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Summary 
In this paper, we propose a continuous hysteresis neurons (CHN) 
Hopfield neural network architecture for efficiently solving 
crossbar switch problems. A Hopfield neural network 
architecture with continuous hysteresis and its collective 
computational properties are studied. It is proved theoretically 
and confirmed by simulating the randomly generated Hopfield 
neural network with CHN. The network architecture is applied to 
a crossbar switch problem and results of computer simulations 
are presented and used to illustrate the computation power of the 
network architecture. The simulation results show that the 
Hopfield neural network architecture with CHN is much better 
than the binary hysteresis Hopfield neural network architecture 
for crossbar switch problem in terms of both the computation 
time and the solution quality. 
Key words: 
Network architecture, crossbar switch problem, continuous 
hysteresis, Hopfield neural network 

1. Introduction 

      The auto associative memory model proposed by 
Hopfield [1,2] has attracted considerable interest both as a 
content address memory (CAM) and, more interestingly, 
as a method of solving difficult optimization problems [3-
5]. The Hopfield neural network contain highly 
interconnected nonlinear processing elements (“neurons”) 
with two-state threshold neurons [1] or graded response 
neurons [2]. Takefuji and Lee proposed a two-state (binary) 
hysteretic neuron model to suppress the oscillatory 
behaviors of neural dynamics [6]. However, Tateshi and 
Tamura showed Takefuji and Lee’s model did not always 
guarantee the descent of energy function [7], Wang also 
explained why the model may lead to inaccurate results 
and oscillatory behaviors in the convergence process [8]. 
Since their report, several modifications on the hysteretic 
function, for example Galán and Muñoz’s binary [9] and 
Bharitkar and Mendel’s multivalued [10] hysteretic 
functions. Xia proposed a new algorithm that the Hopfield 
neural network with the binary hysteresis and claimed that 
the solution quality found by their algorithm was superior 
to that of the best existing parallel algorithm [11]. 
      Since Hopfield and Tank’s works, there has been a lot 
of interest in the Hopfield neural networks because its 
advantage over other approaches for solving optimization 
problems. The advantages include massive parallelism, 
convenient hardware implementation of the neural 
network architecture, and a common approach for solving 

various optimization problems [12]. The Hopfield neural 
network architecture has also been applied to real-time 
control of a crossbar switch used for switching high-speed 
packets at maximum throughput [13-19], and shown to be 
capable of achieving very good performance especially for 
small size crossbar switch problems. 
      In this paper, we introduce a new Hopfield neural 
network algorithm for efficient solving crossbar switch 
problem. Different to the binary hysteresis Hopfield neural 
network , our architecture uses continuous hysteresis 
neurons (CHN). We prove theoretically that the emergent 
collective properties of the original Hopfield neural 
network also are present in the Hopfield network with 
continuous hysteresis neurons (CHN). Simulations of 
randomly generated neural networks are performed on 
both networks and show that the Hopfield neural networks 
with CHN have the collective computational properties 
like the original Hopfield neural networks. What a more, 
the Hopfield neural networks withCHN converges faster 
than the Hopfield neural networks with the binary 
hysteresis neurons do. In order to see how well the 
Hopfield neural networks with CHN do for solving 
practical combinatorial optimization problems, a large 
number of computer simulations are carried out for the 
crossbar switch problem. The simulation results show that 
the Hopfield neural network architecture with CHN is 
much better than the previous works including the 
Hopfield neural network with hysteresis binary neurons for 
the crossbar switch problem in terms of both the 
computation time and the solution quality. 
 

2. Binary Hysteresis Neurons Hopfield 
Network  

Like the original Hopfield neural networks, the total input 
to neuron i of the Hopfield neural networks with hysteresis 
binary neuron is: 
 

i
ij

jiji hywx += ∑
≠

                                    (1) 

 
where xi is the total input of neuron i, yj is the output of 
neuron j. The element wij is the symmetric interconnection 
strength from neuron j to neuron i, and hi is the offset bias 
of neuron i.  
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Each neuron samples its input at random times. But, unlike 
the Hopfield neural network’s two-state threshold neurons 
(Fig.1 (a)), the hysteresis binary neurons change the value 
of their output or leave them fixed according to a 
hysteretic threshold rule (Fig.1 (b)) 
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where a is the upper trip point (UTP), and b is the lower 
trip point (LTP). As shown in Fig.1, if xi>a, then yi=1 and 
if xi<b, then yi=0. When axb i ≤≤ , yi keeps unchanged, 
i.e., yi=1 if the last yi was 1 and yi=0 if the last yi was 0. 
 
 
Consider the erengy: 
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                      Fig.1 Hysteresis binary functions 

3. Hopfield Network with Continuous 
Hysteresis Neurons(CHN) 

      For the original Hopfield neural networks, let the 
output variable yi for neuron i have the range 10

iii yyy ≤≤  
and be an continuous and monotone-increasing function of 
the instantaneous input xi to neuron i. The typical input-
output relation gi(xi) ( )eyi += 1/1  shown in Fig.2(a) is 
sigmoid with asymptotes 0

iy  and 1
iy . as, 

 
)1/(1)( )( θ−−+== ixr

ii exgy        (4)    
                                                                       

Where r is the gain factor andθ  is the threshold parameter. 
      In biological system, xi will lag behind the 
instantaneous outputs yi of the other cells because of the 
input capacitance C of the cell membranes, the 
transmenmbrane resistance R, and the finite impedance 

1−
ijw  between the output yi and the cell body of cell i. Thus 

there is a resistance-capacitance(RC) charging equation 
that determines the rate of change of xi.  
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where Ci is the total input capacitance of the amplifier i 
and its associated input lead. wijyj represents the electrical 
current input to cell i due to the present potential of cell j, 
and wij is thus the synapse efficacy. Ii is any other (fixed) 
input current to neuron i. In terms of electrical circuits, 
gi(xi) represents the input-output characteristic of a 
nonlinear amplifier with negligible response time. It is 
convenient also to define the inverse output-input 
relation, )(1

ii yg − . 
      In order to improve the solution quality of crossbar 
switch problem, we proposed a new neural network 
method for efficiently solving the crossbar switch problem. 
In this method, a continuous hysteresis neuron(CHN) is 
applied to the Hopfield neural network. 
      The hysteresis continuous neurons change the value of 
their output or leave them fixed according to a hysteretic 
threshold rule (Fig.2 (b)). Mathematically, hysteretic 
neuron function is described as: 
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And 
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there is a resistance-capacitance(RC) charging equation 
that determines the rate of change of xi. 
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Consider the energy: 
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Its time derivative for a symmetric W is: 
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The parenthesis is the right-hand side of Eq.9, so 
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Since )(1

ii yg −  is a monotone increasing function and iC is 
positive, each term in this sum is nonnegative. Therefore: 
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Together with the boundedness of E, Eq.(9) shows that the 
time evolution of the system is a motion in state space that 
seeks out minima in E and comes to a stop at such points. 

E is a Liapunov function for the system. 
        
           

           
 

         
 

           
 
 

Fig.2.  Hysteresis functions 
 
 

4. Comparison of two Hysteresis Neurons 

The continuous hysteresis neurons (CHN) Hopfield neural 
network  and the binary hysteresis neurons Hopfield neural 
network are two kinds of the hysteresis network. The two 
algorithms  differ from other ways: 
it 1) is multivalued; 2) has memory; and 3) is adaptive.  
In the Eq.5, if the value of )( θγ −− ixe  get  to be infinite,the 
output variable )1/(1)( )( θ−−+== ixr

ii exgy   will be close 

to "0", and  if the value of )( θγ −− ixe  get to the 
infinitesimal, it will be close to  "1".   
In this way, we can consider  the binary hysteresis neuron 
is a special case of continuous hysteresis neuron (Fig.3). 
The algorithms that how to update the  network can be 
discussed with the application to the crossbar switch 
problem. 
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Fig.3. hysteretic activation function 
 
 
 

5. Application to Crossbar Switch Problem 

 
      The problem of maximizing the throughput of packets 
through a crossbar switch is best described by referring to 
Fig. 2, which shows how requests to switch packets 
through an NN ×  crossbar switch can be represented by 
an NN ×  binary request matrix R [12][13]. Rows and 
columns of the matrix R  are associated with inputs and 
outputs, respectively, of the crossbar switch. A matrix 
element 1=ijr  indicates that there is a request for 

switching at least one packet from input line i  to output 
line j  of the switch; otherwise 0=ijr . If we consider 
the crossbar switch for point-to-point connections, then at 
most one  crosspoint  may be closed on any row or column 
of the switch during packed transmission. The state of the 
switch can be represented by an NN ×  binary 
configuration matrix C , where 1=ijc  indicates that 

input line i  is connected to output line j  by the “closed” 

crosspoint ( ij ). 0=ijc  indicates that crosspoint ( ij ) is 
“open”. For proper operation of the switch, there should be 
at most one closed crosspoint in each row and each 
column. The throughput of the switch is optimal when the 
matrix  C , which is a subset of the matrix R  (i.e., 

ijij rc ≤  for every ( ji, )), contains at most a “1” in each 

row/column, and has maximum overlap with R . 
Examples of optimal matrices are shown in Fig.4 for a 

44 ×  crossbar. 
 

 
 
 

Fig.4. Schematic architecture of 44 ×  crossbar control with an 
example of input request matrix and its optimal configuration matrices 

      
 
     Each switch inlet has a queue manager. When an inlet 
queue manager receives a packet, it examines the packet’s 
destination address and determines its switch outlet. It then 
updates the row request vector for that inlet by setting to 
“1”, the bit corresponding to the switch outlet, and places 
the packet on the inlet queue. The crossbar switch is 
controlled by a neural network that has one neuron in 
correspondence to each switch crosspoint. Row request 
vectors from all the inlets are supplied to the neural 
network, which uses them to compute an optimal 
configuration matrix for the switch. The resulting row 
configuration vectors are then returned to the 
corresponding queue manager, while the crossbar switch 
crosspoints selected by the computed configuration matrix 
are closed. Each queue manager presents to its inlet a 
single packet destined to the outlet selected by the row 
vector returned by the neural network, which thus gets 
routed through the closed crosspoint to its proper outlet. 
The queue manager also updates its row request vector by 
clearing the selected column bit, provided that no packets 
remain queued for that output. This process is cyclical: 
new packets are received while queued packets are being 
transmitted. If all packets were of a constant length, then it 
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would be possible to receive new packets, transmit 
selected packets, and compute the next configuration in 
parallel. The computation of an optimal configuration 
matrix should be completed in a few microseconds, which 
is less than it takes to transmit a packet in a high-speed 
fiber optic based communication system [17][18]. 
      The crossbar switch problem can be solved by 
constructing an appropriate energy function and 
minimizing the energy function to zero (E=0) using an 

NN ×  two-dimensional Hopfield neural network, i.e., a 
matrix ][ ijyV = . 

      The objective energy function of the crossbar switch 
problem is given by [18]: 
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      where A and B are coefficients, yik is the output 
value of neuron ik and ykj is the output value of 
neuron kj. The first term will be zero if each row 
contains no more than one “1”, with all the other 
values being zero. Similarly, the second term is zero 
if each column contains no more than one “1”. We 
can get the total input ( ijx ) of neuron by using the 

partial derivation term of the energy function. Thus, 
the total input ( ijx ) of neuron is given: 

   

⎟
⎠

⎞
⎜
⎝

⎛
−−⎟

⎠

⎞
⎜
⎝

⎛
−−= ∑∑

==

N

k
kj

N

k
ikij yByAx

11
11    (15)                                              

 
 For a given NN ×  matrix R , i.e., an NN ×  
matrix V , updating the matrix element ijy  by Eqs. 

(5)(6)(7) and (15) can produce a new matrix V , 
which is either an optimal or a local minimal matrix, 
i.e., a subset of the matrix V or R  by the 
convergence characteristics of the Hopfield networks 
with continuous hysteresis neurons.  

5.Simulation Results 

      Since our architecture is valid for any Hopfield neural 
networks as illustrated in the previous section, we used the 
architecture for some randomly generated problems and a 
large number of real crossbar switch problems up to 
1000×1000 switches. 
      Experiments were first performed to show the 

convergence of the Hopfield neural networks with 
continuous hysteresis neurons. In the simulations, a 100-
neuron Hopfield neural network with continuous 
hysteresis neurons (i = 1, 2, …, 100) was chosen. Initial 
parameters of the network, connection weights and 
thresholds were randomly generated uniformly between –
1.0 and 1.0. Simulations on a randomly generated 100-
neuron Hopfield network with different value of α and β  
( 0== βα  and 6.0,6.0 == βα  for i =1, …, 100) were 
also carried out. Fig.5 shows the convergence 
charactoristics of both networks. From this figure we can 
see that both the Hopfield neural networks with continuous 
hysteresis neurons ( 6.0,6.0 == βα ) converged to stable 
states that did not further change with time. It is worth to 
note that the Hopfield neural network with continuous 
hysteresis neurons ( 6.0,6.0 == βα ) seek out a smaller 
minimum at  seek out 87.158−=E  than the Hopfield 
neural network without hysteresis neurons 
at 85.127−=E ( 0== βα ). 
 
 

 
 
Fig. 5 The convergence characteristic of a 100-neuron Hopfield network 

with and without the continuous hysteresis  neurons . 
 
      The Hopfield neural network with continuous 
hysteresis neurons were also applied to crossbar switch 
problem and simulations were also carried out. The 
proposed algorithm was implemented in C++ on PC 
Station (PentiumIIII 3GHz). A sigmoid function was used 
as intput/output function and the temperature parameter 

βα γγ =  was set to 0.03.  
      We now present simulation results of the architecture 
when applied to real crossbar switch problem. The 
parameters A and B were set to A=1, B=0.5. The weights 
and external input currents were all the same as the 
original Hopfield neural network. Continuous hysteresis 
neurons was set to 6.0,6.0 == βα . The network 
architectures for 14 kinds of instances from 4×4 to 
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1000×1000 crossbar switches were simulated on a digital 
computer. In simulations, 100 simulation runs with 
different randomly generated initial states were performed 
on each of these instances. Eq.(5)(6)(7) were used as the 
input/output function. Using Eq.(15), all neurons were 
computed exactly once in one iteration step. The 
maximum iteration step was set to 1000. When the 
iteration steps exceeded the maximum iteration step, the 
iteration was terminated.  
 
    In Table.1, the column labeled  “optimal” is the global 
convergence times among 100 simulations and the column 
labeled “steps” is the average number of iteration steps 
required for the convergence in the 100 simulations. The 
simulation results show that the architectures with 
continuous hysteresis neurons (CHN) could almost find 
optimum solution to all crossbar switch problems within 
short computation times. 

      We compared our results with that found by  the binary 
hysteresis Hopfield neural network [11]. Table 1 shows the 
results by the two different networks: the binary hysteresis 
Hopfield neural network and our network architecture, 
where the convergence rates and the average number of 
iteration steps required for the convergence are 
summarized. From Table.1, we can see that the Hopfield 
neural network architecture with continuous hysteresis 
neurons (CHN) was very effective, and was better than the 
binary hysteresis Hopfield neural network in terms of the 
computation time and the solution quality for crossbar 
switch problem. Further, the number of iteration steps of 
our architecture was almost independent on the problem 
size, while that the binary hysteresis Hopfield neural 

network was three steps more than our network 
architecture when we reach optimum solution to the large 
size. 

6.Conclusions 

      We have proposed a continuous hysteresis Hopfield 
neural network architecture for the crossbar switch 
problem, and showed its effectiveness by simulation 
experiments. The proposed architecture was based on a 
modified Hopfield neural network in which the continuous 
hysteresis neurons(CHN) were added to improve solution 
quality. We proved theoretically that the emergent 
collective properties of the original Hopfield neural 
network also were present in the Hopfield neural network 
architectures with  continuous hysteresis neurons (CHN). 
In order to verify the performance of the proposed 
architecture, we have tested the architectures with a large 
number of randomly generated examples and crossbar 
switch problems up to 1000×1000 switches. The 
simulation results showed that the Hopfield neural network 
architecture with  continuous hysteresis neurons(CHN) 
was much better than the previous works including the 
Hopfield neural network with hysteresis binary neurons for 
crossbar switch problem in terms of both the computation 
time and the solution quality. 
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