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Summary 
In this paper, we present a new method of mesh 
segmentation based on the local geometric properties such 
as edge curvature and neighborhood representation. First 
of all, we review the concept of vertex curvature and 
convex combination with respect to neighborhood vertices. 
We propose usable measures to analyze the local shape of 
a triangular mesh such as vertex normal vector, edge 
curvature, and face curvature. They play an important role 
of mesh segmentation.  
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1. Introduction 

Cutting up an irregular mesh into simpler sub-meshes 
benefits any algorithms in computer graphics, in areas as 
diverse as modeling, compression, simplification, 3D 
shape retrieval, and texture mapping [1-5]. In general, the 
most of complicated objects dealt in the field of computer 
graphics is obtained by using 3D scanners, or generated by 
operating 3D modeling tools. Each object is represented 
by a mesh which includes the position information of 
vertices and the connectivity of them. According to the 
demand of users, the geometric operations such as mesh 
segmentation, simplification, and smoothing are applied to 
the objects. In order to accomplish such geometric 
operations efficiently, we have to find out rightly the local 
properties of the mesh such as normal vector and 
curvature.  
 
The right estimation of curvatures in triangular meshes 
plays important role in many applications such as surface 
segmentation, anisotropic re-meshing or rendering. A lot 
of efforts have been devoted to this problem [6-12]. 
Popular methods include quadratic fitting, where the 
estimated curvature is the one of the quadratic which 
locally fits a certain neighborhood of a vertex [6,7]. 
Goldfeather proposed the use of a cubic approximation 
scheme that takes into account vertex normal vectors in 
the 1-ring [7]. The accuracy of these curvature estimations 
is dependent of that of fitting. If the one-ring 
neighborhood has many vertices or has an oscillated shape, 

then the approximated surface does not resemble the local 
shape and these estimations may yield a high error. Other 
methods typically consider some definition of curvature 
that can be extended to the polyhedral setting. These 
methods compute Gaussian curvature and Mean curvature 
based on the Gauss-Bonnet theory and Euler theory. 
Taubin presented a method to estimate the tensor of 
curvature of a surface at vertices of a mesh [6]. Watanabe 
proposed a simple method of estimating the principal 
curvatures of a discrete surface [9]. Meyer et. al proposed 
a discrete analog of the Laplace-Beltrami operator to 
estimate the discrete curvature[10]. Although the most of 
previous normal vector computation algorithms may 
approximate the normal vector in a given tolerance, they 
are not sufficient to be used as a measure in order to 
analyze the local shape. In this paper, we propose a 
concept of curvature, face curvature, which is useful to 
analyze the local shape efficiently and thus apply them to 
mesh segmentation. 
 
Rendering is the process of generating an image from a 
model, by means of computer programs. It would contain 
geometry, viewpoint, texture, lighting, and shading  
information. Especially, the shading technology plays an 
important role of speeding up the rendering pipeline. In 
the shading methodology, there are three standard shading 
methods, flat shading, Gouraud shading, and Phong 
shading.  Among them, Phong shading is effective to 
highlighting. In general, the traditional algorithm of Phong 
Shading is sensitive to the order of interpolation and the 
computation of normal vector of vertices. In this paper, we 
propose a new algorithm of Phong shading, which is based 
on the normal vector computation [13] and mean value 
coordinates [14]. 
 
The remainder of the paper is as follows. In Section 2 we 
review the properties of normal vector, vertex curvature, 
and convex combination with respect to neighborhoods. In 
Section 3 we introduce edge curvature which may play an 
important role in a variety of geometric operations. The 
new algorithm of mesh segmentation is explained in 
Section 4. Section 5 provides a summary and discusses 
some future work.  
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2. Geometric Tools 
 
2.1 Vertex Normal Vector  
We have been often asked a question “Can we represent a 
point inside a polygon as a linear combination of the 
vertices of the polygon uniquely?” If possible, we may 
represent all of information of points inside a polygon 
with the information of the vertices. There is a convex 
combination approach as a general solution of the problem. 
Specially, a representative solution of the approach is the 
mean value coordinate proposed by Floater [14].  
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Equation (1) shows a general form of the convex 
combination approach that is a linear combination of the 
vertices miU i ,,1, L=  of a given polygon for an arbitrary 
interior point P of a polygon as shown in Figure 3. 
Floater defined the coefficients of the linear combination 
satisfying the above equation by the following manner: 
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Fig. 1: Configuration of mean value coordinates 

 
Now, we are ready to explain the computation of normal 
vector of a vertex based on the mean value coordinate. In 
general, the normal vector of a vertex in meshes cannot be 
determined uniquely because there are infinitely many 
tangent planes. So we have to approximate the normal 
vector. Let us consider the configuration of the local 
geometry of the vertex. Each face adjacent to the vertex 
has only one unit normal vector and the vertex is 
surrounded with the faces. This configuration becomes a 
clue to derive a new computation of a normal vector of a 
vertex. The new method runs as follows. We assume that a 
vertex V   has m  adjacent vertices mVVV ,,, 21 L . Then 

the vertex V is surrounded with faces 1+Δ= jjj VVVf , 

mi ,,1L= . We denote the unit normal vector and the 

center of a face jf   by jnf  and jcf , respectively, as 
shown in Figure 2.  
 

 
Fig. 2: Configuration of one-ring neighborhood of V  

 
In general, it may be understood that the center of a face is 
suited for the post where the normal vector of the face 
appears. So, we construct a mesh by connecting the vertex 
V with each center jcf  and the center jcf with the 

consecutive center 1+jcf in order to obtain the relationship 

between normal vectors of the vertex and the faces, as 
shown in Figure 3. Here, jβ is the angle generated by the 

three consecutive vertices 1,, +jj cfVcf  .  

 

 
Fig. 3: New local mesh based on graph duality 

 
Now, we apply a conformal mapping to the new local 
mesh by the following manner: the vertices V  and icf are 

mapped to the vertices P  and iU , respectively, satisfying 
the following conditions  
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Fig. 4: Conformal mapped configuration 

 
We define a new normal vector based on the mean value 
coordinates and a local conformal mapping by the 
following manner: 
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Fig. 5: Vector field interpolation 

 
Figure 5 shows a vector field interpolation which may be 
understood as the meaning of new normal vector 
computation. 
 
2.2 Vertex Curvature   
 
In general, the curvature at a vertex on a mesh may not be 
computed easily because there are many surfaces 
interpolating the vertex and its one-ring neighbors. 
Moreover we cannot understand that the surfaces reflect 
well the local shape of the one-ring neighborhood though 
the surfaces interpolate the vertex and the neighbors. Most 
of the previous curvature estimations directly compute the 
sectional discrete curvature according to the adjacent 
edges [6,810]. All of them derive the sectional curvature 

by using a Taylor series of a curve which interpolates two 
vertices. Let p and pi be a given vertex and its adjacent 
vertex, respectively and let g(s) be a continuous curve 
passing through the two vertices such that ,)0( pg =  

.)( ipsg =  
Then the curve may be represented by its Taylor series: 
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Here, T  and N  are the unit tangent vector and the unit 
normal vector, respectively, and )( pκ  is the sectional 
curvature of )(sg  at point p  to the direction ipp . By 
applying the inner product with N to both sides, we may 
get the following equation: 
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Because 0=⋅TN  and 1=⋅ NN , the above equation may 
be changed to the following simple equation: 
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Since psg =)( the above equation becomes to the 
following equation 
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Here, we have a problem how to derive the parameter s . 
The previous methods use the parameter as the length of 
edge ipp  such that  
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However it is not right. We picked a hole of such 
parameterization and proposed a new method in [KIM]. 
Now, we review the parameterization shortly. The new 
discrete curvature estimation is based on the parabola 
interpolation. We adopt a quadratic Bezier curve as an 
interpolating curve because it has a good geometric 
property. Let −

ip be the point such that    

NNpppppp iii )(2 ⋅−=+−  ,  
as shown in Fig 6, where N is the normal vector of the 
vertex p  .  

 
Fig. 6: Configuration of local shape 
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The general form of a quadratic Bezier curve is as follows: 
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Here, )(2 tBi  are the Bernstein polynomials such that 
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The curvature at p  is the same as one of )(tg  at 5.0=t , 
so it is computed by the following manner: 
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By exploiting the geometric properties, the curvature of 
the vertex p becomes  
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3. Edge Cross Curvature 
 
Now, we are ready to define the edge cross curvature with 
respect to edges of a triangular mesh in 3D space. First of 
all, for a given edge AB we consider two adjacent 
triangles ABC , ABD which have the common edge 
AB  as shown in Figure 7.  

 
Fig. 7: Edge cross curvature  

 
Let M be the middle point of the edge AB . We define 
the normal vector nM at the middle point M by the 
following manner: 
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Here, 1nf and 2nf are the unit normal vectors of the 
triangles ABC and ABD , respectively. nA and nB  the 
unit normal vectors of vertices A and B , respectively. 
Let E be the middle point of C and D . We define a 
vector nE as the unit vector from point E to point M : 

EM
EMnE = . 

By plugging the three points C , M , and D into the 
three points form of Equation (2), we obtain the following 
curvature of M : 
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Now, we define the edge cross curvature of edge AB as 
 

))(( nEnMMAB ⋅= κκ . 
 
4. Mesh Segmentation 
 
The goal of mesh segmentation is to efficiently analyze the 
local shape of meshes and thus classify the faces into three 
clusters: convex, concave, and saddle regions. In general, 
we may easily compute the curvature at points on smooth 
surfaces and thus such classification is not hard work. 
However, it is very difficult to find out what the type of 
the local region is in discrete space such as meshes. We 
think that the edge cross curvature may become a clue to 
region classification.  
 

 
Fig. 8: Triangle classification based on edge cross curvature  
 
The sign of the value of edge cross curvature means the 
convexity or the concavity of a local region which 
contains two adjacent triangles with a common edge: if the 
sign of ABκ is positive, the region is of convex. Otherwise, 
it is of concave. It is insufficient to analyze the convexity 
of a face. So we need a measure to compute the convexity 
of faces. Since each edge has its own edge cross curvature, 
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we investigate the value for all of three edges of a face. 
There are only four cases as shown in Figure 8. If all of 
three edges have the edge cross curvature of positive, then 
we may understand that the triangle is on a convex region. 
If all of three edges have the edge cross curvature of 
negative, then the triangle is on a concave region. If two 
edges have the same sign and the other has the different 
sign, then the triangle may be considered to be on a saddle 
region.   
 

  

  

Fig. 9: Examples of mesh segmentation  
 

Figure 9 shows the examples of mesh segmentation. The 
color of white means a region of concavity, the color of 
blue means a region of convexity. The colors of red and 
yellow indicate that the region is on a saddle region. The 
more dense the mesh is, the more the quality of our mesh 
segmentation is.  

5. Conclusion 

The contribution of this paper is to present an efficient 
method of mesh segmentation. Our method is based on 
mean value coordinate and edge curvature. First of all, we 
proposed a new computation of the normal vector of a 
vertex, which is derived by using the mean value 
coordinate. The computation is also available to meshes of 
arbitrary topology. Secondly, we derived a new sectional 
curvature which uses the different parameter with the 
previous methods. The parameter explains the right 
analysis of local configuration of a vertex. Exploiting this 
sectional curvature, we could derive a new concept of 
edge curvature and propose a method of mesh 

segmentation. In future, we will develop a more efficient 
algorithm which is applicable to meshes of arbitrary. 
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