech(IT) from GITAM

University

4. M.Supraja M.Sc., pursuing M.Tech(IT) from GITAM

University..

5. G.Vinay Kumar M.Sc., pursuing M.Tech(IT) from GITAM

University.

6. V.S.V.S. Murthy pursuing M.Tech(IT) from GITAM

University.

7. M.Praveen Kumar pursuing M.Tech(IT) from GITAM

University.

8. D.Rajesh M.Sc., pursuing M.Tech(CST) from GITAM

University.

9. S.Lavanya pursuing M.Tech(IT) from GITAM University.

10. P.Ananda Deepthi pursuing M.Tech(IT) from GITAM

University.

11. Ch. Pavan Satish pursuing M.Tech(IT) from GITAM

University.

