
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

304

Manuscript received January 5, 2010
Manuscript revised January 20, 2010

An Efficient Approach to Colossal Pattern Mining

Madhavi Dabbiru† and Mogalla Shashi††,

† Acharya Nagarjuna University, Vijayawada, A.P
†† Dept. of Computer Science & Sys.Engg, Andhra University Visakhapatnam, A.P

Summary
Association rule mining is a popular and well researched
data mining functionality to discover interesting
relationships among variables in large databases. Most of
the frequent pattern mining algorithms based on the
popular Apriori property traverse iteratively the itemset
lattice in a level wise manner. Therefore, they encounter
challenges at mining rather large patterns called colossal
patterns. This paper proposes a strategy which avoids
exhaustive level-wise pattern tree traversal and quickly
mines colossal patterns.
Key words:
Association rule mining, frequent patterns, colossal pattern
mining.

1. Introduction

Frequent pattern mining is an important problem in
Association analysis. Enormous research is going on in
this area. With the advent of data sets with new
characteristics, it always requires new strategies to deal
with new characteristics of datasets. Especially the micro-
array data in bioinformatics poses great challenges to the
existing level-wise mining algorithms. Gene expression
data used in bioinformatics, program trace data used in
software engineering research are some of the datasets
which possess colossal patterns.
The datasets with a small number of lengthy transactions
are expected to have colossal patterns. It was observed by
the authors that a colossal pattern is lengthy by nature and
most of the sub patterns of the colossal patterns are
expected to occur with nearly same frequency. Colossal
patterns are very significant and they supersede a large
number of small frequent itemsets. A mining methodology
that leaps through the huge candidate space towards the
colossal pattern is highly called for.
Feida Zhu et al, [5] first identified the problem of colossal
pattern mining and proposed an algorithm for effectively
mining colossal patterns. Feida’s algorithm is based on his
observation that, every colossal pattern has enormous
number of subpatterns and he randomly selected
subpatterns and merged them to form candidate colossal
patterns whose support is counted by individual database
scans which are expensive. This work is motivated

towards developing a more efficient strategy for mining
colossal patterns.

2. Problem scope

A colossal pattern is lengthy by nature and most of the sub
patterns of the colossal patterns are expected to occur with
nearly same frequency as that of the colossal pattern and
hence most of the sub patterns of a colossal pattern are
identifiable based on their Support Counts. From figure 1,

Figure: 1 Pattern tree traversal

It can be observed that the search space is bulging
exponentially for mid-sized patterns. For a colossal pattern
of size n, there will be rcn number of frequent sub
patterns of size r. So in order to reach the prodigious
patterns, we need to examine enormous number of smaller
patterns. A methodology is suggested to traverse the
search space in leaps, bypassing most of the mid sized
patterns, to quickly attain colossal patterns.

2.1 Relationship of colossal pattern to other patterns

The growth process of a colossal pattern is depicted in
figure 2. Let minimum support be 50. When the pattern A
is extended with pattern B, then the frequency of AB drops
to 198. This indicates that pattern A occurs 200 times, out
of which it occurs along with B 198 times. The pattern AB
is closed but not colossal. Growth of the pattern cannot be

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

305

stopped at C, since extension of it by adding D has the
same support as the original pattern. Pattern ABCD is
closed but not colossal. Unless there is a significant
difference in the frequency of the pattern when it is
extended, the smaller pattern will not be considered for
colossal pattern though it is a closed pattern. For example,
when ABCDF is extended to include G in it, the frequency
is reduced from 193 to 190 and we don’t consider ABCDF
as a colossal pattern instead ABCDFG is a colossal pattern.
When ABCDFG is extended with Q, there is a significant
drop in the pattern’s frequency and hence this extension
will not be considered as colossal pattern. (Marked with
cross in figure.2) Hence ABCDFG is treated as a colossal
pattern, but ABCDFGQ is a maximal pattern. Therefore a
maximal pattern need not be a colossal pattern all the time.
In figure 2, ABCDEH and ABCDFG are colossal patterns.
The following points are observed, through the above
example:

• Every colossal pattern is a closed frequent
itemset but every closed frequent itemset need
not be a colossal pattern.

• A colossal pattern need not be a maximal
frequent itemset all the time.

Figure.2 Pattern tree growth process

3. Algorithm design and overview

3.1. Basic concepts

Let I={x1, x2 … , xn} be a set of items. Any nonempty subset
of ‘I ‘ is called an itemset. A transaction dataset TID is a
collection of transactions, TID = {t1, t2, …, tn}, where each
transaction ti consists of a set of items which are contained
in I.

For any itemset α, we denote the set of transactions that
support α as TIDα and referred to as support set of α.

Definition 1 (Frequent itemset)
For a transaction dataset TID, an itemset α is frequent if

σα
≥

||
||

TID
TID

, where
||
||

TID
TIDα

 is

called the support of α in TID, written supp(α) and σ
is the minimum support threshold, 0 ≤ σ ≤ 1.
The important characteristics of prodigious or colossal
patterns are

• They are lengthy by nature
• They are less in number in a given database.
• They are robust .That is, even if a small number

of items are removed from the pattern, the
resulting pattern would have a similar support set.
The larger the pattern size, the more prominent
this robustness is observed.

3.2. Supporting concepts for our algorithm

A colossal pattern is lengthy by nature. It possesses a
number of subpatterns.
There can be more than one colossal pattern in a given
data set. Each colossal pattern will have a huge set of
subpatterns. Consider the example quoted in figure 3. It
contains a colossal pattern {1 2 3 4 5 6 7 8}. It may have
8c2 2-itemsets, 8c3 3-itemsets, 8c4 4-itemsets and so on. If
we use a level wise mining strategy, we may not get the
mining result in a reasonable amount of time.
Hence a new agglomerative strategy is required to attain
the colossal patterns in less time skipping mid sized
patterns. Subpatterns belonging to a colossal pattern are
expected to be present in a neighborhood. We call them as
core patterns. By merging the core patterns present in a
neighborhood, we will attain a colossal pattern. Among
these enormous numbers of subpatterns, subpatterns of a
colossal pattern may overlap with the subpatterns of
another colossal pattern. For example in figure 2, the sub
patterns of two colossal patterns ABCDEH and ABCDFG
overlap. Therefore, in order to find the neighborhood of a
lengthy pattern we have to adopt a distance measure. The
following metrics are used in finding the core pattern
neighborhood.

Definition 2 (Core Pattern) [5]
For a pattern α, an itemset β ⊆ α is said to be a τ-core
pattern of α

if τ
β

α
≥

||
||

TID
TID

 , 0 ≤ τ ≤ 1.

where τ is called the core ratio.

A

B

C

D

F

G

Q

E

H

200

198

195

195

150

140

193

190

50

Frequency of pattern

Patterns

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

306

For a pattern α, let α.corelist be the set of all its core
patterns.

Definition 3 (Core Descendant) [5]
For two patterns β and β’, if there exits a sequence of βi , 0
≤ i ≤ k, k≥ 1 such that β = β0 , β’ = βk and βi Є βi+1.corelist
for all 0 ≤ i ≤ k , β is said to be a core descendant of β’.

Definition 4 (Pattern Distance) [5]
 For patterns βi and βj , the pattern distance of βi and βj is
defined as
 | TIDβi ∩ TIDβj |
 Dist(βi , βj) = 1 - ___________________

 | TIDβi U TIDβj |

Note: For two patterns β1, β2 Є α.corelist, Dist(β1, β2) ≤
r(τ),

where r(τ) =
1/2

11
−

−
τ

Figure 4: Distance between any two farthest patterns ≤ r
(τ)

It follows that all core patterns of a pattern α are bounded
in a metric space by a ball of diameter r(τ). It is possible
that the ball may contain overlapping neighborhood
regions of multiple colossal patterns. . In order to
recognize such core patterns from the patterns enclosed in
a ball of a colossal pattern, we can make use of the
following restriction stated in theorem 1.

Theorem 1:
Let α be a growing pattern and βi be its core descendant
pattern then
Dist (α, βi) ≤ 1- τ , where 0 ≤ τ ≤ 1.
Proof:
The distance between any two patterns is given by
definition 4 as
 | TIDβi ∩ TIDβj |
Dist (βi , βj) = 1 - ___________________

 | TIDβi U TIDβj |
by lemma 1 we have,
if βi ⊆ α then TIDβi ⊃ TIDα.

 | TIDα |
 Dist(α,βi) = ---
 | TIDβ1| + | TIDβ2|- | TIDβ1 ∩ TIDβ2 |

 =
||
||1

iTID
TID

β

α
−

Case 1: If βi is the τ-core pattern of α then

τ
β

α
≥

||
||

iTID
TID

That is,
 Dist(α, βi) = 1 - (τ + ε) = 1- τ - ε

≤ 1 - τ
Where ε is a small value.

Case 2: if βi is a τ-core descendant of α
(a) If ∃ γ such that βi is a τ-core pattern of γ and γ in turn
is a τ-core pattern of α, then we have

τ
γ

α
≥

||
||

TID
TID

 and τ
β

γ
≥

||
||

iTID
TID

ττ
γ β

γα

β

α
×≥×=

||
||

||
||

||
||

ii TID
TID

TID
TID

TID
TID

≥ τ2
(b) If ∃ a sequence of ‘k’ γ’s as core descendants of α and
βi is their core descendant, then we can prove that

≥
||
||

iTID
TID

β

α
τk+1

Hence Dist (α, βi) = 1 - (τk+1 + ε)
 ≤ 1 - τk+1
 ≤ 1 - τ
The proof is concluded.

From the above theorems 1 and 2, we can have the
following corollaries.
Corollary 1:
| TIDα | ≤ |TIDβ | ≤ | TIDα |
 τ
Where α is the growing pattern in which the sub pattern β
is merged.
Corollary 2:
For β to be frequent |TIDβ | ≥ σ

Hence σ ≤ | TIDβ | ≤ | TIDα |
 τ
Based on the above two corollaries, the frequencies of the
core descendants of a colossal
patterns are expected to be nearer to the frequency of the
colossal pattern, thereby forming a frequency band. So the
core patterns of overlapping colossal patterns sharing a

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

307

neighborhood ball can be separated in A unidimensional
clustering applied on the frequencies of the pertinent core

patterns’ results in multiple frequency bands, each
suggesting the constituents of a colossal pattern.

Figure:3 TID-List of example

While finding the distance between the growing pattern
and a candidate core pattern, we need the frequencies of
the patterns formed by the union and intersection
operations which may require additional database scans.
This was avoided by adapting vertical format
representation of the elements of the initial pool. Each
pattern is represented as a TID list in vertical formatting.
The proposed Merger algorithm generates the growing
patterns in vertical formats so that, they can be directly
included in the pool for next iteration.

3.3 Colossal Pattern Miner (CPM) Overview

Consider the sample database shown in table 1.Let
us use the transformed database shown in figure.3. We
consider minimum support σ to be 2. By using any
efficient existing frequent pattern algorithm, we were able
to get the 1-itemsets associated with their frequency as
well as TID lists as shown in table.1.

Step-wise method:

1. We start with an initial pool consisting of 1 or 2-

itemsets (can be obtained using any frequent
mining algorithm).

2. We partition the patterns in the initial pool based
on their frequencies using any standard clustering
algorithm as shown in figure 4 and figure 5. We
call them as frequency bands.

3. Starting from the largest frequency band, select a
seed pattern ‘α’ randomly and form its
neighborhood containing τ-core patterns of the
seed(based on distance), selecting from the
present band and next the other bands in
descending order of their size.

4. If the frequency of the patterns selected as τ-core
patterns (β) is less than 1- τ remove the pattern
from its parent frequency band.

Table 1:1-itemsets as candidate pool

pattern frequency TID-List
1 2 1,9
2 2 1,9
3 2 1,9
4 2 1,9
5 2 1,9
6 2 1,9
7 2 1,9
8 2 1,9
9 4 3,10,12,16

10 2 7,10
11 4 2,4,11,12
12 2 10,13
13 3 1,11,13
14 3 13,14,15
15 2 12,15
16 3 1,2,7
17 4 6,7,8,13
18 2 12,13
19 3 8,11,16
20 3 1,4,8
21 2 10,14
23 2 10,14
25 2 10,14
27 2 8,12
28 2 5,11
29 3 3,7,11
32 3 2,9,15
33 2 10,14
34 4 6,10,11,15
35 3 2,8,14
36 3 2,6,16
37 4 6,10,11,15
38 2 2,3
40 2 10,14
43 2 5,13
46 4 5,7,9,12
47 3 5,6,14
50 2 10,14
55 3 3,5,8
60 4 4,5,15,16

Item-IDs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 25 27 28 29 32 33 34 35 36 37 38 40 43 46 47 50 55 60

1 1 1 1 1 1 1 1 3 7 2 10 1 13 12 1 6 12 8 1 10 10 10 8 5 3 2 10 6 2 2 6 2 10 5 5 5 10 3 4
9 9 9 9 9 9 9 9 10 10 4 13 11 14 15 2 7 13 11 4 14 14 14 12 11 7 9 14 10 8 6 10 3 14 13 7 6 14 5 5

12 11 13 15 7 8 16 8 11 15 11 14 16 11 9 14 8 15

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

308

Table.2: Neighborhood of ‘5’
pattern frequency TID-List

1 2 1,9
2 2 1,9
3 2 1,9
4 2 1,9
5 2 1,9
6 2 1,9
7 2 1,9
8 2 1,9

Table3: Neighborhood of ‘25’

pattern frequency TID-List
21 2 10,14
23 2 10,14
25 2 10,14
33 2 10,14
40 2 10,14
50 2 10,14

Figure 4:Distribution of patterns among various frequency bands

5. Repeat step 3 and 4 until all the patterns are
selected or until number of neighborhoods
formed are equal to desired number of colossal
patterns.

6. Now we start merging the patterns in each
neighborhood in order to form one or more super
patterns (colossal patterns).

7. The set of super patterns now becomes the new
initial pool and the process is repeated until we
attain colossal patterns.

Let the randomly drawn seed pattern be ‘5’. Now we will
find out the distance between ‘α’ (5) and each β, other
than α, in the initial pool. We choose the value of τ as 0.5.
Substituting τ value in r (τ), we have by theorem 1, r (τ) =
2/3. We use the distance measure from Definition 4.
Let β=1,
then Dist (5, 1) =1- 2/2 = 0 < 2/3.
Therefore 1 ∈ 5.corelist.
We repeat the same for all the core patterns in initial pool.
Finally we get all the core patterns within the ball of ‘5’
and store them in 5.corelist as shown in the table 2.
Similarly, the corelist of pattern ‘25’ is shown in table 3.

Figure5: Partitioning the candidate pool

In our running example, the entire candidate pool can be
divided into (here) three bands with cluster centers 2, 3, 4
respectively. Patterns whose frequency is near to 2 are
assigned to band with cluster center 2 Patterns whose
frequency is near to 3 are assigned to band with cluster
center 3 and so on. This is shown in the figure.4
We start with largest frequent band (here 2). We add 5 as
first element and start the merging process. The pattern
merging is done one at a time checking the resultant
pattern’s frequency at each stage. For e.g., {1 5} U {2} is
possible since 2 is not a subset of {1 5}. The union yields
‘1 2 5’. Now we check for its frequency by taking
intersection of their TID lists. (t1, t9) ∩ (t1, t9) yields (t1,
t9). Hence frequency of ‘1 2 5’ is 2 and it is frequent. Now
‘1 2 5’ can be merged with another pattern of the same
cluster and the same process is repeated for all the patterns
in each cluster. Finally the cluster with center 2 yields a
colossal pattern ‘1 2 3 4 5 6 7 8’ with frequency 2.

The selection of patterns during merging process:

1. Start processing the patterns from highly frequent band.
2. Let α (here 5) be the growing pattern. Initialize it to the
first pattern in the band.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

309

3. Repeat for all the rest of patterns indexed by i, in the
band and next the other clusters in descending order of
their size until α cannot be extended, the following steps:

i) Check whether α can be extended by merging
pattern Pi. That is make sure that the pattern Pi is
not a subset of α.
ii) Find the intersection of TIDlists of α and Pi

a) If the size of this list representing the
support of growing pattern is < σ, then
undo pattern growth and proceed with
step 3 afresh.
b) else if the distance between Pi and
extended α is more than 1- τ [by
theorem 2] then record α U Pi as a
frequent long pattern.
c) else update α = α U Pi and note the
new TID list of α .

4. Record α as a colossal pattern along with its TID list.
5. Repeat steps 3 and 4 on the lower bands, starting with α
initialized to first pattern.

Theorem 2: Pattern extension in accordance with their
distance to the seed patterns will not miss the lengthiest
pattern.
Proof: The sequence in which the subpatterns are merged,
while forming a colossal pattern is done based on their
nearness to the growing pattern. Nearness of two patterns
is measured in terms of commonly shared transactions (by
definition no 4). The more transactions are common to two
patterns, the more closely the patterns. When two closer
patters are merged, there will not be any drastic difference
in their frequency.
The subpatterns are arranged according to the nearness
distance to the seed pattern. If the order is not considered,
a sub pattern that shares lesser number of common
transactions may stop the extension of the growing pattern,
once it is merged to the growing pattern. Merging is done,
starting with the least distant pattern (nearest sub pattern)
so that, the growth will be promising and uniformity is
maintained. Thus it contributes the lengthiest pattern.

Observations:
1) A colossal pattern is expected to be the resultant pattern
formed by merging multiple smaller frequent patterns (sub
patterns) with nearly equal support to that of the colossal
pattern.
2) The neighborhood of a sub pattern βi with a radius of r
(τ) recognized in the theorem 1, may include multiple
clusters, each yielding a super pattern. There by we can
have multiple super patterns formed by a pattern’s corelist.
The above observations are essential in our algorithm
design.

3.4. Colossal pattern mining algorithms:

Algorithm 1 (Main module)
Input: Initial pool IP, Core ratio τ,
Maximum number of patterns to mine M.
Output: Set of frequent patterns C.
1: do
2: S ←Colossal Pattern Mining (IP, M, τ);
3: CandidatePool ← S;
4: while |S| > M;
5: C ←RemoveSubsets (S);
6: return C;
Figure 6: Main algorithm

The global algorithm is outlined in figure 6. The initial
pool is generated by applying Apriori algorithm [1] up to 1
or 2 itemset level. Lines 1 to 4 are the body of the iteration,
which calls the algorithm Colossal Pattern Mining.
On completion of iteration, the Main algorithm checks the
frequent patterns returned by Colossal Pattern Mining. If
the result set contains more than M patterns, it begins the
next iteration with the generated set of super patterns as
candidate pool (initial pool). The function RemoveSubsets
() trims the resultant colossal patterns. The output of the
main module constitutes a set of resultant colossal patterns
which is the desired result.

Algorithm 2 (Colossal pattern mining)
Input: Initial pool IP, Core ratio τ, minimum support σ, K
number of clusters, Maximum number of patterns to mine
M.
Output: Set of super patterns S
1: S ← Ф; T ← Ф;

2: r (τ) =
1/2

11
−

−
τ

;

3: Clu ← Get_Bands (IP, K);
// All the bands are stored in Clu
4: CluSort (Clu);
5: for i = 1 to M, j=0 to K
6: {Draw a seed α from largest cluster in IP;
7: if |TIDα| ≥ σ then
8: {for each β Є Clu (CluSort[j])
9: if Dist (α, β) ≤ r (τ)
10:{record <β, β.freq, TIDβ> triplet in αi .CoreList
11: T ← T U {α}:
12: αi .CoreList [1] ← α;}
 }
13: if β.freq < (|TIDα ∩ TIDβ|) + σ
 {Discard β from initial pool ;}
 }}// for in step 2
14: for each α Є T
15: S←S U Pattern_Merger (αi .CoreList);
16: return S;

Figure: 7: Colossal pattern mining algorithm

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

310

Step 1 in figure 7 initializes the temporary variable T and
the set S, which stores super patterns. Step 2 computes the
neighborhood distance. Step 3 calls an algorithm
Get_Bands, which partitions the patterns in initial
/candidate pool, using a standard partitioning algorithm
(say, a variant of K-means). All the frequency bands are
stored in Clu. In step 4, the algorithm CluSort sorts bands
in descending order of their band sizes.
Steps 5 to 13 are the methodology for finding corelists for
the M seeds drawn from K bands, starting from the largest
one. In step 13, a pattern‘s (β) frequency is assessed, to see
if it can participate in any other neighborhoods too. If β is
not that significant, then it is removed from the initial pool.
This helps in improving the algorithm’s computing time.
In step 15, each corelist is taken and the patterns in the list
are merged to form super patterns upon calling the
algorithm Pattern_Merger shown in figure 8.

Algorithm 3 (Pattern _Merger)
Input: Number of core lists Cno, minimum support σ, Set
of CoreList patterns.
Output: Set of super patterns colossal
1: colossal =φ; temp =φ;
2: C ← Set of core lists;
3: for i = 1 to Cno
4: { α ← first pattern in Ci
5: for j = 1 to | Ci | – 1
6: {temp ← α U Pj // Pj ∈ Ci
7: if Pj ⊆ α, discard temp & continue
8: else
9: {TIDtemp ← TIDα ∩ TID Pj;
10: if | TIDtemp| < σ
11: {undo α U Pj and continue with next}
12: else if Dist (temp, α) > 1-τ
13: {record <temp, temp.freq, TIDtemp> in
freqlongpatternlist;
14: undo α U Pj and continue.}
15: else
16: { α ← temp;
17: α.freq ← temp.freq;
18: TIDα ← TIDtemp ;
 }

}//else in step 8
 }//for in step 5
19:colossal ←colossal U <α, α.freq, TIDα>
 }//for in step 3
20: Return colossal;

Figure 8: Pattern_Merger algorithm

Steps 1 and 2 initialize the variables. Steps 3 to 19 cover
the methodology for generating super patterns. A pattern is
merged with the other pattern in a corelist, only if it is not
a subset of it. This is confirmed by step 7. If the merged
pattern’s frequency is less than minimum support
threshold, then the merging is undone with that pattern.

If upon merging the growing pattern’s frequency drops
significantly, but greater than minimum support, then the
merged pattern is stored, but the merging is undone and
the pattern may grow in other directions. These strategies
contribute to the growth of lengthy patterns. These are
shown in steps 10 to 14. If the merging is useful for
pattern growth, then the original pattern is updated with
the new merged pattern and its frequency and transactions
are also updated to continue with the next iteration to
generate a lengthier pattern. This is depicted in steps 15 to
18. Finally step 20 returns a set of lengthy patterns.

4. Evaluation metrics

Our proposed colossal pattern mining algorithm gives a
good approximation of the entire mining result. This adds
advantage when the size of the mining result is
unmanageable. We need a new metric for assessing the
representativeness of the set of colossal patterns to the
complete mining result.
Evaluation of the algorithm is done in terms of
(1) Runtime
(2) Representative score (Definition no-6)
Definition 5 Pattern Dissimilarity (PD)
The dissimilarity of β to α be defined as the ratio of
number of distinct items of β which are not represented by
α to the length of β. mathematically it is represented as
follows:

PD (α, β) = | β - (α ∩ β)|

| β |
PD (α, β) lies in the range of 0 to 1 which may differ from
PD (β,α) and PD (α,α) is zero.

Given two collections of itemsets X and Y, Y being the
complete set of patterns and X being the colossal pattern
mining result, we need a metric to measure how well X
approximates Y. The formal definition is given as follows:

Definition 6 (Representative score)
The representative score is the ability of a smaller set of
colossal patterns to represent the complete mining result.
If X denotes the set of colossal patterns, X={x1 , x2 , …,xm}
and Y denotes the set of complete mining result, Y={ y1,
y2 ,…,yn}(where m is significantly smaller than n)
Then the representative score of X with respect to Y,
denoted as RS(X, Y) is given as
RS(X, Y) = i=1 to m ∑ RS(xi)

 m
where RS (xi) = 1- PD(xi ,y) + Dist(xi ,y)
 2
Procedure to find the representative ness of X to Y:

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

311

Step-1: Taking each colossal pattern as a medoid the
elements of Y are distributed into various clusters with
nearest medoid (Definition no.4 is taken as distance
measure.)
Step-2: The farthest pattern ‘y’, from the medoid over all
the elements in the cluster is identified.
Step-3: The representative score of a colossal pattern is
defined as follows:
RSi (xi) = 1- PD(xi ,y) + Dist(xi ,y)
 2
Step-4: The representative score of the set of colossal
patterns is the average of the individual representative
score of its members.
Representative score lies between 0 and 1. As RS reaches
1, it shows maximum approximation of X in representing
Y. The best representation set gets the score nearer to 1.
Illustration
For example, consider a complete set Y=
{ 1,2,3,4,5,6,7,8,9,10,11}.
Let the colossal mining result be set X= {(7, 8, 9, 10, 11),
(1, 2, 3, 6)}.
Given their respective tidlists (we considered Diag 6 data
for illustrating the representative scores), the
representative score of X to Y are tabulated in table 4

Table.4 Representative scores of the two clusters.
Cluster 1

RS(x1, y1) = 1-0.15=0.85
RS(x1, y2) = 1-0 =1
RS(x1, y3) = 1-0.15=0.85
RS(x1, y4) = 1-0.15=0.85

Maximum over cluster 1 = 0.85

Cluster 2

RS(x1, y5) = 1-0=1
RS(x1, y6) = 1-0.25=0.75
RS(x1, y7) = 1-0.25=0.75

Maximum over cluster 2 = 1

RS(x, y) = 0.9

As the RS value approaches ‘1’, it better represents the
complete mining set.

5. Results

In this section, we demonstrate both the performance study
of our algorithm over synthetic datasets and application on
real-time dataset. All of our experiments are performed on
a 2.00GHz, 1 GB memory Intel PC, running Windows XP.
We implemented the algorithm in Java. We evaluated our

algorithm Colossal pattern Miner (CPM) against Closet+
[10].

Data characteristics:
We applied CPM algorithm on Yeast data [4]. The result,
from an experiment with n genes on a single chip, is a
series of n expression-level ratios. Typically, the
numerator of each ratio is the expression level of the gene
in the varying condition of interest, whereas the
denominator is the expression level of the gene in some
reference condition. The data from a series of m such
experiments may be represented as a gene expression
matrix, in which each of the n rows consists of an m-
element expression vector for a single gene. The
expression measurement is positive if the gene is induced
(turned up) with respect to the reference state and negative
if it is repressed (turned down). Experiments are carried
out using a set of 79-element gene expression vectors for
2467 annotated yeast genes. The data were collected at
various time points during the diauxic shift, the mitotic
cell division cycle, sporulation, and temperature and
reducing shocks, and is available via the Stanford web site.
We considered the first 110 genes. Thus our data
constitute 110 rows and 79 columns.
We mined frequent patterns in yeast data. The runtime is
shown in figure 9. The synthetic data Diag 40 [5] is
checked for quality which is depicted in terms of
representative score in figure 10.
The graph depicts the comparative statement in terms of
Representative Scores of the set of colossal patterns versus
equal sized uniform sampling taken from all frequent
itemsets. It may be observed that the set of colossal
patterns represents the all frequent itemsets better than
random sampling. It can also be observed that as the size
of the representative set increases, the representative score
also increases, which coincides with the natural
expectation and hence the proposed metric supports
natural intuition.

0

1000

2000

3000

4000

5000

6000

10 8 6 5 4 3 2

M i ni mum suppor t (%)

closet + CPM

Figure 9: Runtime on yeast data

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

312

Conclusions

We studied a technique for mining colossal patterns [5]
and implemented our own strategy of mining colossal
patterns. Instead of randomly picking a seed pattern, we
suggest to pick up the seed pattern in an intelligent way.
We suggest a way of separating sub patterns of
overlapping colossal patterns based on their frequencies
which facilitates leaping through the enormous number of
mid sized patterns. We also suggested adopting vertical
data format in order to avoid repeated database scans,
while finding the distance between a pair of core
descendant patterns.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

50 100 150 200 300 350 400

N umb er o f mined p at t erns

CPM uniform sampling

Figure 10. Representative score for Diag 40

References
[1] R.Agrawal, T.Imielinski, and A. Swami. Mining association

rules between sets of items in large databases. In
SIGMOD’93, pp 207-216, Washington, D.C., 1993.

[2] R.Agrawal, H.Mannila, R.Srikant, H.Toivonen and A.Inkeri
Verkamo. Fast discovery of association rules. In ‘Advances
in Knowledge Discovery and Data Mining’, pages 307-328,
AAAI press, Menlo Park, CA, 1996.

[3] R.J.Bayardo. Efficiently mining long patterns from
databases. In ACM SIGMOD conf. Management of Data,
June 1998.

[4] J.Han, J.Pei and Y.Yin. Mining frequent patterns without
candidate generation. In ACM SIGMOD conf. Management
of Data, May 2000.

[5] Zhu.F et al., Mining colossal Frequent patterns by core
Pattern Fusion In: Proceedings of the 2007 international
conference on Data Engineering, Istanbul, Turkey.

[6] Madhavi D & M.Shashi, An Efficient Algorithm to Mine
Prodigious Frequent Patterns In: Proceedings of the 2008
international conference IISA’08, UCONN, New York.

[7] Survey of Clustering Data Mining Techniques-Pavel
Berkhin Accrue Software, Inc.

[8] J.Han and M.Kamber. Data Mining concepts and
Techniques, Morgan Kaufmann publishers, SanFrancisco,
CA, 2001.

[9] N.Pasquier, Y.Bastide, R.Taouil and L.Lakhal. Discovering
Frequent Itemsets for association rules in ICDT 1999.

[10] J.Wang, J. Han, and J. Pei. Closet+: Searching for the best
strategies for mining frequent closed itemsets. In KDD’03,
pages 236–245.

[11] http://genome-www.stanford.edu/

D.Madhavi received her M.sc. Degree in
Computer Science from P.B. Siddhartha
college, Vijayawada and M.E. Degree in
Computer Engineering with distinction
from Andhra University. She is presently
working as an Associate Professor in the
department of Computer Science and
Engg, Pydah College of Engineering and
Technology, Visakhapatnam, Andhra

Pradesh, India. She is pursuing her Ph.D from Acharya
Nagarjuna University. Her areas of interest include Data Mining,
Information Retrieval, and Data base systems.

M.Shashi received her B.E. Degree in
Electrical and Electronics and M.E.
Degree in Computer Engineering with
distinction from Andhra University. She
received Ph.D in 1994 from Andhra
University and got the best Ph.D thesis
award. She is working as a professor and
HOD of Computer Science and Systems
Engineering at Andhra University,
Andhra Pradesh, India. She received

AICTE career award as young teacher in 1996. She is a co-author
of the Indian Edition of text book on “Data Structures and
Program Design in C” from Pearson Education Ltd. She
published technical papers in National and International Journals.
Her research interests include Data Mining, Artificial intelligence,
Pattern Recognition and Machine Learning. She is a life member
of ISTE, CSI and a fellow member of Institute of Engineers
(India).

