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Summary 
Association rule mining is a popular and well researched 
data mining functionality to discover interesting 
relationships among variables in large databases. Most of 
the frequent pattern mining algorithms based on the 
popular Apriori property traverse iteratively the itemset 
lattice in a level wise manner. Therefore, they encounter 
challenges at mining rather large patterns called colossal 
patterns. This paper proposes a strategy which avoids 
exhaustive level-wise pattern tree traversal and quickly 
mines colossal patterns. 
Key words: 
Association rule mining, frequent patterns, colossal pattern 
mining. 

1. Introduction 

Frequent pattern mining is an important problem in 
Association analysis. Enormous research is going on in 
this area. With the advent of data sets with new 
characteristics, it always requires new strategies to deal 
with new characteristics of datasets. Especially the micro-
array data in bioinformatics poses great challenges to the 
existing level-wise mining algorithms. Gene expression 
data used in bioinformatics, program trace data used in 
software engineering research are some of the datasets 
which possess colossal patterns.  
The datasets with a small number of lengthy transactions 
are expected to have colossal patterns. It was observed by 
the authors that a colossal pattern is lengthy by nature and 
most of the sub patterns of the colossal patterns are 
expected to occur with nearly same frequency. Colossal 
patterns are very significant and they supersede a large 
number of small frequent itemsets. A mining methodology 
that leaps through the huge candidate space towards the 
colossal pattern is highly called for. 
Feida Zhu et al, [5] first identified the problem of colossal 
pattern mining and proposed an algorithm for effectively 
mining colossal patterns. Feida’s algorithm is based on his 
observation that, every colossal pattern has enormous 
number of subpatterns and he randomly selected 
subpatterns and merged them to form candidate colossal 
patterns whose support is counted by individual database 
scans which are expensive. This work is motivated 

towards developing a more efficient strategy for mining 
colossal patterns. 

2. Problem scope 

A colossal pattern is lengthy by nature and most of the sub 
patterns of the colossal patterns are expected to occur with 
nearly same frequency as that of the colossal pattern and 
hence most of the sub patterns of a colossal pattern are 
identifiable based on their Support Counts. From figure 1,      

 
Figure: 1 Pattern tree traversal 

 
It can be observed that the search space is bulging 
exponentially for mid-sized patterns. For a colossal pattern 
of size n, there will be rcn number of frequent sub 
patterns of size r. So in order to reach the prodigious 
patterns, we need to examine enormous number of smaller 
patterns. A methodology is suggested to traverse the 
search space in leaps, bypassing most of the mid sized 
patterns, to quickly attain colossal patterns. 

2.1 Relationship of colossal pattern to other patterns 

The growth process of a colossal pattern is depicted in 
figure 2. Let minimum support be 50. When the pattern A 
is extended with pattern B, then the frequency of AB drops 
to 198. This indicates that pattern A occurs 200 times, out 
of which it occurs along with B 198 times. The pattern AB 
is closed but not colossal. Growth of the pattern cannot be 
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stopped at C, since extension of it by adding D has the 
same support as the original pattern. Pattern ABCD is 
closed but not colossal. Unless there is a significant 
difference in the frequency of the pattern when it is 
extended, the smaller pattern will not be considered for 
colossal pattern though it is a closed pattern. For example, 
when ABCDF is extended to include G in it, the frequency 
is reduced from 193 to 190 and we don’t consider ABCDF 
as a colossal pattern instead ABCDFG is a colossal pattern.  
When ABCDFG is extended with Q, there is a significant 
drop in the pattern’s frequency and hence this extension 
will not be considered as colossal pattern. (Marked with 
cross in figure.2) Hence ABCDFG is treated as a colossal 
pattern, but ABCDFGQ is a maximal pattern. Therefore a 
maximal pattern need not be a colossal pattern all the time. 
In figure 2, ABCDEH and ABCDFG are colossal patterns. 
The following points are observed, through the above 
example: 
 

• Every colossal pattern is a closed frequent 
itemset but every closed frequent itemset need 
not be a colossal pattern. 

• A colossal pattern need not be a maximal 
frequent itemset all the time. 

 

 
Figure.2 Pattern tree growth process 

3. Algorithm design and overview 

3.1. Basic concepts 

Let I={x1, x2 … , xn} be a set of items. Any nonempty subset 
of ‘I ‘ is called an itemset. A transaction dataset TID is a 
collection of transactions, TID = {t1, t2, …, tn}, where each 
transaction ti  consists of a set of items which are contained 
in I.  

For any itemset α, we denote the set of transactions that 
support α as TIDα  and referred to as support set of α. 
 
Definition 1 (Frequent itemset)  
For a transaction dataset TID, an itemset α is frequent if 

σα
≥

||
||

TID
TID

, where
||
||

TID
TIDα

  is  

called the support of  α in TID, written supp(α)  and   σ      
is the minimum support threshold, 0 ≤ σ ≤ 1. 
The important characteristics of prodigious or colossal 
patterns are  

• They are lengthy by nature  
• They are less in number in a given database. 
• They are robust .That is, even if a small number 

of items are removed from the pattern, the 
resulting pattern would have a similar support set. 
The larger the pattern size, the more prominent 
this robustness is observed. 

3.2. Supporting concepts for our algorithm 

A colossal pattern is lengthy by nature. It possesses a 
number of subpatterns. 
There can be more than one colossal pattern in a given 
data set. Each colossal pattern will have a huge set of 
subpatterns. Consider the example quoted in figure 3. It 
contains a colossal pattern {1 2 3 4 5 6 7 8}. It may have 
8c2 2-itemsets, 8c3 3-itemsets, 8c4 4-itemsets and so on. If 
we use a level wise mining strategy, we may not get the 
mining result in a reasonable amount of time.  
Hence a new agglomerative strategy is required to attain 
the colossal patterns in less time skipping mid sized 
patterns. Subpatterns belonging to a colossal pattern are 
expected to be present in a neighborhood. We call them as 
core patterns. By merging the core patterns present in a 
neighborhood, we will attain a colossal pattern. Among 
these enormous numbers of subpatterns, subpatterns of a 
colossal pattern may overlap with the subpatterns of 
another colossal pattern. For example in figure 2, the sub 
patterns of two colossal patterns ABCDEH and ABCDFG 
overlap. Therefore, in order to find the neighborhood of a 
lengthy pattern we have to adopt a distance measure. The 
following metrics are used in finding the core pattern 
neighborhood. 
 
Definition 2  (Core Pattern) [5] 
For a pattern α, an itemset β ⊆ α is said to be a τ-core 
pattern of α  

if  τ
β

α
≥

||
||

TID
TID

  , 0 ≤ τ ≤ 1. 

where τ is called the core ratio. 
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For a pattern α, let α.corelist be the set of all its core 
patterns. 
 
Definition 3  (Core Descendant) [5] 
For two patterns β and β’, if there exits a sequence of βi , 0 
≤ i ≤ k, k≥ 1 such that β = β0 , β’ = βk and βi Є βi+1.corelist 
for all 0 ≤ i ≤ k , β is said to be a core descendant of β’. 
 
Definition 4  (Pattern Distance) [5] 
 For patterns βi  and βj , the pattern distance of βi and βj is 
defined as  
   | TIDβi ∩ TIDβj | 
   Dist(βi , βj) = 1 -    ___________________ 

     | TIDβi U TIDβj | 
 
Note: For two patterns β1, β2 Є α.corelist, Dist(β1, β2) ≤ 
r(τ),  

where r(τ) = 
1/2

11
−

−
τ

          

 

 
Figure 4: Distance between any two farthest patterns ≤ r 
(τ) 
 
It follows that all core patterns of a pattern α are bounded 
in a metric space by a ball of diameter r(τ). It is possible 
that the ball may contain overlapping neighborhood 
regions of multiple colossal patterns. . In order to 
recognize such core patterns from the patterns enclosed in 
a ball of a colossal pattern, we can make use of the 
following restriction stated in theorem 1. 
 
Theorem   1:  
Let  α be a growing pattern and βi be its core descendant 
pattern then  
Dist (α, βi ) ≤  1- τ , where 0 ≤ τ ≤ 1. 
Proof:  
The distance between any two patterns is given by 
definition 4 as 
  | TIDβi ∩ TIDβj | 
Dist (βi , βj) = 1 -  ___________________ 

   | TIDβi U TIDβj | 
by lemma 1 we have, 
if βi ⊆ α then TIDβi ⊃ TIDα. 
 
              | TIDα |      
 Dist(α,βi) =  -------------------------------------------                 
                    | TIDβ1| + | TIDβ2|- | TIDβ1 ∩ TIDβ2 | 

  = 
||
||1

iTID
TID

β

α
−  

Case 1: If βi is the τ-core pattern of α then  

τ
β

α
≥

||
||

iTID
TID

  

That is, 
 Dist(α, βi)  = 1  - ( τ + ε ) = 1- τ - ε 

≤ 1 - τ     
Where ε is a small value. 

Case 2: if βi is a τ-core descendant of α  
(a) If ∃ γ such that βi is a τ-core pattern of  γ and γ in turn 
is a τ-core pattern of α, then we have 

τ
γ

α
≥

||
||

TID
TID

 and τ
β

γ
≥

||
||

iTID
TID

 

ττ
γ β

γα

β

α
×≥×=

||
||

||
||

||
||

ii TID
TID

TID
TID

TID
TID

 

≥ τ2 
(b) If ∃ a sequence of ‘k’ γ’s as core descendants of α and 
βi is their core descendant, then we can prove that 

≥
||
||

iTID
TID

β

α
τk+1   

Hence Dist (α, βi)  = 1 - (τk+1 + ε)  
   ≤ 1 - τk+1   
   ≤ 1 - τ 
The proof is concluded. 
 
From the above theorems 1 and 2, we can have the 
following corollaries. 
Corollary 1:  
| TIDα | ≤ |TIDβ  | ≤ | TIDα | 
           τ 
Where α is the growing pattern in which the sub pattern β 
is merged.  
Corollary 2:  
For β to be frequent |TIDβ | ≥ σ 

Hence   σ ≤ | TIDβ  | ≤ | TIDα | 
             τ 
Based on the above two corollaries, the frequencies of the 
core descendants of a colossal 
patterns are expected to be nearer to the frequency of the 
colossal pattern, thereby forming a frequency band. So the 
core patterns of overlapping colossal patterns sharing a 
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neighborhood ball can be separated in A unidimensional 
clustering applied on the frequencies of the pertinent core 

patterns’ results in multiple frequency bands, each 
suggesting the constituents of a colossal pattern. 
 

 

 
Figure:3 TID-List of example 

 
 

While finding the distance between the growing pattern 
and a candidate core pattern, we need the frequencies of 
the patterns formed by the union and intersection 
operations which may require additional database scans. 
This was avoided by adapting vertical format 
representation of the elements of the initial pool. Each 
pattern is represented as a TID list in vertical formatting. 
The proposed Merger algorithm generates the growing 
patterns in vertical formats so that, they can be directly 
included in the pool for next iteration. 

3.3 Colossal Pattern Miner (CPM) Overview 

Consider the sample database shown in table 1.Let 
us use the transformed database shown in figure.3. We 
consider minimum support σ to be 2. By using any 
efficient existing frequent pattern algorithm, we were able 
to get the 1-itemsets associated with their frequency as 
well as TID lists as shown in table.1.     
 
Step-wise method: 

 
1. We start with an initial pool consisting of 1 or 2-

itemsets (can be obtained using any frequent 
mining algorithm). 

2. We partition the patterns in the initial pool based 
on their frequencies using any standard clustering 
algorithm as shown in figure 4 and figure 5. We 
call them as frequency bands. 

3. Starting from the largest  frequency band, select a 
seed pattern ‘α’ randomly and form its 
neighborhood containing τ-core patterns of the 
seed(based on distance), selecting from the 
present band and next the other bands in 
descending order of their size. 

4. If the frequency of the patterns selected as τ-core 
patterns (β) is less than 1- τ remove the pattern 
from its parent frequency band. 

 
 
 
 

 
Table 1:1-itemsets as candidate pool 

pattern frequency TID-List 
1 2 1,9 
2 2 1,9 
3 2 1,9 
4 2 1,9 
5 2 1,9 
6 2 1,9 
7 2 1,9 
8 2 1,9 
9 4 3,10,12,16 

10 2 7,10 
11 4 2,4,11,12 
12 2 10,13 
13 3 1,11,13 
14 3 13,14,15 
15 2 12,15 
16 3 1,2,7 
17 4 6,7,8,13 
18 2 12,13 
19 3 8,11,16 
20 3 1,4,8 
21 2 10,14 
23 2 10,14 
25 2 10,14 
27 2 8,12 
28 2 5,11 
29 3 3,7,11 
32 3 2,9,15 
33 2 10,14 
34 4 6,10,11,15 
35 3 2,8,14 
36 3 2,6,16 
37 4 6,10,11,15 
38 2 2,3 
40 2 10,14 
43 2 5,13 
46 4 5,7,9,12 
47 3 5,6,14 
50 2 10,14 
55 3 3,5,8 
60 4 4,5,15,16 

 
 
 

Item-IDs 
 
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  23  25  27  28  29 32  33 34 35 36 37 38 40 43 46 47 50 55 60 
 
1  1  1  1  1  1  1  1  3  7    2   10  1    13  12  1    6    12   8   1    10   10  10   8    5   3   2    10  6   2   2   6   2  10  5   5  5  10  3  4 
9  9  9  9  9  9  9  9 10 10  4   13  11  14  15  2    7    13  11  4    14   14  14  12  11  7   9    14 10  8   6  10  3  14  13 7  6  14  5  5 

12 11 13 15 7 8 16 8 11 15 11 14 16 11 9 14 8 15
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Table.2: Neighborhood of ‘5’ 
pattern frequency TID-List 

1 2 1,9 
2 2 1,9 
3 2 1,9 
4 2 1,9 
5 2 1,9 
6 2 1,9 
7 2 1,9 
8 2 1,9 

 
Table3: Neighborhood of ‘25’ 

pattern frequency TID-List 
21 2 10,14 
23 2 10,14 
25 2 10,14 
33 2 10,14 
40 2 10,14 
50 2 10,14 

 

 
Figure 4:Distribution of patterns among various frequency bands 
 

5. Repeat step 3 and 4 until all the patterns are 
selected or until number of neighborhoods 
formed are equal to desired number of colossal 
patterns. 

6. Now we start merging the patterns in each 
neighborhood in order to form one or more super 
patterns (colossal patterns). 

7. The set of super patterns now becomes the new 
initial pool and the process is repeated until we 
attain colossal patterns. 

Let the randomly drawn seed pattern be ‘5’. Now we will 
find out the distance between ‘α’ (5) and each β, other 
than α, in the initial pool. We choose the value of τ as 0.5. 
Substituting τ value in r (τ), we have by theorem 1, r (τ) = 
2/3. We use the distance measure from Definition 4.  
Let β=1,  
then Dist (5, 1) =1- 2/2 = 0 < 2/3. 
Therefore 1 ∈ 5.corelist.  
We repeat the same for all the core patterns in initial pool. 
Finally we get all the core patterns within the ball of ‘5’ 
and store them in 5.corelist as shown in the table 2. 
Similarly, the corelist of pattern ‘25’ is shown in table 3. 
 

 
Figure5: Partitioning the candidate pool 

 
In our running example, the entire candidate pool can be 
divided into (here) three bands with cluster centers 2, 3, 4 
respectively. Patterns whose frequency is near to 2 are 
assigned to band with cluster center 2 Patterns whose 
frequency is near to 3 are assigned to band with cluster 
center 3 and so on. This is shown in the figure.4 
We start with largest frequent band (here 2). We add 5 as 
first element and start the merging process. The pattern 
merging is done one at a time checking the resultant 
pattern’s frequency at each stage. For e.g., {1 5} U {2} is 
possible since 2 is not a subset of {1 5}. The union yields 
‘1 2 5’. Now we check for its frequency by taking 
intersection of their TID lists. (t1, t9) ∩ (t1, t9) yields (t1, 
t9). Hence frequency of ‘1 2 5’ is 2 and it is frequent. Now 
‘1 2 5’ can be merged with another pattern of the same 
cluster and the same process is repeated for all the patterns 
in each cluster. Finally the cluster with center 2 yields a 
colossal pattern ‘1 2 3 4 5 6 7 8’ with frequency 2. 
 
The selection of patterns during merging process: 
 
1. Start processing the patterns from highly frequent band. 
2.  Let α (here 5) be the growing pattern. Initialize it to the 
first pattern in the band. 
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3. Repeat for all the rest of patterns indexed by i, in the 
band and next the other clusters in descending order of 
their size until α cannot be extended, the following steps: 

i) Check whether α can be extended by merging 
pattern Pi. That is make sure that the pattern Pi is 
not a subset of α. 
ii) Find the intersection of TIDlists of α and Pi 

a) If the size of this list representing the 
support of growing pattern is < σ, then 
undo pattern growth and proceed with 
step 3 afresh. 
b) else if the distance between  Pi and 
extended  α is more than 1- τ [by 
theorem 2] then record α U Pi as a 
frequent long pattern.  
c) else update α = α U Pi and note the 
new TID list of α . 

4. Record α as a colossal pattern along with its TID list. 
5. Repeat steps 3 and 4 on the lower bands, starting with α 
initialized to first pattern. 
 
Theorem 2: Pattern extension in accordance with their 
distance to the seed patterns will not miss the lengthiest 
pattern. 
Proof:  The sequence in which the subpatterns are merged, 
while forming a colossal pattern is done based on their 
nearness to the growing pattern. Nearness of two patterns 
is measured in terms of commonly shared transactions (by 
definition no 4). The more transactions are common to two 
patterns, the more closely the patterns. When two closer 
patters are merged, there will not be any drastic difference 
in their frequency.  
The subpatterns are arranged according to the nearness 
distance to the seed pattern. If the order is not considered, 
a sub pattern that shares lesser number of common 
transactions may stop the extension of the growing pattern, 
once it is merged to the growing pattern. Merging is done, 
starting with the least distant pattern (nearest sub pattern) 
so that, the growth will be promising and uniformity is 
maintained. Thus it contributes the lengthiest pattern. 
 
Observations: 
1) A colossal pattern is expected to be the resultant pattern 
formed by merging multiple smaller frequent patterns (sub 
patterns) with nearly equal support to that of the colossal 
pattern. 
2) The neighborhood of a sub pattern βi with a radius of r 
(τ) recognized in the theorem 1, may include multiple 
clusters, each yielding a super pattern. There by we can 
have multiple super patterns formed by a pattern’s corelist. 
The above observations are essential in our algorithm 
design. 

3.4. Colossal pattern mining algorithms: 

Algorithm 1 (Main module) 
Input: Initial pool IP, Core ratio τ, 
Maximum number of patterns to mine M. 
Output: Set of frequent patterns C. 
1: do 
2: S ←Colossal Pattern Mining (IP, M, τ); 
3: CandidatePool ← S; 
4: while |S| > M; 
5: C ←RemoveSubsets (S); 
6: return C; 
Figure 6: Main algorithm 
 
The global algorithm is outlined in figure 6. The initial 
pool is generated by applying Apriori algorithm [1] up to 1 
or 2 itemset level. Lines 1 to 4 are the body of the iteration, 
which calls the algorithm Colossal Pattern Mining.  
On completion of iteration, the Main algorithm checks the 
frequent patterns returned by Colossal Pattern Mining. If 
the result set contains more than M patterns, it begins the 
next iteration with the generated set of super patterns as 
candidate pool (initial pool). The function RemoveSubsets 
() trims the resultant colossal patterns. The output of the 
main module constitutes a set of resultant colossal patterns 
which is the desired result. 
 
Algorithm 2 (Colossal pattern mining) 
Input: Initial pool IP, Core ratio τ, minimum support σ, K 
number of clusters, Maximum number of patterns to mine 
M. 
Output: Set of super patterns S 
1: S ← Ф; T ← Ф; 

2: r (τ) =
1/2

11
−

−
τ

; 

3: Clu ← Get_Bands (IP, K); 
// All the bands are stored in Clu 
4: CluSort (Clu); 
5: for i = 1 to M, j=0 to K 
6: {Draw a seed α from largest cluster in IP; 
7:    if |TIDα| ≥ σ then 
8:     {for each β Є  Clu (CluSort[j])  
9:        if Dist (α, β) ≤ r (τ ) 
10:{record <β, β.freq, TIDβ> triplet in αi .CoreList 
11: T ←  T U {α}: 
12: αi .CoreList [1] ← α;} 
 } 
13:        if β.freq < (|TIDα ∩ TIDβ|) + σ 
 {Discard β from initial pool ;} 
        }}// for in step 2 
14: for each α Є T 
15: S←S U Pattern_Merger (αi .CoreList); 
16: return S; 

Figure: 7: Colossal pattern mining algorithm 
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Step 1 in figure 7 initializes the temporary variable T and 
the set S, which stores super patterns. Step 2 computes the 
neighborhood distance. Step 3 calls an algorithm 
Get_Bands, which partitions the patterns in initial 
/candidate pool, using a standard partitioning algorithm 
(say, a variant of K-means). All the frequency bands are 
stored in Clu. In step 4, the algorithm CluSort sorts bands 
in descending order of their band sizes.  
Steps 5 to 13 are the methodology for finding corelists for 
the M seeds drawn from K bands, starting from the largest 
one. In step 13, a pattern‘s (β) frequency is assessed, to see 
if it can participate in any other neighborhoods too. If β is 
not that significant, then it is removed from the initial pool. 
This helps in improving the algorithm’s computing time. 
In step 15, each corelist is taken and the patterns in the list 
are merged to form super patterns upon calling the 
algorithm Pattern_Merger shown in figure 8. 

 
Algorithm 3 (Pattern _Merger) 
Input: Number of core lists Cno, minimum support σ, Set 
of CoreList patterns. 
Output: Set of super patterns colossal 
1: colossal =φ; temp =φ; 
2: C ← Set of core lists; 
3: for i = 1 to Cno 
4: { α ← first pattern in Ci 
5: for j = 1 to | Ci | – 1 
6: {temp ← α U Pj    // Pj ∈ Ci 
7:     if Pj ⊆ α, discard temp & continue 
8:   else 
9:    {TIDtemp ← TIDα ∩ TID Pj; 
10:        if | TIDtemp| < σ 
11:       {undo α U Pj and continue with next} 
12:       else if Dist (temp, α ) > 1-τ 
13:       {record <temp, temp.freq, TIDtemp> in 
freqlongpatternlist; 
14:  undo α U Pj and continue.} 
15:  else 
16:  {    α ← temp; 
17:      α.freq ← temp.freq; 
18:      TIDα ← TIDtemp ; 
  } 

}//else in step 8 
       }//for in step 5 
19:colossal ←colossal U <α, α.freq, TIDα> 
      }//for in step 3 
20: Return colossal; 

Figure 8: Pattern_Merger algorithm 

Steps 1 and 2 initialize the variables. Steps 3 to 19 cover 
the methodology for generating super patterns. A pattern is 
merged with the other pattern in a corelist, only if it is not 
a subset of it. This is confirmed by step 7. If the merged 
pattern’s frequency is less than minimum support 
threshold, then the merging is undone with that pattern.  

If upon merging the growing pattern’s frequency drops 
significantly, but greater than minimum support, then the 
merged pattern is stored, but the merging is undone and 
the pattern may grow in other directions. These strategies 
contribute to the growth of lengthy patterns. These are 
shown in steps 10 to 14. If the merging is useful for 
pattern growth, then the original pattern is updated with 
the new merged pattern and its frequency and transactions 
are also updated to continue with the next iteration to 
generate a lengthier pattern. This is depicted in steps 15 to 
18. Finally step 20 returns a set of lengthy patterns. 

4. Evaluation metrics 

Our proposed colossal pattern mining algorithm gives a 
good approximation of the entire mining result. This adds 
advantage when the size of the mining result is 
unmanageable. We need a new metric for assessing the 
representativeness of the set of colossal patterns to the 
complete mining result.  
Evaluation of the algorithm is done in terms of   
(1) Runtime 
(2) Representative score (Definition no-6) 
Definition 5  Pattern Dissimilarity (PD) 
The dissimilarity of β to α be defined as the ratio of 
number of distinct items of β which are not represented by 
α to the length of β. mathematically it is represented as 
follows: 
 
PD (α, β) = | β - (α ∩ β)| 

| β | 
PD (α, β) lies in the range of 0 to 1 which may differ from 
PD (β,α) and PD (α,α) is zero.  
 
Given two collections of itemsets X and Y, Y being the 
complete set of patterns and X being the colossal pattern 
mining result, we need a metric to measure how well X 
approximates Y. The formal definition is given as follows: 
 
Definition 6 (Representative score) 
The representative score is the ability of a smaller set of 
colossal patterns to represent the complete mining result. 
If X denotes the set of colossal patterns, X={x1 , x2 , …,xm} 
and Y denotes the set of complete mining result, Y={ y1, 
y2 ,…,yn}(where m is significantly smaller than n) 
Then the representative score of X with respect to Y, 
denoted as RS(X, Y) is given as 
RS(X, Y) = i=1 to m  ∑ RS(xi) 
        ___________ 
               m 
where RS (xi) = 1- PD(xi ,y ) + Dist(xi ,y ) 
   2 
Procedure to find the representative ness of X to Y: 
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Step-1: Taking each colossal pattern as a medoid the 
elements of Y are distributed into various clusters with 
nearest medoid (Definition no.4 is taken as distance 
measure.) 
Step-2: The farthest pattern ‘y’, from the medoid over all 
the elements in the cluster is identified. 
Step-3: The representative score of a colossal pattern is 
defined as follows: 
RSi (xi) = 1- PD(xi ,y ) + Dist(xi ,y ) 
  2 
Step-4: The representative score of the set of colossal 
patterns is the average of the individual representative 
score of its members. 
Representative score lies between 0 and 1. As RS reaches 
1, it shows maximum approximation of X in representing 
Y. The best representation set gets the score nearer to 1. 
Illustration 
For example, consider a complete set Y= 
{ 1,2,3,4,5,6,7,8,9,10,11}.  
Let the colossal mining result be set X= {(7, 8, 9, 10, 11), 
(1, 2, 3, 6)}. 
Given their respective tidlists (we considered Diag 6 data 
for illustrating the representative scores), the 
representative score of X to Y are tabulated in table 4 
 

Table.4  Representative scores of the two clusters. 
Cluster 1 

RS(x1, y1 ) = 1-0.15=0.85 
RS(x1, y2 ) = 1-0 =1 
RS(x1, y3 ) = 1-0.15=0.85 
RS(x1, y4 ) = 1-0.15=0.85 

Maximum over cluster 1 = 0.85 

Cluster 2 

RS(x1, y5 ) = 1-0=1 
RS(x1, y6 ) = 1-0.25=0.75 
RS(x1, y7 ) = 1-0.25=0.75 

Maximum over cluster 2 = 1 

RS(x, y ) = 0.9 

 
As the RS value approaches ‘1’, it better represents the 
complete mining set. 
 

5. Results 

In this section, we demonstrate both the performance study 
of our algorithm over synthetic datasets and application on 
real-time dataset. All of our experiments are performed on 
a 2.00GHz, 1 GB memory Intel PC, running Windows XP. 
We implemented the algorithm in Java. We evaluated our 

algorithm Colossal pattern Miner (CPM) against Closet+ 
[10]. 
 
Data characteristics: 
We applied CPM algorithm on Yeast data [4]. The result, 
from an experiment with n genes on a single chip, is a 
series of n expression-level ratios. Typically, the 
numerator of each ratio is the expression level of the gene 
in the varying condition of interest, whereas the 
denominator is the expression level of the gene in some 
reference condition. The data from a series of m such 
experiments may be represented as a gene expression 
matrix, in which each of the n rows consists of an m-
element expression vector for a single gene. The 
expression measurement is positive if the gene is induced 
(turned up) with respect to the reference state and negative 
if it is repressed (turned down). Experiments are carried 
out using a set of 79-element gene expression vectors for 
2467 annotated yeast genes. The data were collected at 
various time points during the diauxic shift, the mitotic 
cell division cycle, sporulation, and temperature and 
reducing shocks, and is available via the Stanford web site. 
We considered the first 110 genes. Thus our data 
constitute 110 rows and 79 columns. 
We mined frequent patterns in yeast data. The runtime is 
shown in figure 9. The synthetic data Diag 40 [5] is 
checked for quality which is depicted in terms of 
representative score in figure 10.  
The graph depicts the comparative statement in terms of 
Representative Scores of the set of colossal patterns versus 
equal sized uniform sampling taken from all frequent 
itemsets. It may be observed that the set of colossal 
patterns represents the all frequent itemsets better than 
random sampling. It can also be observed that as the size 
of the representative set increases, the representative score 
also increases, which coincides with the natural 
expectation and hence the proposed metric supports 
natural intuition. 
 

0

1000

2000

3000

4000

5000

6000

10 8 6 5 4 3 2

M i ni mum suppor t ( %)

closet + CPM

 
Figure 9: Runtime on yeast data 
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Conclusions 

We studied a technique for mining colossal patterns [5] 
and implemented our own strategy of mining colossal 
patterns. Instead of randomly picking a seed pattern, we 
suggest to pick up the seed pattern in an intelligent way. 
We suggest a way of separating sub patterns of 
overlapping colossal patterns based on their frequencies 
which facilitates leaping through the enormous number of 
mid sized patterns. We also suggested adopting vertical 
data format in order to avoid repeated database scans, 
while finding the distance between a pair of core 
descendant patterns. 
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Figure 10. Representative score for Diag 40 
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