
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

164

Manuscript received January 5, 2010
Manuscript revised January 20, 2010

Framework to represent the software design elements
in markup text – Design Markup Language (DGML)

P. K. Suri1 and Gurdev Singh2 ,

1. Professor, Department of Computer Science & Applications, Kurukshetra University, Kurukshetra, (Haryana) India.
2. Department of Computer Science & Applications, Kurukshetra University, Kurukshetra, (Haryana) India.

Abstract: The software design document bridges the
requirement phase activity with the implementation phase
activity. Design elements are having pictorial information
about the possible solution for requirements. Software
modules are written from these documents. If we can
represent these design elements in well-defined text format,
many experiments are possible on software design for
optimizing it. This paper is an initiative towards a new
framework, which stores the design elements in the form
of a text document with the help of proposed DGML
(DesiGn Markup Language). A new syntax is created for
DGML based documents. This representation of pictorials
design elements in the form of text helps in design
optimization, reusing the existing design and early
prediction of error prone modules. A fresh new design can
be obtained from existing design after parsing it for well-
defined project requirements.

Keywords: DGML, DGML syntax, DGML DTD, Text
based design representation, Design markups, Design
element.

I INTRODUCTION
Software design document is very important and very first
activity of the implementation phase. Successful design
document leads to successful implementation of the later
stages of software development process.

Many techniques are available for making the coding
process more optimized, error free and reusable for the
future use. All this is possible because of the text-based
nature of the program modules. Tools are available for
reading source code, identifying the scope improvements.
However, this type of possibility is not there on the
software design.

When analysis is over, next phase of design is to
represents the requirements in a way that the coder can
think in term of solutions after reading or looking on the
figures, which are there in the design document. Most of
the cases the pictorial representations are considered from
the design documents. The architecture design and
component design are used to get the familiarity about the
process flow.

Some famous design tools gives the flexibility to create the
design the document but further inference to extract new
design for reusability or design based intelligent
optimization to assist to make it robust is almost not
available. There are tools available to store the object
oriented design in the form of diagrams and then these
diagrams are converted in to the text files with the help of
UML[1]. Application software are available which
convert/ generate the text file from class diagram or vice-
versa. They also provide a framework for minimal
generation of the code from UML class document.

The procedures of applications are most of the time
represented with the help of conventional old methods like
flow charts in the design specification document. When a
design document is used for writing the programs, the
flowcharts are one of the maim components from that. But
there is no tool available which store the diagrams for
procedural component (like flow chart) to a text file,
which could be later referred for further processing.

One of the other requirements during the project
development and later in the maintenance phase is the
synchronization between the design document and coding.
This activity requires time and efforts. Automation of this
activity is also in big demand. [5].

All these observations indicate the need of making the
design phase more systematic and to invent the ways of
design representation which could lead to better
understanding of design document, more productiveness,
provide the design level reusability and earlier detection of
the error prone module in the design phase. If we make the
design phase more robust, error free, up to date and
reusable, it will minimize the overall cost of the software
development process.

II RELATED WORK
Software development life cycle has been reinvented many
times with the introduction of new models and also the
phases of the software development life cycle. Researchers
are identifying the difficulties in the software development
life cycle and proposing the solutions for the same. Large

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

165

no of experiment have been accomplished to improve the
coding style, code betterment, code optimization etc. The
work in the field of software design improvements is also
considered as research topics.
Researchers have experimented on the design phase by
taking different aspects. A good design helps in achieving
the stability of the software. [2] Early identification of
error prone module from the design stage is good approach
and a seed for stability. Time and effort investment in
early stage helps in minimizing efforts and cost in the later
stages.

Mr. Joost Noppen and their team worked on topic Dealing
with imprecise quality factors in software design. They
identify that during the design phase, it’s a good idea to
measure the effectiveness of the design for the specified
requirement. Its good to have the alternative design for
given requirement. So that we can choose for better one.
[3].

In the publication, Measuring software design quality By
David N. Card, Robert L. Glass, the importance of
modular design is focused [4] and proposed the details of
applying the metrics on the modular design. The paper
also discusses the identification of the critical design
module and concentrate on them in better way. It also
derives the design metrics from existing software metrics.

Microsoft is also identifying the way to provide the
synchronization between the code sheet and the external
documents. [5] This approach of automatic
synchronization between associated document of the
project helps in getting the updated information about the
software at any point of time.

III Overview of DGML
DGML (tags for design elements) is proposed for the
storing of the diagrams for the procedural design
components such as flow charts, as a text file. The DGML
based design document will be a repository of DGML tags.
The design document repository contains the flow chart
symbols as a markup and stored as a design-repository.

In this way diagrams for the procedural components could
be represented as a text file. DGML is a collection of well-
defined unique tags which are named after the components
of the diagrams of procedural design, like <Decision> and
</Decision>, for diamond box of the flow chart etc. A
well-defined DTD is also there for the grammatical
verification of any document to be used for further
processing.

The text based stored design documents are capable for
reproduction of the pictorial design elements. This is
possible because of the one-to-one correspondence

between the pictorial design element and its associated
DGML tag.

IV DTD of DGML
All the DGML tags for design representation are having
the DTD entry for syntax check.

Figure 1: DTD for DGML used to represent the Flowchart
based design

There exists different type of DTDs depending upon the
different type of design element.

One DTD is there for textual design representation of
procedural design, one is for textual design representation
for the object-oriented design, and other one is for the
structural English design representation. Following is the
DTD for the DGML based representation of the procedural
design (pictorial to text based).

V Syntax of DGML
To discuss the syntax of DGML, let us take the example of
bubble sort program. Figure2 represent the design in the
form of flowchart for bubble sort problem.

 This design is having the well-defined symbols for
representation of flow chart methodology. As these
symbols are well defined and standard, we can represent
each symbol of the flow chart in the form of DGML tags.

As defined in figure1 for DTD, each possible element of
the pictorial design for procedures is having one DGML

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

166

tag. When flowchart is created, its related entry is stored
in the text based DGML file.

Figure3 represents the DGML based notations for the
design, which is represented in the form of flowchart.
Every design element must be having one root element,
which is known as module.

Each module must be having two attributes. One is type of
module and other is id for module. Type of module is
indicating its category. One design module representation
in DGML could be for functional design (FN), object
oriented design (OOD) or structure English. This paper
discusses everything for functional design. When inference
or search lookup process is carried out on the stored design
in the DGML form for category, it will be compared with
module type attribute. The module id is used to give the
name to the design module for identification. This should
be relevant name like we have given sort. Good name for
module id helps in identifying the existing module for
reusability. Module name and module type attribute can
never be null. The DTD is having strict definition for this.

Each module is consisting of one or all of six elements
namely assumptions, constraints, optimization, input,
output and logic.

First three elements are used for the scope and better
understanding of the design process.
Assumptions specify the helpful comment about the
specified module. Like in our case, assumption is that this
module when implemented can sort the array data not data
stored on external storage like file. This helps the
programmer about before using the design for writing
some solution.
Constraint defines the restrictions about the design. Like
the current design is having the restriction not to use the
control variable as parameter to procedure. This makes a
module more cohesive as the one module represent one
functionality and its internal architecture is not driven
from the control parameter.

Optimization element defines the scope to code the defined
module in more effective way. Sorting algorithm is smart
if it checks for data on which it is to be applied. If data is
already sorted it should stop intelligently and hence save
processor time.
Input is the definition of the input parameter to the
procedure. Output is the result of the procedure. These
definitions are to specify the details to be taken care while
implementing the procedure.

Logic is the representation for the core process. Like for
the bubble sort algorithm, we specify the process inside

Figure 2: Flowchart based design of bubble sort algorithm

Let Arr is the array
of n elements.

If Index1 < n

Set Index1 = 0
Set temp =0

Set Index2 = 0

If Index2 < n-
Index1

Swap (Arr [index2], Arr
[index2+1])

If Arr[index2] >
Arr [index2+1]

END

Index2=Index2+1

Index1=Index1+1

Start

If Arr is sorted Y

N

N
Y

N

Y

Y

N

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

167

the logic tag to sort the given list of array. According to
DTD in figure1, there could be twelve possible elements,
which could be used to representation the logic of some
procedural problem in the DGML format.

Figure 3: DGML based representation for the flowchart of
bubble sort.

VI Working with DGML
DGML is text-based representation of the design
document. The design document which could be
represented using the notation procedure design which is
represented using flowchart, object oriented design which
is represented by class diagram and structural English.
Other design elements like UI design can also be
implemented using proposed approach.

The design is created with DGML based tool. This tool is
having the responsibility to store the design in the form of
DGML based tags and to show graphical representation of
the design. The complete design can be stored in the form
of text by assigning it a type and identification.

Experiments have been carried out to store the procedural
design like bubble sort algorithm and results for
representation are very encouraging. Also, the reusability
of user interface design for a software system could be
achieved by storing the graphical design documents in the
form of text. The graphics-symbols of the design
document can be represented in the form of text. Tools are
available which allow the user to draw the user interface
with diagrams. These tools however lack one aspect to

store the design elements in the form of structured text as
backend.

Figure 4: UI element and its associated design tag of
DGML.

As we store the functional design of software product
using tag based notations of DGML, we can store the UI
design of software also. We device the mechanism using
which we can store the UI diagrams for user interface in
the text format. So that when user creates one UI design
and save it, it generates one text file also. The approach
that we choose is to represent the text per design element
is as a DGML tag. So every design element will have a
unique tag. Initially the process start with making a new
UI design document, which is DGML based.
The system to create the UI design is having the collection
of UI elements. All finite design elements have assigned
names. User has to select and place these design elements
while creating design document. When one UI design
module gets completed, there will be one complete DGML
document associated with it. These UI design repository
will be a collection of associated DGML document per
design as shown in following figure2. There will be a
repository of designs after following this approach and
every design is well defined in terms of DGML tags. The
text format of storing the design is having the predefined
tags. Text format will be stored in DGML notations and is
having the tags for all knows design elements. When user
picks one design element, its respective tag will be placed
in its corresponding text file.
When UI design complete for some scenario by following
this approach, system will be having a complete
representation in textual format in the form of tags. The
DGML text file having the details of design figures is the
basis of out research. The approach has many benefits.
When pictorial representations are saved in text form, lots
of possibilities are there which increase the overall
development process. Reusability of design, search with in
the available UI design, automatic generation of design
skeleton on the basis of requirement document and
available design text keywords, auto generation of test

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

168

case scenarios. Along with the design element tags, the
DGML based file is having the information with the help
of special tags like keywords, which is important and is a
key for further reusability criteria implementation. This
additional information is the list of keywords that designer
wants to assign to his design.

Figure 5: Each Design module is stored in the form of
DGML-XML document.

Each UI design is having one name, keywords and some
attributes. Name identifies the design module, keywords
are the handles for reusability, and attributes are factors,
which design document gain after reusability. Experts
review the UI design and assign scores. A good score by
expert make design module a good candidate for
reusability.

VII Benefits from DGML based storage notation
The reusable design is a new concept introduced from this
new type of design representation. The DGML is capable
of producing not only the structure design but UI design
also. When user produces a design sheet and its design
repository, the reusable components can be selected from
the design repository. Like in case of UI design, the basic
UI for authenticating the user name and password is
almost same for most of the application. The repository
will be having a component for authenticating the user
name and password. That user can select from a
component list of repository and add to its own new design.

Other benefits of using this notation for design
representation are that we can calculate the design metrics
on the design document repository very easily and
efficiently. Various design checks and initial design
performance related checks could be enforced at earlier
stages. Software developers should be able to find out
software quality attribute during the design process.

Pr
oj

ec
t

M
od

ul
e

Ty
pe

M
od

ul
e

 N
o

Su
b

D
es

ig
n

El
em

en
ts

D
G

M
L

D
es

ig
n

si
ze

Ev

al
ua

te
d

lo
ca

l
de

cl
ar

at
io

n
co

un
t

Ex
pe

ct
ed

 l
oc

al

de
cl

ar
at

io
n

co
un

t

Web plug-in

Pr
oc

ed
ur

al

Module1 Browser
interaction 283 18 6

Module2 Native file
interaction 235 3 5

Module3 Web links
resolutions 567 6 8

Module4 User
interaction 900 15 12

Module5 Reporting 160 5 4

Table 1: DGML based design evaluation results for LDC

LDC Metrics (Procedural)

18

3

6

15

5

6

5

8

12

4

0

2

4

6

8

10

12

14

16

18

20

Module

LD
C

 C
ou

nt

LDC Metrics count Execptable LDC

 Figure 6: DGML based design evaluation results for LDC

VIII Discussion
We have conducted a small experiment to store the design
of web plug-in software using the notations of DGML.
This is DGML text base file. We can evaluate the size of
this file and evaluate the LOC for this on the same pattern
as we evaluate the LOC (line of code) for code [6][7].
From this LOC size we can calculate an approximate value
for local declaration count for design document. When
DNSIM parser executed on this DGML based stored

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

169

design, it gives calculated local declaration count for each
module. Table1 shows the results for LDC. Here we have
the expected LDC and evaluated LDC. We have compared
this for five different modules as shown in table1. The
graph in figure6 depicts that for module4 of user
interaction is having high value of the LDC then expected.
So this module requires further improvements to minimize
the LDC. Such observation and corrections in the design
on the bases of observations improve the design quality
and minimize the efforts of later stages of software
development process.

IX Conclusion
This research work is carried out in order to device a
syntax and notation for a new language which could be
capable of storing the design elements in the form of
DGML tag based text. This paper shows the feasibility of
storing the design in the form of text. We have presented
the notation of storing the design elements in the form of
text. This text base representation opens many ways to
optimize the design. Well-defined syntax for storing the
procedural design in the form of text helps in error free
representation of the design modules. Stored design can be
reused for a new requirement. The approach reusing the
design components of existing software design for the
building blocks of new software saves the time while
creating new system and makes it more robust. This is
because the reused component is driven from already
tested, implemented and maintainable system. The DGML
based representation can be easily evaluated against
metrics. New metrics can be invented, which helps in
identifying the error prone modules in early stages of
software development process.

References
[1] Rudolf K. Keller, “Design and Implementation of

a UML-Based Design Repository”, Proceedings
of the 13th International Conference on
Advanced Information Systems Engineering,
January 01, 2001, pp 448-464

[2] Diane Kelly, “A Study of Design Characteristics
in Evolving Software Using Stability as a
Criterion”, Software Engineering, IEEE
Transactions on Volume 32, Issue 5, May 2006
pp. 315 – 329

[3] Joost Noppen, “Dealing with imprecise quality
factors in software design”, ACM – 2005,
International Conference on Software
Engineering archive, Proceedings of the third
workshop on Software quality. pp. 1 - 6

[4] David N. Card, Robert L. Glass, “Measuring
software design quality”, Prentice-Hall, Inc,
ISBN:0-13-568593-1, pp 126

[5] Microsoft Patents, “Synchronizing external
documentation with coding” LINK:
[http://www.faqs.org/patents/app/20080250394]

[6] A. Al-Janabi and E. Aspinwall, “An evaluation of
software design using the DEMETER tool”, IEEE
software engineering journal, Nov 1993, pp 319-
324.

[7] Barbara A. Kitchenham, Lesley M. Pickard and
Susan J Linkman, “An evaluation of some design
metrics”, IEEE software engineering journal, Jan
1990, pp 50-58

[8] Tian Zhang1 , Frédéric Jouault2 , Jean Bézivin2
and Xuandong Li1, “An MDE-based method for
bridging different design notations”, Innovations
in Systems and Software Engineering, Springer
London, Volume 4, Number 3 / October, 2008 pp
203-213

[9] Jan Van den Bergh, Karin Coninx, "Model-based
design of context-sensitive interactive
applications: a discussion of notations", ACM
International Conference Proceeding Series; Vol.
86, Proceedings of the 3rd annual conference on
Task models and diagrams, 2005, pp. 43 - 50

[10] Antonio Navarro , José Luis Sierra , Baltasar
Fernández-Manjó and Alfredo Fernández-
Valmayor, May 08, 2007, "XML-based
Integration of Hypermedia Design and
Component-Based Techniques in the Production
of Educational Applications", Computers and
Education in the 21st Century, ISBN:978-0-7923-
6577-8, pp 229-239

Author Information

Dr. P.K. Suri received his Ph.D.
degree from Faculty of Engineering,
Kurukshetra University, Kurukshetra,
India and master’s degree from
Indian Institute of Technology,
Roorkee (formerly known as
Roorkee University), India. He is
working as Professor in the
Department of Computer Science

and Applications, Kurukshetra University, Kurukshetra–
136119 (Haryana), India since Oct. 1993. He has earlier
worked as Reader, Computer Sc. & Applications, at
Bhopal University, Bhopal from 1985-90. He has
supervised twelve Ph.D.’s in Computer Science and eleven
students are working under his supervision. He has more
than 125 publications in International/National Journals
and Conferences. He is recipient of 'THE GEORGE
OOMAN MEMORIAL PRIZE' for the year 1991-92 and a
RESEARCH AWARD –“The Certificate of Merit –
2000”for the paper entitled ESMD – An Expert System for
Medical Diagnosis from INSTITUTION OF ENGINEERS,

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

170

INDIA. His teaching and research activities include
Simulation and Modeling, Software Risk Management,
Software Reliability, Software testing & Software
Engineering processes, Temporal Databases, Ad hoc
Networks, Grid Computing, and Biomechanics.

Gurdev Singh received his
Masters degree in Computer
Science from Department of
Computer Science & Applications,
Kurukshetra University,
Kurukshetra, Haryana, India. Since
2002 he is working as Software
Development Professional and had
experience of working with

MediaTek, and Siemens Information System, India.
Currently he is working as senior software engineer for
Samsung Electronics in Noida, India. He has completed
projects in the field of software development for mobile
devices. He loves to transfer user requirements in to piece
of software. is interest includes work in the domain of
software engineering, effort minimization in software
development, qualitative software design and
synchronization, software design representation
methodologies and reusable software design techniques.
He has written many papers in the related domain. He is
fond of studying about the digital electronics and
experimenting the same.

