
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

32

Manuscript received February 5, 2010
Manuscript revised February 20, 2010

An Approach of Query Request Authorization Process for the
Access Control System to XML Documents

Khandoker Asadul Islam

Queensland University of Technology, Australia

Yoshimichi Watanabe,

University of Yamanashi, Japan

Summary
Access control is one of the fundamental security
mechanisms in information systems. When a multi-user
system uses XML documents as data storage, the need of
access control to XML documents arises. Due to the
hierarchical structure, XML access control is fine-
grained in nature. For this criterion, instead of
controlling access to the whole XML document, it is
possible to limit user access to substructures of the
document. One of the key problems on which XML
access control is centered is to find techniques for
efficient enforcement of access control policy over XML
data, thus user access authorization. In general, XML
access control model uses XPath expressions for
specifying the substructure of the document to define
policy. Authorization process needs to find the
substructure which is referring from the policy in order
to evaluate user access to requested data. Thus,
authorization process needs to access the data file every
time user requests access to data. Evaluating concurrent
requests on large data slow down the data access process
especially on the Internet where large number of user
accesses at any given time is very common. In this paper,
we use classification of user requests and the user policy,
and compare them to get the authorization result. Our
experiment shows that the process significantly
minimizes the need of data access in the process of
evaluating user access.

Key words:
XML, Access control, Authorization

1. Introduction
A recent development in the database field has been the
introduction of semi-structured and self-describing data,
of which one example is data conforming to an XML
format[15]. Such data collection can be referred as an
XML database. XML is a promising standard for
describing the structure of information and content on
the Internet. The popularity of using XML as a data
container is mostly because of its simplicity and richness
of the data structure. W3C designated XML as the
standard for Web data. For these special features, the use
of XML databases in data communication and on the

Internet is increasing in recent years. With the increasing
number of applications that either use XML as their data
model, or export relational data as XML documents, it
becomes critical to investigate the problem of access
control to XML documents.

Access control is one of the fundamental security
mechanisms in information systems. It concerns with
who can access which information under what
circumstances. Typical implementations of access
control are in the form of access control lists (ACLs) and
capabilities. Using ACLs, a system maintains a list of
subjects who have access to each object. In capabilities,
each subject is associated with a list that indicates objects
to which it has access. ACLs and capabilities are often
not efficient for fine-grained access control over objects
with complex structures, e.g. element-level access
control in XML. XML access control is fine-grained in
nature. Instead of controlling access to the whole XML
document, it is often required to limit user access to the
document (e.g. to some subtrees or to some individual
elements). A number of standards such as XACL[9] and
XACML[12] have already been proposed to address the
issues of access control for XML documents. The other
proposals and models concerned with this topic in [2],
[4], and [10]–[12] are very useful.

The existing approaches deal with a number of different
dimensions and offer different solutions. In general,
XML access control policy is typically modeled as a set
of access control rules. It is required to limit user access
according to the policy. Most of the existing proposals of
XML access control require to access XML data file
while authorizing user requests. For example, the access
control model proposed in Damiani’s model[3] sets
access rights to elements of XML documents and DTD
files using DOM trees[16], and controls user’s access to
XML data according to the information of access rights
in policy file which requires access to the data file.
XPath expressions[18] are very popular to use to specify
the substructure of the document on which the policy
defines because it is a language from W3C for defining
substructure of XML document. The substructure in
policy is called the object of the policy. Only a few

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

33

proposals including [11] and [13] work on authorizing
user access without the use of actual data file. However,
they do not efficiently consider the predicates in XPath
expressions.

In this paper, we develop a technique for efficient
enforcement of access control policy over XML data
without the use of the actual XML database with few
exceptions. We propose a simple and novel approach of
checking authorization without run-time checking of
XML data file. The exceptions are defined clearly and
we describe the ways to working with those exceptions.
We classify the XPath expressions based on the type of
data it returns and significantly minimize the use of
XML documents in authorization process by classifying
the requested query and the object in policy in same way.
Despite having some exceptions, our experiment shows
that the overall performance is improved for cases with
XML databases. XML databases are simple
representation of commonly used 2-dimensional tabular
form data which is commonly used in data
communication and on the Internet for data storage.

The organization of the rest of this paper is as follows.
Section 2 describes related works. Section 3 describes
XML access control model and proposed classification
for XPath expressions. Experiments are described in
section 4, and in section 5 we evaluate our model with
traditional access control models. Section 6 describes
conclusion remarks, limitations and future works.

2. Related works
There are useful approaches for defining and enforcing
access rights on XML documents. XACL[9] is an access
control policy specification language based on 3-tuple
(object, subject, action). XACL has flexible provisional
authorization to a document based on whether there are
certain conditions that the subject allows accesses to be
logged and the subject signs an agreement. Bertino et
al.[1] defines access rules at the schema level that apply
to all documents conforming to the schema. They define
to read elements or attributes, to modify/delete contents
of elements or attributes, and to add/modify/delete
elements or attributes.

Damiani et al.[3-4] specifies a language for encoding
access restrictions. Rules in the specification language
can be defined in DTDs/schemas or individual XML
documents. In their approach, a rule essentially is 5-tuple
(subject, object, action, sign, prop), allowing both
negative rights (with the conflict resolution) and
propagation to subtrees. Gabillon and Bruno[5] add
numeric priority to resolve the conflict when multiple
rules apply to an object. They implement access control
by converting their authorization sheet to an XSLT

document[19]. XACML[12] is an OASIS specification
that is gaining acceptance for expressing access control
policy for XML. XACML is based on the work including
that of XACL, Damiani, and Bertino. It standardizes
access request/response format and architecture of the
policy enforcement framework; however it does not
address deriving access control rules from the existing
policy base.

Several authors have examined issues relevant to access
control implementation. Jagadish et al.[8] present a space
efficient accessibility map that identifies the user’s
accessible XML data items by exploiting structural
locality of accesses in tree-structured data and a time
efficient map lookup algorithm. Their work was not
based on a specification of access rules but deciding
accessibility given a set of access and conflict resolution
rules. The Vimercati’s authorization model for time-
varying XML documents showed how one can pre-
compute some rights when database contents are
changed[14]. S. K. Goel et al.[6] showed that access
rights derive data to be kept consistent with its sources in
their approach.

M. Murata et al.[11] proposed a method of reducing
burden of checking access control policies for XML
documents by distributing the burden to static analysis
and run-time check. Their key idea is to use static
analysis and automata. The process generates automata
from query, policy object and XML schema. Decision
comes out by state transition of those automata. However,
in some cases when XPath expressions in query and
policy object are based on predicates, the model cannot
statically make decision. They call it value-based access
control and proposed over-estimated and under-
estimated automata for these cases. However it is
observed that in the process the procedure ignores the
presence of predicates and makes decision while
assuming expressions without it. In our model, the
process does not need any schema and without it the
effective analyzing method for the value-based access
control is described. Also, access control system based
on classification of query and object (our approach) is
simpler than generating automata from query. That
makes our approach simple and easily implementable
effective access control model for XML databases.

N. Qi et al.[13] proposed a function-based model for
providing expressive and scalable access control for
XML databases. They presented two rule functions, ORF
and SRF. High scalability was achieved by grouping rule
functions into Java classes and further organizing classes
into packages. Their proposed rule functions were based
on a finite number of possible objects. In our approach,
we consider XPath expressions on XML elements to

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

34

define the object, thus considering every possible part of
the document as permissible objects.

3. Access control to XML documents
Access control is a means to allow or deny subjects (user,
process, roles, etc.) to operate (read, write, execute, etc.).
When a user requests to access information or resources,
the access control system decides whether the user can
access them or not, according to the user’s rights. XML
document has a tree-typed hierarchical structure and is
composed of several elements. An element corresponds
to a node in the tree. For this structure, access control to
parts of XML document is possible by assigning access
rights to XML elements or nodes which represent a part
of the XML document. Figure 1 shows the basic XML
access control model.

Fig. 1 A basic XML access control model

In the basic XML access control model, the system
contains XAS (XML Access Sheet) which contains user
rights and XSS (XML Subject Sheet) which contains
user information. Each system follows a specific access
control model. When the system gets an access request
from a user, it authenticates the user with the help of
XSS and authorizes the request according to the user’s
privileges in XAS. The user gets requested data or denial
of access according to the authorization decision.

3.1 Access control policy
XML access control policy is typically modeled as a set
of access control rules. In this paper, we assume the
policy structure proposed in our previous paper[7]. Each
rule is expressed as a 7-tuple (subject, object, action,
type, propagation, administration, source), where (i)
subject defines a set of subjects (e.g. user name, IP
address, user role, or symbolic name); (ii) object defines
a set of elements or attributes of the XML document (e.g.
XPath expression); (iii) action denotes the actions that
can be performed on the XML document (e.g. read,
insert, update, delete, or all); (iv) type indicates whether
this rule is a grant permission rule (“P”) or a denial rule
(“N”); (v) propagation refers to either local or recursive
check (The value “R” stands for propagating the right to
the subtree of the given node recursively, and the value
“L” stands for not propagating to the subtree); (vi)

administration represents whether the subject has the
right to grant access to other user or not; and (vii) source
holds the subject who assigns this permission.

For an example, the rule (Alice, /CATALOG/CD,
U+, P, R, Y, Bob) says user “Alice” has a
recursive update permission on “/CATALOG/CD” with
administrative rights to grant permissions on
“/CATALOG/CD” to other users, and the policy assigned
by user “Bob”.

3.2 Classification of objects
XPath expression in policy returns a part of XML
documents on which a rule is defined. An XPath
expression “/CATALOG/CD” returns entire “CD”
elements under the element “CATALOG”. In general, an
XML database begins with a single element, called root
element; in our example it is “CATALOG”. Each element
under this root element represents one data element. In
this case, each “CD” element considers one data element.
For simplicity of description, we will call such as
“/CATALOG/” as level 1, such as “/CATALOG/CD/”
as level 2 and such as “/CATALOG/CD/TITLE” as
level 3 expressions. That is, the number of levels is given
by the number of the character sequences divided by "/"
in given XPath expression. For an example of XPath
expression “/CATALOG/CD[PRICE>10]/TITLE”
stands for the representation of level 3 with predicates
which returns all “TITLE” elements under the
“/CATALOG/CD” elements where the value of
“PRICE” element is greater than 10.

In this paper, we classify XPath expressions used in
objects of policy and in user query requests into four
types. The types are (i) Type 1(Full), (ii) Type 2(Parts),
(iii) Type 3(Elements) and (iv) Type 4(Conditional
Elements). These are explaining below.

Type 1: This type of expression returns all the data
elements. It is specified by the root element or other
ways that returns all the data elements. Expressions of
level 1 and 2 without predicates are Type 1 expressions.
For example, “/CATALOG” and “/CATALOG/CD”
belong to Type 1 expressions. As an exception, the
expression “/CATALOG/CD[PRICE>10]” also
belongs to this type when all “PRICE” element values
are greater than 10.

Type 2: This type of expressions are represented by level
2 expressions with predicates when not all data element
returns. The expressions
“/CATALOG/CD[PRICE>10]” and
“/CATALOG/CD[TITLE=”ABC”]” are included in
this type. For an example, the expression

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

35

“/CATALOG/CD[PRICE>10]” belongs to this type
when there are some elements whose “PRICE” value is
10 or less.

Type 3: This represents by level 3 expressions with no
predicates. For an example, the expression
“/CATALOG/CD/TITLE” is included in this type.

Type 4: This is the representation of level 3 expressions
with predicates. For example, the expression
“/CATALOG/CD[PRICE>10.8]/TITLE” is a type 4
expression.

3.3 Checking the query request authorization
The authorization model assumes (i) closed world
assumption; that is, if no rule applies to a request, the
request is denied and (ii) denial rights override grant
permissions as well as more explicit rules override less
explicit ones. When a user submits requests, the
authorization process authorizes the user request based
on the policy. The authorization process can be divided
into four separate steps shown in Fig. 2. Each step is
explaining below.

Fig. 2 Authorization process steps

The first step is to analyze the requested query and to
determine the type. Second step is to parse the policy
from policy file. Policy is expressed as an XML
document; this step needs to parse the XML document.
The process makes decision on third step. In this step,
the requested query is matched with the user’s rights.
However, before the actual comparing, the determination
of the type of object (XPath expression) in the policy is
needed. After that only the types are compared without
exception of Type 1. For example, if the type of the
requested query is Type 1 then there should be a
permission of Type 1 in the rights. In the same way, if
the type of the requested query is Type 2 and that of the
user has Type 1 permission, the request will be
succeeded without exception of Type 1. For simplicity of
describing the whole process, we consider only the grant
permissions. However, in actual process denial
permissions are evaluated first. By combination of

requested query type and user’s rights, either of the two
comparisons (3a or 3b) is chosen, and the authentication
process is completed.

We analyze the number of possible situations arose from
comparing requested query type with the type of the
objects. When we compared one type of requested query
with any other type of right as a single possible case, we
found that there could be a total of 16 possible cases for
the four types of expression. The authorization process
has a set of predefined comparison rules. Authorization
decision has been made using these comparison rules.
Figure 3 shows a set of possible comparison rules.
However, there could be some variations when
comparing expression types for XPath expressions with
predicates. For example, if the user have grand
permission on “/CATALOG/CD[PRICE>10]” and
requested “/CATALOG/CD[TITLE=”ABC”]”, we
cannot make decision by comparing these two expression
types, although both expressions are belonging to Type 2.
In these special cases, the procedure has to follow the 3b
path in Fig. 2 and makes a run-time check to the XML
document. However, if the user requested
“/CATALOG/CD[PRICE>12]”, that means if the field
name of the predicates are same for both expressions, the
procedure can make decision by evaluating a generated
boolean expression. For predicates of policy expression
and the predicate of user request “[fieldname op1
value1]” and “[fieldname op2 value2]”; the boolean
expression, “(fieldname op2 value2) implies (fieldname
op1 value1)” can decides whether user request is
successful or not, where op1 and op2 are relational
operators such as <, <=, >, and >=. For example, if the
object of grant policy is
“/CATALOG/CD[PRICE>10]” and user request
expression is “/CATALOG/CD[PRICE=12]”, then the
decision making boolean expression would be
“(PRICE=12) implies (PRICE>10)”. The result
is true so as the decision.

Fig. 3 Sample comparison rules

When we analyzed all the possible cases of comparison,
we found that some Type 2 expressions may also return
that of Type 1. For example,
“/CATALOG/CD[PRICE>12]” expression looks like

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

36

Type 2, but it is belonging to Type 1 when “PRICE” are
greater than 12 for all. We handle this situation as
follows: when a Type 1 request fails against a Type 2
permission, the procedure reevaluate the Type 2
permission to check whether it is actually Type 1 or not.
Only this time it requires accessing the data. We call it
confusing Type 2 expression.

The authorization process would be very fast if we can
follow the path through 3a in Fig. 2 for every possible
case. This path does not use the actual data file, thus the
processing time will be independent of the data file size.
However, as mentioned special cases in the above, the
procedure needs to follow the path through 3b. Although
this step uses the data file to make decision, we can
improve the performance with optimized implementation.
For example, in our prototype we save the last
comparison results and use it until the data file of the
policy changes. Also we used serial access technique to
access data when we only required doing that for the
special cases.

4. Experiments

We built prototype software to test our authorization
model. We generate synthetic policy data for randomly
picked users from a fixed number of users. The synthetic
policy generator considers every possible types of policy
with every possible types of expression. In the
experiments, every possible XPath expression is used as
user query request, and the authorization process
compares it with the different policies. The model has a
tool which determines the expression type. We executed
the algorithm on different XPath expressions, and we
observed that it successfully classified the types. For the
second step of the authorization process, we need to
parse the policy file to search user policies. We collected
the results of parsing time on different sizes of policy
files. The result is shown in Table 1. Note that
experiments are all based on XML databases with level 3
elements.

Table 1 Policy parsing time
No. of policy Time (ms)

1,000 9
2,000 18
3,000 28
4,000 39
5,000 47
6,000 56
7,000 63
8,000 74
9,000 85
10,000 94

For measuring the authorization time, we set up the test
on different sizes of data files. The test executed on a
policy file containing 50,000 synthetic policy data. We
observed the time for best cases (when it does not use
data file) and for worst cases (when it checks the data file
in run-time). Figure 4 shows the result. Type 1 & 3 for
worst cases indicates the situation of confusing Type 2
expression. The result shown for type 2 & 4 is in worst
case scenarios which means when we need any form of
run-time data access. For evaluating the user request, the
procedure has to parse the policy file, even though in
cases when it does not check the data file in run-time. So
the process always takes some time.

Fig. 4 Authorization time for different types of
expression

The traditional process of XML access control accesses
data file through building DOM trees[20]. When we
tested our process against every possible query request,
we observed the time required to build DOM tree on
those cases separately. We compared only the DOM tree
creation time with the authorization time in our method.
Since the step of policy file parsing is common for both
cases, we measured time without policy file parsing time.
The result is shown in Fig. 5. Worst cases indicates the
special cases when run-time database checking is
required, and best cases means when the procedure can
decide only by comparing expression types.

Fig. 5 Compare our process with DOM creation time

In general, the authorization processing time is
independent of the data file size because it does not need
to use the data file in the process. The process, however,
needs to use the data file and the authorization
processing time depends on the data file only for few
special cases explained above. On those special cases,
the process needs to evaluate the expressions by run-time
checking the data file. The result from our prototype
software indicates that proper optimized implementation
accesses the data only when it absolutely needed. This
improves the overall performance. In Fig. 5, the

Time

Data file size

Time

Data file size

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

37

experiment result shows that the performance is better
than creating DOM tree on that data file even if the cases
are special. In our approach, the authorization process is
faster than traditional processes even for the special
cases.

5. Evaluation
We have already mentioned four separate steps in the
authorization process. For the first step, the total
execution time depends on the algorithm used for the
classification of the expression. From our experiments,
we saw that it was very negligible. The execution time
for the second step, that is policy file parsing time,
depends on the size of the policy file. This step is
required for all other existing models. There are two
possible ways for the third step. When it does not need to
use the data file, the execution time depends only on the
matching algorithm. It was very negligible according to
the experiment results. The other way needs run-time
checking of the data file. The execution time depends on
the data file size. However, since we considered
optimized implementation and serial access to data file
for run-time checking in the prototype, we observed that
the overall performance was improved.

In general, there are four steps in the traditional process
of authorization checking, they are (i) parsing the policy
file to get the user’s rights, (ii) creating the DOM tree of
the XML data file, (iii) creating the DOM tree with only
the permitted nodes for that user, and (iv) executing the
request on the new DOM tree.

In a quick glance, we make a summary of the execution
time for the tradition process. The execution time of step
1 depends on the policy file size. That of step 2 depends
on the size of XML data file. Step 3 depends on the
algorithm to create the new DOM tree and its execution
time depends on the size of data file. The execution time
of step 4 also depends on the size of data file. By
comparing these steps with our proposed steps, we found
that in our process we could easily eliminate the time and
space complexity for step 1 and 3 of the traditional
procedure. We can also eliminate the time complexity of
the step 4 except for few special cases. The
authentication time is nearly constant for same policy file
size and the authorization time is improved.

6. Concluding remarks and future works
In this paper, we are classifying requested query
expressions and objects in policy. In our approach we
showed how we could eliminate run-time data file
checking in the process of authorization. We explained
our process in four steps and showed experiment results
for the proof of performance improvement. However,
when any user has more than one policy, there would be

a sub-step of combining all the policies before evaluating
the request.

Our prototype software can successfully minimize the
need of data file in the authorization process, but we
identified some special matching cases where the process
need run-time checking of the data file. In case of
confusing type 2 expressions, we also need to run-time
access to the data. The future work is to minimize these
cases in the process of making authorization process
fully independent of the data file. We considered only
the XPath expressions as user request. The use of other
query options such an XQuery [17] is in our future work
plan. Because we considered only XML databases, the
other of our future work will be to make the
authorization process considering all forms of XML
documents.

References

[1] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti:

Specifying and Enforcing Access Control Policies for
XML Document Sources, World Wide Web Journal,
3(3), 2000.

[2] E. Bertino and E. Ferrari: Secure and Selective

Dissemination of XML Documents, ACM
Transactions on Information and System Security,
2002, 290-331.

[3] E. Damiani, S. Vimercati, S. Paraboaschi and P.

Samarati:Design and Implementation of an Access
Processor for XML Documents, 9th International
WWW Conference, 2000.

[4] E. Damiani, S. De Capitani di Vimercati, S.

Paraboschi, and P. Samarati: A Fine-Grained Access
Control System for XML Documents, ACM
Transactions on Information and System Security,
2002, 169-202.

[5] A. Gabillon and E. Bruno: Regulating Access to

XML Documents, 15th Annual IFIPWG
11.3Working Conference on Database Security, 2001.

[6] S. K. Goel, et al.: Derived Access Control

Specification for XML, ACM Workshop on XML
security, 2003, 1-14.

[7] K. A. Islam and Y. Watanabe: Access Control to

XML Document Including Administrative
Authorization, 5th IASTED International Conference
on Communications, Internet, and Information
Technology, 2006.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

38

[8] H. Jagadish, L. V. Lakshmanan, D. Srivastava, and T.
Yu:Compressed Accessibility Map: Efficient Access
Control for XML, International Conference on Very
Large Databases, 2002.

[9] M. Kudo and S. Hada: XML Document Security

Based on Provisional Authorization, ACM Computer
and Communications Security, 2000, 87-96.

[10] C. H. Lim, S. Park, S. H. Son: Access Control of

XML Documents Considering Update Operations,
ACM Workshop on XML Security, 2003, 49-59.

[11] M. Murata, A. Tozawa, M, Kudo, S. Hada: XML

Access Control Using Static Analysis, ACM
Computer and Communications Security, 2003, 73-
84.

[12] OASIS: Extensible Access Control Markup

Language (XACML), http://www.oasis-
open.org/committees/xacml/docs/, 2003.

[13] N. Qi, M. Kudo, J. Myllymaki, H. Pirahesh: A

Function- Based Access Control Model for XML
Databases, ACM 14th Conference on Information and
Knowledge Management, 2005.

[14] S. D. C. di Vimercati: An Authorization Model for

Temporal XML Documents, ACM Symposium on
Applied Computing, 2002, 1088-1093.

[15] T. Bray, J. Paoli, and C. M. S. McQueen, Extensible

markup language (XML) 1.0 W3C Recommendation,
http://www.w3c.org/TR/REC-xml, 1998.

[16] A. L. Hors, P. L. Hégaret, L. Wood, G. Nicol, J.

Robie, M. Champion, S. Byrne, Document object
model (DOM) level 3 core specification version 1.0,
W3C Recommendation 07, 2004

[17] S. Boag, D. Chamberlin, M. F. Fernandez, D.

Florescu, J. Robie, and J. Simeon, XQuery 1.0: An
XML query language, W3C working draft 16 august
2002. http://www.w3.org/TR/xquery/, 2002.

[18] J. Clarkand S. DeRose, XML Path Language

(XPath) version 1.0, W3C Recommendation,
http://www.w3.org/TR/xpath, 1999.

[19] J. Clark. "XSL Transformations (XSLT) Version

1.0". World Wide Web Consortium (W3C).
http://www.w3c.org/TR/xslt (November 1999).

[20] Sun-Moon Jo andWeon-Hee Yoo, An Efficient

Authorization Mechanism for Secure XML Sources

on theWeb, Journal of Advanced Computational
Intelligence and Intelligent Informatics, Vol.10 No.5,
pp.721-727, 2006.

Khandoker Asadul Islam was
born in 1976. He received his B.
Sc. degree in Electrical &
Electronics Engineering from
Bangladesh Institute of
Technology and M. Sc. in
Computer Science from IBAIS
University in 1999 and 2005
respectively. He received his
Ph.D. in Information System

Engineering from University of Yamanashi, Japan in
2008. He worked as a computer professional in various
organization including Bangladesh Ministry of Planning
and Bangladesh Board of Revenue as IT Consultant.
Currently, he is working as a research fellow in
Queensland University of Technology, Australia. His
research interest includes XML, access control,
information security, intrusion detection, cryptography
and distributed software development.

YoshimichiWATANABE was
born in 1964. He received the B.
S. and M. S. degrees in computer
science from University of
Yamanashi in 1986 and 1988
respectively and received D. S.
degree in computer science from
Tokyo Institute of Technology in
1995. He is presently Associate

Professor of the Department of Computer Science and
Media Engineering at University of Yamanashi. His
research interests include software development
environment and software quality. Dr. Watanabe is a
member of IPSJ, JSSST, JSQC, ACM, and IEEE.

