
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

19

Manuscript received February 5, 2010
Manuscript revised February 20, 2010

CryptoNET: Software Protection and
Secure Execution Environment

Abdul Ghafoor†, Sead Muftic†

†The Royal Institute of Technology, DSV, Borgarfjordsgatan 15, SE-164 40, Kista, Sweden

Summary
The software modules are key component of information
technology. Most of software owners and users are concerned
about the protection of software modules against reverse
engineering, illegal tempering, program-based attacks, BORE
(Break Once Run Everywhere) attack and unauthorized use of
software. Some efforts have been made to protect software
modules using cryptographic techniques like digitally signed
Java Applet which is verified by Java Virtual Machine (JVM)
before execution.
However today, software modules are not protected using strong
encryption techniques and extended cryptographic functions,
because existing execution environments do not support to
process and execute protected software modules. Normally, such
environment should act as a middleware platform between
software modules and operating system. This paper describes
protection of software modules which is based on strong
encryption techniques, for example public key encryption and
digital signature. These protected software modules are
encapsulated in our designed XML file which describes a general
syntax of protected software modules. In addition, our designed
system also securely distributes software modules to authorized
user. Secure software distribution system is based on well
established standards and protocols like FIPS-196 based
extended strong authentication protocol and SAML based
authorization security policies. We also designed secure
execution environment which is capable to execute signed and
encrypted software modules, supports standard security services
and network security protocols. These are: transparent handling
of certificates, use of FIPS-201 compliant smart cards,
single-sign-on protocol, strong authentication protocol, and
secure asynchronous sessions.

Key words:
Strong authentication, format of protected software modules,
secure software distribution, reverse engineering, cryptographic
functions

1. Introduction

Software is the foundation of information
technologies that businesses, enterprises, educational
institutions, and critical security infrastructure owners and
operators rely upon for their most imperative and critical
operations. For this reason, everybody is concerned with
protection and security of software and its protection
against exploitation by attackers, who maliciously disrupt

it, illegally modify or use it. Software industry, which was
a US$ 303.8 billion industry in 2008 with an annual
increase of 6.5% [1], is also concerned with misuse and
illegal distribution of their products. They are actively
participating in software protection activities to solve
software distribution, legal use and modifications, but still
they are bearing billions of dollars loss annually [2].

Various security technologies and applications have
been developed and deployed so far for software assurance
and protection. Some examples of such technologies and
applications may be: Intrusion Detection Systems (IDSs),
Intrusion Prevention Systems (IPSs), anti-virus programs,
firewalls, etc. However, these security solutions do not
provide satisfactory level of software assurance and
protection. Furthermore, these solutions do not completely
eliminate software vulnerabilities which are exploited by
attackers.

Security researchers and standardization organizations
are working in three directions to achieve a high level of
software protection against reverse engineering, illegal
tempering, program-based attacks, BORE (Break Once
Run Everywhere) attack [3] and unauthorized use of
software. The first group is working on defining and
implementing digital rights management and software
licensing laws to protect intellectual property rights.
Examples are Software and Information Industry
Association (SIIA) [4] or World Intellectual Property
Organization (WIPO) [5]. The second group is working on
software security, recommending that software should be
secure by design in order to provide certain level of
security. Examples are Software Security Assurance (SSA)
[6], Cigital [7], etc. The last group is working on
obfuscation and cryptographic protection techniques which
are based on some technical solutions: Examples are
Trusted Platform Group [8], Microsoft’s Software
Protection Platform [9], LaGrande Technology [10], etc.
 In this paper, our approach is based on
the last category of software protection solutions.
Currently, the most popular method is verification
of software against viruses. An example of such
software is signed Java Applet [11] which
implements limited security functions. However
today, software modules are not protected using
strong encryption and extended cryptographic

20 IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

functions, because those modules require security
enhanced execution environment. Normally, such
environment should act as a middleware platform
between software modules and operating system.
Examples may be Java Virtual Machine [12],
Common Language Runtime [13] or some
execution environments implemented as an
extension of operating system.

During this research we analyzed existing
solutions and commercial products (outlined in
Section 2) and found that none of the current
solutions are capable to protect software modules
using strong encryption techniques. Furthermore,
current middleware platforms do not support
execution of encrypted, signed and encapsulated
software modules, enveloped in a standard cryptographic
format.

Recognizing this gap, our paper describes the design
and implementation of a comprehensive software
protection system which provides software confidentiality,
tempering resistance, and even protection against illegal
coping and distribution. Furthermore, we designed an
XML (Extensible Markup Language) file which describes
a general format of protected software modules to support
alternative cryptographic syntax and standards. In addition,
we also designed and implemented an extended secure
execution environment, which is not only capable to
execute encrypted and signed software modules, but also
supports various security management procedures such as
certification protocol, secure session handling, use of
smart cards, and Security Assertion Markup Language
(SAML) authentication protocol. We believe that our
system is an effective solution against reverse engineering,
software tempering, illegal copying and BORE attack
based on authentication, access control, integrity, and
confidentiality security services for software modules. In
particular, we also solved a critical issue of secure
execution of such protected software.

2. Overview and Analysis of Current Software
Protection Solutions

In this section we overview and analyze security functions
and features of some existing products, applications,
proposed solutions, and industry software protection
standards. Most of the software protection solutions can
not effectively combat major attacks mentioned in the first
section. We structured those software protection systems in
three aspects and analyzed security functions and
requirements of each approach. These aspects are: (a)
protection of software modules, (b) secure software
distribution, and (c) controlled execution environment.

2.1. Protection of Software Modules

Software Protection Initiatives (SPI) [14] group
initiated a process to develop strategies and
technologies to protect sensitive code, like
engineering, scientific, modeling and simulation
software. SPI focused on availability,
authentication, confidentiality, integrity and
non-repudiation services to protect the value-added
software.

Reverse engineering of software is the first threat to
generate and modify source code. Some decompilers, like
Compuware Numega SoftICE [15], URSoftware
W32Dasm [16], Datarescue Interactive
Disassembler Pro (IDA) [17] and Oleh Yuschuk’s
OllyDbg [18] are quite effective for reverse
engineering of Windows-based software [19]. One
of the first solutions against reverse engineering
and illegal modifications of software executable
modules was explained by Kent in 1980 [20]. Kent
defined both cryptographic and physical
temper-resistance techniques for software
protection. Obfuscation is another technique,
which automatically transforms the original code
into equivalent obfuscated code, discussed in
[21][22][23]. In early 1990s, this technique was
used to protect software from viruses, but with
some modifications it is being used to protect
binary code from reverse engineering and illegal
modifications. This technique does not require
special execution environment on a host platform.

Currently, the most important method for
protection of software modules is verification of
software against viruses. Some solutions, like [24],
provide protection of software modules using
asymmetric cryptography. This approach allocates
Cryptographic Function Area (CFA) to store
private key and software encryption key. The
binaries server generates software encryption key
which is seeded by the fingerprints (the identity of
a host machine). Similarly, UltraProtect [25] uses
asymmetric key to protect software executables
against piracy and illegal distribution. A hybrid
software protection technique, described in [26][27],
protects software modules against reverse
engineering. This technique embeds a plaintext
decryptor in an encrypted program, but the
plaintext decryptor is obfuscated using code
obfuscation technique. The role of descriptor is to
decrypt executable binaries.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

21

2.2. Secure Software Distribution

Most of the systems for secure software
distribution rely on the Internet technologies which
focus on integrity of software and authentication of
clients. Vendor of open source and free software,
available on the Internet, generates the hash value
of executable modules and uploads it to Internet
with static hash value [28]. Client downloads
software and generates its hash value to compare
with the published hash value for integrity
assurance. This mechanism ensures the integrity
of software guaranteeing that it was not altered during
downloading phase. Similarly, vendors of commercial
products may sign software modules which are verified by
the client during the installation phase [29]. These two
techniques do not provide integrity or resistance against
software tempering of executable modules after
deployment phase. Software distribution technique
explained in “Secure Code Distribution” [30] verifies
integrity of software (Applets) after downloading and
verifies signature before execution. Applet developer signs
the code using private key which is verified by the secure
class loader embedded in the JVM. Furthermore, the paper
[30] also mentioned that S/MIME can be used to securely
distribute the software.

2.3. Controlled Execution Environment

Currently, a well known software execution
environment is Java Virtual Machine which
verifies signed Java applets before execution.
Trusted Computing Group [31] provided
hardware-based solution, known as Trusted
Platform Module, which is a combination of
different components to protect local resources like
files, software modules, keys etc. Another
hardware-based secure execution environment is
described in [32] which uses cryptographic
functions in a low cost memory chip. Microsoft is
working on the concept of “Next-Generation Secure
Computing Base (NGSCB)” [33] which relies on
hardware technology to provide a number of
security-related features, like fast random number
generation, secure cryptographic co-processor, and
the ability to keep cryptographic keys so that
makes them impossible to retrieve. The aim of this
environment is to execute software in a secure
environment. On the other hand, Apple is working
on incorporating a Trusted Platform Module (TPM)
into their Apple Macintosh line of computers for
the integrity and confidentiality of the software
modules [34].

2.4 Analysis of Existing Solutions

Analyzing exiting solutions and techniques, we
found that these solutions use obfuscation (non
cryptographic technique), limited security features,
and host dependent secure environments, while
some solutions require special hardware and
components which are economically expensive and
usually not available on a large scale. Contrary to
these solutions, our approach is to address
authentication, authorization, confidentiality, and
integrity services using extended security features
and functions. Our solution also solves some of
problems addressed by software security group,
like software consistency. Other then support to
standard security mechanisms and services, the
distinctive features and properties of our solution
are the following:
(i). protection of software modules using strong

encryption techniques, for example public key
encryption and digital signature;

(ii). XML file which describes a general syntax of
protected software modules;

(iii). secure software distribution using strong
authentication and SAML based authorization
security technologies;

(iv). secure execution environment which is
capable to execute signed and encrypted
software modules, supports standard security
services and network security protocols, such
as transparent handling of certificates, use of
smart cards, single-sign-on protocol, strong

CVS

Fig. 1 Components of Software Protection and
Distribution System

Hudson Server

Web Server

Secure
Software

Product Manager Client

22 IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

authentication protocol, and secure
asynchronous sessions.

3. Overview of System Components and
Functions

In a professional software development
environment source code is managed by some
versioning system. In our environment, we use
Concurrent Versioning System (CVS) for this
purpose. As shown in Fig. 1, the CVS is linked with
Hudson Server which generates binaries from
source code when Product Manager launches the
build process. At the end of the build process,
Hudson Server publishes the newly generated
binaries at the Secure Software Distribution (SSD)
Server which are available to clients through web
server.
The interested client securely downloads protected
software products (in this paper we refer to
software modules as software products) after
following authentication and authorization
procedures and protocols explained in next section.
Furthermore, client also downloads secure
execution environment which is capable to execute
signed and encrypted software modules.
In this system, SSD Server and Web Server are
incorporated into our global security infrastructure
(not shown in Fig. 1) and we assume that the
following security infrastructure servers exist in
domain and are fully functional:
(i). Certification Authority (CA) Server which

issues and distributes X.509 certificates to all
components;

(ii). IDentity Management System (IDMS) Server
which manages identities of different
resources and clients;

(iii). SAML Policy Server, also known as Policy
Decision Point (PDP), responsible for creation
of SAML tickets, authentication policies and
policy sets, and making decisions based on the
SAMLAuthenticationRequests; and

(iv). Strong Authentication (SA) Server which
performs strong authentication with clients
and passes SAML ticket to clients.
Furthermore, it also acts as the bridge
between SAML Policy Server and Policy
Enforcement Point (a component of SSD
Server) for handling SAML Authentication
and Authorization requests and responses.

SSD Server protects software modules using strong
protection techniques. At the initial start up it
requests and receives three certificates (digital
signature, key exchange and non- repudiation
certificates) from the local CA server. If smart card
is installed, it generates keys in a smart card and
stores received certificates in it. Otherwise, it
stores them in a local certificate database.
Furthermore, the SSD Server contains PEP
component which interacts with security
infrastructure servers for single-sign-on
authentication and authorization.

In this system we also specified an XML file
which describes general syntax of protected
software modules which supports many different
cryptographic syntax and standards. Our SSD
Server uses PKCS7SignedAndEnveloped
cryptographic syntax. For that purpose, it digitally
signs software modules using private key of digital
signature certificate and envelopes them using the
public key of client’s key encipherment certificate.
After successful cryptographic enveloping in
Public-Key Cryptography Standards (PKCS7)
format, it generates XML file shown in Fig. 2

<SPS>

<Version>1.0</Version>

<Content-Type>SIGNED-ENCRYPTED</Content-Type>

<Encapsulation-Standard>PKCS7</Encapsulation-Standard>

<SM-Type>Native</SM-Type>

<SM-Name>Name of Software module</SM-Name>

<Content-Description>A description</Content-Description>

<Contents>Signed and Enveloped contents encapsulated in PKCS7</Contents>

</SPS>

Fig. 2 Different elements of XML file which contains information about protected software modules and security standards

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

23

representing this specific scenario. It contains
information about the cryptographic standard used
to protect and envelop software module. The detail
specification and description of each element of the
XML file are explained in Appendix A.

In addition to protection of software modules, it
signs and encrypts fingerprint (see Section 4) and
identity of a client and embeds in protected
software. At the client side, this secured
information is used to protect software against
illegal copying and distribution. In addition, the
SSD Server is also responsible to digitally sign the
Secure Execution Environment which is extended
with security features and functions those are
explained in next section. The SSD Server also
keeps encrypted log its all of actions. It is also
capable to receive log history from clients for
analysis and detection of misuse and anomaly.

4. Operations of the System

Registration of clients in IDMS is performed
according to the procedure described in [35].This is
performed by using our registration web pages. The
registration information is sent to Web Server
using SSL protocol. Upon successful registration,
our Web Sever displays information message
“Registration request received. Please logon using
user name and password after some time”. The
security manager views the stored data and
authorized the client to download protected
software from web server. At this phase, the
software vender may ask for payment and licensing
policies which are not disused in this research
paper. Security manager creates policy in SAML
Policy Server specifying that the registered client
can download software modules. If the security
manager rejects the request, the web browser does
not allow the user to login into web server and
sends back a deny message. Using the login web
page, a user downloads signed ActiveX module
from the web server which interacts with smart
card, installed on client machine, to perform strong
authentication, cryptographic functions and
storage of credentials after opening card using PIN
or PIN+ fingerprints. Upon successful login, web
browser activates ActiveX to fetch certificates from
CA Server and performs Strong Authentication
with SA Server in order to fetch SAML identity
assertion as described in [36].

In order to download Secure Execution
Environment (SEE), the client sends SAML ticket
to Web Server by using HTTP POST request. The
Web Server consults the SAML Policy Server to
verify the SAML ticket and evaluate the
authorization polices. If SAML Policy Server
permits to download SEE then the Web Server
redirect request to SSD Server. The client
downloads and installs the SEE. The setup verifies
the signature in order to ensure that SEE is
downloaded from authenticated server and is not
tempered during the downloading phase. In this
solution, we assume that the client machine has
basic execution environment like JVM which is
capable to verify the signed SEE.
The SEE fetches SAML ticket from smart card for
single-sign-on authentication and authorization
purposes in order to fetch protected software
modules from SSD Server. Upon successful,
authentication and getting permission, the SSD
Server establishes secure session with SEE
according to the protocol described in [36]. The SEE
generates fingerprint which contains processor id,
serial number of hard disk and distinguished name.
The SEE signs fingerprint and securely sends to
SSD Server which embeds it in protected software
modules as explained in section 3. SEE downloads
signed, encrypted and enveloped software modules
from SSD Server and stores in the local file system.
The SEE comprises five components as shown in
Fig. 3. These components are: Generic Security
Provider, Verifier, Decryptor, Class Loader and
Logger. The detailed security functions and
features of Generic Security Provider are explained
in [37] which are used by different components for
cryptographic functions. The Verifier component

Local File
System Smart Cards or Hardware Tokens

Operating System

Class Loader

Decryptor

Verifier

I/O

Fig. 3 Components of Secure Execution Environment

L
o
g
g
e
r

Generic

Security

Provide
r

24 IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

fetches protected software modules from local file
system. It verifies the signature of software
modules by processing header of XML file. If
verification process fails then the SEE logs the
event and stops its execution. Upon successful
verification, the software modules are passed to
Decryptor. Initially, the Decryptor decrypts the
fingerprint and identity file and compares with the
local fingerprint and identity. After successfully
comparison, the Decryptor decrypts the value of
contents element of the XML file according to the
standards mentioned in the header of XML file.
The output of this process is plain files and
Decryptor takes any of the following action upon
the values of SM-Type element:
• If SM-Type is Native then it handover to Class

Loader for loading modules in memory.
Examples are java classes, executable jars

• If SM-Type is Configuration then it only use
required information on-fly. Examples are
fingerprints and identity file, server
configuration file.

• If SM-Type is External then it saves in
temporary directory and will be loaded by
specific class loader at its execution time. At
the closing time, SEE deletes these temporary
files. Examples are so, dlls, exe files.

The Logger component of SEE, maintains the log of
each action performed by other components. The
SEE periodically submits the log to SSD Server for
anomaly and misuse detection of software modules.

4. Conclusion

Currently, most of software is being protected using digital
signature techniques which are only used for verification.
In addition, some key based protection solutions also
designed but some of them are not effective against
reverse engineering, illegal tempering, program-based
attacks, BORE (Break Once Run Everywhere) attack. We
adopted holistic approach for protection of software
modules, secure software distribution and secure execution
environment which is based on well established security
standards, tested cryptographic techniques, strong
encryption functions and extended security features. These
are: general syntax of protected software modules in XML
file, FIPS-196 based extended strong authentication,
SAML based authorization security policies, execution of
encrypted and digitally signed software modules,
transparent handling of certificates, use of FIPS-201
compliant smart cards, single-sign-on protocol and secure
asynchronous sessions.
 This designed solution provides protection of software
modules for individual users but still there is problem in

distribution of software protection key in grouped
environment which will be addressed in our future
research.

Appendix A

This appendix explains the different elements of XML file
which is a format of protected encapsulated software
module.

(i). SPS: Starting element of XML file.
(ii). Version: Current version of software protection file

format.
(iii). Content-Type: This element indicates the type of

contents in contents filed which helps secure
execution environment to process it according.
Some examples are SignedAndEnvelped,
Enveloped, Signed etc.

(iv). Encapsulation-Standard: This filed contains
information about encapsulation standard like
PKCS7.

(v). SM-Type: This element contains information about
the type of software modules. These types can be
Native, Configuration or External. The secure
execution environment handles these files according
to the type of software module.

(vi). SM-Name: Name of protected software
modules/file.

(vii). Content-Description: This filed provides the
descriptions of encapsulated modules and is an
optional filed.

(viii). Contents: This element contains the actual contents
of software modules which are protected using
cryptographic and encapsulation standards defined
in element Content-Type and encapsulated in
standard mentioned in Encapsulation-Standard
element.

References

[1] Datamonitor, “Datamonitor's Software: Global Industry

Guide”, report code- DO-4959,
http://www.infoedge.com/product_type.asp?product=DO-
4959, April, 2009.

[2] Business Software Alliance, “Fifth annual BSA and IDC
global software, piracy study 2007”, www.bsa.org.

[3] Arxan Technologies, “Protecting .NET Software
Applications”, Arxan Best Practices, White Paper,
http://www.softwaremag.com/pdfs/whitepapers/protectin
g-NET-software-applications-wp.pdf?CFID=14965377&
CFTOKEN=16715129

[4] Software and Information Industry Association (SIIA),
http://www.siia.net/index.php?option=com_content&vie
w=article&id=159&Itemid=6, visited in Oct, 2009

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

25

[5] World Intellectual Property Organization (WIPO), “World
Intellectual Property Indicators”,
http://www.wipo.int/portal/index.html.en, 2009

[6] “Software Security Assurance”, State-of-the-Art Report
(SOAR) Joint endeavor by Information Assurance
Technology Analysis Center (IATAC) and Data and
Analysis Center for Software (DACS), July 31, 2007

[7] Gary McGraw , “Building Secure Software”,
http://www.cigital.com/papers/, Oct 15, 2008

[8] Trusted Computing Group,
http://www.trustedcomputinggroup.org/resources

[9] Cori Hartje, Feature Story, “Microsoft’s Software
Protection Platform: Protecting Software and Customers
from Counterfeiters”, Microsoft Genuine Software
Initiative,
http://www.microsoft.com/presspass/features/2006/oct06/
10-04SoftwareProtection.mspx

[10] Intel Corporation, LaGrande “Technology Architectural
Overview”, 252491-001,
ftp://download.intel.com/technology/security/downloads/
LT_Arch_Overview.pdf, September 2003

[11] Daniel Griscom, Article, “Code Signing for Java Applets”,
http://www.suitable.com/docs/signing.html last updated
on May 5, 2009.

[12] Sun Developers Network (SDN), Documentation,
“Ergonomics in the 5.0 Java[tm] Virtual Machine”,
http://java.sun.com/docs/hotspot/gc5.0/ergo5.html visited
in Oct, 2009

[13] Microsoft, Visual Studio Developer Center, .NET
Framework Developer's Guide, “Common Language
Runtime Overview”,
http://msdn.microsoft.com/en-us/library/ddk909ch.aspx
visited in June, 2009

[14] Mr. Jeff Hughes, Dr. Martin R. Stytz, “Advancing
Software Security– The Software Protection Initiative”,
AT-SPI Technology Office, AFRL/SN, 2241 Avionics
Circle, WPAFB, OH 45433-7320,
http://www.preemptive.com/documentation/SPI_software
_Protection_Initative.pdf, December 2001.

[15] Compuware Numega SoftICE, “The Advanced Windows
Debugger”,
ftp://94.141.61.146/pub/info/Information/Books/!!!Comp
uter%20books!!!/stuff/Crack/SoftICE/SoftICE.pdf,
viewed as HTML, read in Sep, 2009

[16] URSoftware W32Dasm,,
http://www.softpedia.com/get/Programming/Debuggers-
Decompilers-Dissasemblers/WDASM.shtml, last updated
on March 11th, 2003.

[17] Datarescue Interactive Disassembler Pro (IDA),
http://www.hex-rays.com/idapro/, website updated on
January 1, 2009

[18] Oleh Yuschuk’s “OllyDbg Version 2.0” ,
http://www.ollydbg.de/, updated on march 28, 2009

[19] 12Sabuj Pattanayek “Toughening Software Protections”
http://www.defacto2.net/ documents.cfm?id=238

[20] Stephen Thomas Kent, “Protecting externally supplied
software in small computers”, Laboratory for Computer
Science, Massachusetts Institute of Technology, Sep,
1980.

[21] Memon, Preventing]G. Naumovich, and N. Memon,
“Preventing piracy, reverse engineering, and tampering”,
published in the IEEE Computer Society, Vol. 36, No. 7,
pp. 64-71, 2003.

[22] Stytz, M., and J. Whittaker, “Software protection:
Security’s last stand?”, published in IEEE Security and
Privacy, pp. 95–98, January, 2003.

[23] Sivadasan, Praveen, Lal, P Sojan, Sivadasan, Naveen,
“JDATATRANS for Array Obfuscation in Java Source
Code to Defeat Reverse Engineering from Decompiled
Codes”, http://cdsweb.cern.ch/record/1128190, Sep, 2008

[24] Nicol, D.M., Okhravi, H., “Performance analysis of
binary code protection”, published in proceeding of
Simulation Conference, ISBN: 0-7803-9519-0, 2005.

[25] UltraProtect 1.05, risco software,Inc.,
http://wareseeker.com/publisher/risco-software-inc./3182
9/

[26] Grugq, and Scut, “Armouring the elf, Binary encryption
on the unix platform”,
www.phrack.org/phrack/58/p58-0x05, 2001.

[27] P.C. van Oorschot, “Revisiting Software Protection”,
published in the proceeding of 6th International
Conference of Information Security, ISC 2003, Bristol,
UK, pp.1–13, October 2003

[28] Y. Chen , R. Venkatesan , M. Cary , R. Pang ,
S. Sinha and M. H. Jakubowski, “Oblivious Hashing: A
Stealthy Software Integrity Verification Primitive”, LNCS,
Springer Berlin / Heidelberg, Volume 2578/2003,
ISBN-0302-9743, pp 400-414, 2003

[29] MSDN Microsoft, “Introduction to Code Signing”,
http://msdn.microsoft.com/en-us/library/ms537361(VS.8
5).aspx, visited in Oct, 2009

[30] Zhang, X.N, “Secure Code Distribution”, published by
IEEE Computer Society, Volume: 30, Issue: 6, pp.
76-79, Jun 1997

[31] Trusted Computing Group, Incorporated, “TCG
Specification Architecture Overview”, Specification
Revision 1.4 2nd August 2007

[32] V. Costan, L. F. G. Sarmenta, M. Dijk, and S. Devadas,
“The Trusted Execution Module: Commodity
General-Purpose Trusted Computing”, published in The
eighth Smart Card Research and Advanced Application
IFIP Conference, London, UK, pp. 133-148, Sep, 2008

[33] Microsoft, “Next-Generation Secure Computing Base
(NGSCB)”, http://www.microsoft.com/resources/ngscb/d
efault.mspx, visited in Sep, 2009

[34] Amit Singh, “Trusted Computing for Mac OS X”,
http://osxbook.com/book/bonus/chapter10/tpm/, written
in October 2006

[35] A. G. Abbasi, S. Muftic, “CryptoNET: Integrated Secure
Workstation”, published in International Journal of
Advanced Science and Technology, pp. 1-10, Vol. 12,
November, 2009.

[36] A. Gahafoor, S. Muftic, G. Schmölzer, “CryptoNET:
Secure Federation Protocol And Authorization Policies
for SMI”, published in the IEEE International Conference
on Risks and Security of Internet and Systems, pp. Oct,
2009

26 IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

[37] A. Ghafoor, S. Muftic, G. Schmölzer, “A Model and
Design of a Security Provider for Java Applications”
published in the proceeding of The International
Conference for Internet Technology and Secured
Transactions (ICITST-2009), pp. 794-800, London, UK,
November 9-12, 2009

Abdul Ghafoor received the M. S.
(Network Technologies), from National
University of Sciences and Technology
(NUST), Islamabad, Pakistan in 2004.
After working as a Lecturer in the Dept.
of Computer Science (2002-2004), F. G.
Postgraduate College, Islamabad and as a
Lecturer and IT Manager in Kohat

University of Science and Technology (2004-2006), he was
appointed as a faculty member at National University of Sciences
and Technology (NUST), Islamabad. In 2007, he started his PhD
at the Royal Institute of Technology in the area of Network
Security. His research interest includes secure technologies,
security protocols, smart cards based technologies, and web
security. He is a member of KTH-SecLab Sweden, Information
Security and Distributed Computing Group SEECS Islamabad,
IEEE Graduate Student, Stockholm Research Association, and
IPID Sweden.

Sead Muftic has been working in the area
of computer security for more than 30
years. He is professor of Computer
Security at the Department of Computer
and Systems Sciences (DSV), The Royal
Institute of Technology, Stockholm,
Sweden and also research professor at The
Michigan Technical University USA). Dr.
Muftic was the member of the Permanent

Stakeholders Group (PSG), an expert advisory group to ENISA
(European Networks and Information Security Agency), director
of the EU COST–11 Security project, consultant to VISA, World
Bank, Siemens and other international organizations. Dr. Muftic
is the author of three international books and about 100 research
and scientific papers published in journals or presented at
international conferences.

