
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

39

Manuscript received February 5, 2010
Manuscript revised February 20, 2010

A Distributed Key Management Scheme based on Multi hop
Clustering Algorithm for MANETs

Abdelmajid HAJAMI, Kamal OUDIDI and Mohammed ELKOUTBI

SI2M, ENSIAS, Université Mohammed V – Souissi B.P. 715, ENSIAS – Rabat Maroc

Summary
Mobile ad hoc networks (MANETs) have been proposed as an
extremely flexible technology for establishing wireless
communications. In comparison with fixed networks, some new
security issues have arisen with the introduction of MANETs.
Secure routing, in particular, is an important and complicated
issue. Clustering is commonly used in order to limit the amount
of secure routing information. In this work, we propose an
enhanced solution for ad hoc clustering based on multi hops and
network density. This solution will be used as a framework to
manage cryptographic keys in a distributed way. This paper
details the density-based clustering algorithm for the standard
OLSR protocol. Our algorithm takes into account the node
mobility and gives major improvements regarding the number of
elected cluster heads. Our objective is to elect a reduced and less
mobile cluster heads that will serve for keys exchange.
Keywords :
 Clustering; Key Management; MANET

1. Introduction

MANETs are strongly based on self-organization and
self-stabilization. Several Ad hoc routing protocols
proposed in the MANET working group at IETF1 make
flat routing. That means that there is no hierarchy and all
terminals have the same role. However, as the size of the
network grows, the performances of the network decrease.
This is due to the additional control traffic generated by
nodes in the network. To minimize the effect of this
additional traffic, some mechanisms were adopted, as
shown in the OLSR protocol [1].
Clustering is commonly used to limit the amount of routing
information. In this work, we aim to define a new
clustering approach based on multi-hops and network
mobility. The proposed approach must enhance the
routing process and produces a small number of stable
(less mobile) cluster heads that can be used as a
framework for key management and distribution.
A cluster is formed by a set of nodes gathered around a
node which represents them, named cluster head. The
choice of the cluster head is done according to some QoS
defined criteria.

1 http://www.ietf.org/html.charters/manet-charter.html

In the literature, several clustering approaches were
proposed. They generally differ on the cluster head
selection criterion. In our proposal, we present a
clustering approach that elects a reduced number of
cluster heads having a low mobility.
The security in networking depends, in many cases, on
proper key management. The key management service
must ensure that the generated keys are securely
distributed to their owners. Any key that must be kept
secret has to be distributed so that confidentiality,
authenticity and integrity are not violated. For instance
whenever symmetric keys are applied, both or all of the
parties involved must receive the key securely. In public-
key cryptography the key distribution mechanism must
guarantee that private keys are delivered only to
authorized parties. The distribution of public keys need
not preserve confidentiality, but the integrity and
authenticity of the keys must still be ensured. Also, we
propose in this paper a novel solution for key
management in ad hoc networks based on a clustered
MANET architecture.
This paper is organized as follows: in Part II, we’ll
present an overview of the OLSR standard protocol. Part
III discusses in more detail our clustering proposal in
which we will show the results obtained from the
simulations that we perform. Finally, in part IV, we’ll
present our idea for key management.

2. The OLSR protocol

The optimized link state routing (OLSR) protocol [1] is a
proactive routing protocol that employs an efficient link
state packet forwarding mechanism called multipoint
relaying. Optimizations are done in two ways: by
reducing the size of the control packets and also by
reducing the number of links that are used for forwarding
the link state packets. The reduction in the size of link
state packets is made by declaring only a subset of the
links in the link state updates. The subset neighbors that
are designated for link state updates are assigned the
responsibility of packet forwarding are called multipoint
relays. The optimization by the use of multipoint relaying
facilitates periodic link state updates. The link state update

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

40

mechanism does not generate any other control packet
when a link breaks or when a link is newly added. The
link state update optimization achieves higher efficiency
when operating in highly dense networks. The set
consisting of nodes that are multipoint relays is referred to
as MPRset. Each given node in the network elects an
MPRset that processes and forwards every link state
packet that this node originates. Each node maintains a
subset of neighbors called MPR selectors, which is
nothing than the set of neighbors that have selected the
node as a multipoint relay. A node forwards packets that
are received from nodes belonging to its MPRSelector set.
The members of both MPRset and MPRSelectors keep
changing over time. The members of the MPRset of a
node are selected in such a manner that every node in the
node’s two-hop neighborhood has a bidirectional link
with the node.
The selection of nodes that constitute the MPRset
significantly affects the performance of OLSR. In order to
decide on the membership of the nodes in the MPRset, a
node periodically sends Hello messages that contain the
list of neighbors with which the node has a bidirectional
link. The nodes that receive this Hello packet update their
own two-hop topology table. The selection of multipoint
relays is also indicated in the Hello packet. A data
structure called neighbor table is used to store the list of
neighbors, the two-hop neighbors, and the status of
neighbor nodes. The neighbor nodes can be in one of the
three possible link status states, that is, unidirectional,
bidirectional, and multipoint relay.

3. The clustering solution

3.1 Clustering in ad hoc networks

Clustering consists in grouping the nodes into clusters
(groups) where one node in each cluster functions as
clusterhead, responsible for some tasks. Clusters are used
for different targets, we distinguish [14]:

• Clustering for transmission management:
Clustering provides a mutual organization of network
nodes that simplifies coordination of transmission among
neighboring nodes. In fact, this technique reduces
interference in a multiple access broadcast environment
by forming distinct clusters of nodes in which
transmissions can be scheduled in a contention free
manner by using, for example, different spreading codes
in adjoining clusters. Each cluster contains a clusterhead,
one or more gateways and zero or more ordinary nodes.
The clusterhead schedules transmission and allocates
resources within the clusters while gateways connect
adjacent clusters. Generally, all cluster members are
within one hop of the clusterhead and hence within two

hops of each other. This arrangement provides low delay
paths between cluster members that may communicate
frequently and it places clusterheads in the ideal location
to coordinate transmissions among their cluster members.

• Clustering for backbone formation: In any network,
the delay incurred by a packet at each hop is a function of
the processing and queuing delays at the transmitting node
and the transmission and propagation delays over the link.
Thus, in a multihop network, reducing the number of hops
in a route may significantly reduce the end to end delays
experienced by packets traversing the route. Routing
backbones consisting of small numbers of long range
links are frequently employed to provide low delay, high
speed connectivity between distant nodes in large
networks. Thus, in ad hoc networks, reduced-hop
backbone topologies can be formed by clusterheads which
enables direct communication with a more distant node,
but it may also increase interference because the node’s
transmissions will be received at higher power and by a
large number of nodes. Thus, it is better to isolate local
transmissions within a cluster from distant ones along the
backbone.

• Clustering for routing efficiency: Ad hoc networks
are known by their dynamically changing topology
leading to frequent routes discovery and maintenance.
Clustering reduces significantly the overhead costs
imposed by routing without scarifying the quality of the
routes produced. In addition, a node moving in the same
cluster without entering in an overlapping zone doesn’t
make any problem since it doesn’t affect the cluster
structure. That means that the entries of both routing
tables and neighbor tables won’t be modified. Moreover,
each node is localized in a single cluster by the
correspondent clusterhead. This minimizes considerably
the number of entries in the routing tables. Finally,
routing could be accomplished via backbones, leading to
more efficient routing algorithms. Thus, the clustering
technique facilitates network management and ensures the
best assets for this management (adaptability, scalability,
autonomy, heterogeneity, survivability and economy).

3.2 Density based clustering

The network can be considered as a set of areas (or
clusters). Each cluster is formed around a representative
called Cluster Head. Cluster Heads are selected according
to a well defined criterion.
A cluster is designated by an identifier that relates to its
representative (i.e. its cluster head). Each node in the
network carries the cluster identifier to which it belongs.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

41

Figure 1: structure of a clusterized MANET

As shown in figure 1, nodes at the cluster border act as
communication gateways and ensure the exchange
between clusters.

• Selection criterion of the cluster heads

In the literature, several studies have addressed the
problem of clustering in MANETs. To form clusters and
elect cluster heads, each solution provides a different
criterion.

In [3], the authors propose a routing protocol based on
clusters. To elect the cluster heads, the algorithm selects
nodes having the weakest identifier which is nothing but
its IP address. But it’s not because a node has a small
identifier, it’s suitable to act as a cluster head.

In [4], authors propose a clustering mechanism for the
OLSR protocol. They introduce the concept of forest and
tree. The entire network is seen as a forest, where each
cluster is considered like a tree and the branches represent
the links between nodes. To select a root of the tree, the
algorithm uses maximum local connectivity, i.e. nodes
having more neighbors are designated as roots. In order to
enable OLSR nodes to form and maintain trees, OLSR
nodes need to periodically exchange branch messages (in
addition to usual OLSR control messages).

In [5], authors propose a hierarchical OLSR version. The
hierarchy is built based on nodes capabilities. The
capability of a node depends on the amount and properties
of its wireless interfaces. A node with several interfaces
and large radio range will be selected as cluster head. If
the network nodes have the same wireless interfaces
properties, the routing finds the OLSR standard operation
and there will be no clustered structure. To form clusters,
a new message called CIA (Cluster Id Announcement) is
periodically sent by cluster heads to declare their
leadership and invite other nodes to join their clusters.

Our proposal presents a simple, light and quiet solution.
First, our proposal does not add any new control message
and the network is not overloaded or slowed at all. No
changes are made to standard control messages. Our
solution works transparently with the OLSR standard

protocol. Clusters are formed around the nodes with the
densest environment; in other words, the node that has the
largest number of symmetric neighbors is selected as the
cluster head.
In this way, we are sure that the cluster is represented by
the node that covers the largest number of nodes in the
cluster. Thus we call “density of a node i” which is
denoted Di, the number of symmetric neighbors of node i.

• Density computation: Di

Density information is carried in the structure of HELLO
messages. To calculate the density of a node, we use the
information contained in the HELLO message. These are
periodically sent by each node in the network, and they
contain the state information links with all neighbors.
Upon receiving a HELLO message, we can calculate the
density of transmitting node i (Di); in this way each node
can decide either to join a cluster or to become a cluster
head.

• OLSR clustering algorithm

In a clustered OLSR network, each node can be in one of
three states:
State 0: not decided. When a node has just arrived, or it
has just left its cluster and has no neighbors in its
neighborhood, its status is not decided yet. There is no
cluster head or cluster member. It must wait for the receipt
of HELLO messages.
State 1: Cluster head. The node was exchanged HELLO
messages, and it has the highest density.
 It creates a cluster in which it was appointed head of the
cluster.
State 2: member. The node has exchanged HELLO
messages; it has a low density compared to its symmetric
neighbors, and is part of the cluster members.
Upon receiving a HELLO message, each node calculates
the density of the neighbor who sends this HELLO
message. Then it compares the neighbor’s density with its
own density to decide whether to become a cluster head or
join the neighbor’s cluster.

Transitions between these states are illustrated by the
diagram in Figure 2.

Figure 2: state diagram of a node i

Gateway

Cluster Head

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

42

• Initially, each node begins with a status 0 (not
decided). Upon receiving a HELLO message, the node
compares its own density (Di) with the density of the
message it received (D).
• If (D <Di), the node goes to state 1 (cluster head)
because its density Di is greater than D of the received
message.
 Once in state 1, node i triggers a counter Cptr. If after
passing this timeout, the node i has received no HELLO
message, that means it has no neighbors in its radio range,
so it decides to move to state 0 (not decided state).
• If (D> Di), the node goes to state 2 (member) because
its density Di is lower than that of the received message.
Once in state 2, node i triggers a counter Cptr. If after
passing this timeout, the node i has received no HELLO
message, that means it has no neighbors in its radio range,
so it decides to move to state 0 (not decided state).
• If the node i is in state 1 (respectively in state 2), and it
receives a HELLO message with (D <Di) (respectively (D
> Di)), it remains in state 1 (respectively remains in state
2) because its state has not changed.
• If the node i is in state 1 (respectively in state 2), and it
receives a HELLO message with (D >Di) (respectively
(D< Di)), it moves to state 2 (respectively move to state 1)
because its condition has to change.

• System stability

We note that the system may become unstable after
receiving several Hello messages. A node may change
either its state or its cluster whenever the density of the
received message is greater than its own density. This
may cause some instability in the clustering approach.
To prevent this phenomenon, we chose to keep the node
to decide its status (i.e. head or member) for a longer time
than the period of a HELLO message.
For simulations, we have taken a period equal to three
times the emission range of Hello messages. This time,
which we call clustering interval, represents the interval at
which each node restarts the process of density calculation.

3.3 Simulations

To see the behavior of this approach and to measure the
effect that will cause the implementation of our algorithm
in an OLSR network, we performed several simulations
with variable number of nodes and different nodes
velocity.
We performed simulations with, and without clustering
interval. By after we have recorded the average number of
clusters built (which we note NC) and the average time
during which a cluster is maintained (which we note CD).

• number of clusters formed by the number of
nodes in the network

Figure 3 : NC = f(nbr nodes) . velocity = 10m/s

Figure 3 shows the evolution of the number of clusters in
relation to the number of nodes in the network for a
maximum speed of 10 m /s.
We notice a great improvement with the use of the
clustering interval. The number of clusters varies between
500 and 45000 in the case where the clustering interval is
not used, when this number varies between 35 and 1500
with the use of clustering interval for a network with 100
nodes as shown in figure 4. This figure shows the same
information in figure 3 but at different scale.

Figure 4 : NC = f(nbr nodes) . velocity = 10m/s

• average cluster duration based on the
number of nodes in the network

Figure 5 : cluster duration = f(nbr nodes) . velocity = 10m/s

Figure 5 shows the behavior of the average time during

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

43

which a cluster is built based on the number of nodes in
the network. We notice a significant improvement brought
by the clustering interval. The average duration of clusters
varies between 0.08ms and 5.9ms in the case where the
clustering interval is not used, when this number varies
between 4.80ms and 126.67ms with the use of clustering
interval for a network with 100 nodes as shown in figure 6.

Figure 6 : cluster durat = f(nbr nodes) . velocity = 10m/s

• number of clusters formed based on the
nodes velocity

Figure 7 : NC = f(v) . with 70 nodes

Figure 7 shows the evolution of the number of clusters
formed according to velocity in the network. The number
of nodes in the network is fixed at 70.
We notice a great improvement with the use of clustering
interval. The number of clusters turns around 12000 when
clustering interval is not used, when this number is around
100 when clustering interval is used as shown in figure 8.

Figure 8 : NC = f(v) . with 70 nodes

• average cluster duration based on the nodes
velocity

Figure 9 : cluster duration = f(velocity) . with 70 noeuds

Figure 9 shows the behavior of the average time during
which a cluster is built based on the maximum speed of
nodes in the network. The number of nodes in the network
is 70.
We notice a significant improvement given by the
clustering interval. The average does not exceed 1 ms in
the case where the interval clustering is not used, when it
is around 55 ms in the case where the range of clustering
is used.

3.4 Impact of Mobility models

The performance of ad hoc network protocols can change
significantly when tested with different mobility models,
but also when the same mobility model is used with
different parameters. Moreover, the choice of a model
requires a traffic pattern, which also influences protocol
performances. The performance of an ad hoc network
protocol should be assessed with the closest mobility
model to the real scenario expected, which may facilitate
protocol improvement.
To evaluate the performance of our clustering algorithm,
we performed simulations for four types of mobility
models: Random waypoint, RPGM, Manhattan and Gauss
Markov models.
The most popular mobility model proposed in the
literature for modeling the MANET scenarios is perhaps
the Random Waypoint (RWP) model. A node in the RWP
model selects a random destination and a random speed
between minimum speed and maximum speed, and then
moves to the selected destination at the selected speed.
Once the node reaches the destination, the node rests for
some pause time, and then repeats the process by selecting
a new destination, speed and resuming movement [10].
The Reference Point Group Mobility (RPGM) Model [11]
is a typical group mobility model. In RPGM model, each
node in a group has two components in its movement
vector: the individual component and the group
component. The individual component is based on the

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

44

Random Waypoint (RWP) model. A node randomly picks
a destination within the group scope and moves towards
that destination at a fixed speed. Once the node reaches
the destination, it selects another destination randomly
and moves towards it after a pause time. This behavior is
repeated for the duration of the simulation. The group
component of mobility is shared by all nodes in the same
group and is also based on the random waypoint model. In
this case, however, the destination is an arbitrary place in
the entire system. Because the RPGM model is based on
RWP model, it still cannot overcome the shortcomings
caused by the characteristics of the RWP model, such as
non-uniform network density, and it is not adequate to
simulate the group movement in reality, such as group
split and mergence, etc.
The Manhattan mobility model is proposed to model
movement in an urban area [12]. In the Manhattan model,
the mobile node is allowed to move along the horizontal
or vertical streets on the urban map. At an intersection of
a horizontal and a vertical street, the mobile node can turn
left, right or go straight. The probability of moving on the
same street is 0.5, the probability of turning left is 0.25
and the probability of turning right is 0.25. Manhattan
mobility model focuses on nodes moving along horizontal
or vertical streets, which is not enough to model nodes
moving along non-horizontal and non-vertical streets.
Moreover, Manhattan model is not suitable to model the
movement happening in the intersections of highway
systems, which is much more complex than the
intersection of local streets.
The Gauss Markov mobility model was proposed in [13].
It is a memory model, in the sense that the position and
velocity of a node at any instant (t + at), depend on the
position and velocity at time t, which creates more
movement flexible nodes. It is a memory model, i.e. the
node position and velocity at any instant (t + at), depend
on the position and velocity at time t, which creates a
more flexible nodes movement. The position (x, y) and
the mobile speed S are updated at each timeslot. To ensure
that a node does not stay near simulation edges, nodes are
pushed away from the board when they are within a
certain distance from the edge
To observe our algorithm behavior, we retook the
simulations for the four mobility models, and we obtained
the following results.

Figure 10 : nbr clusters = f(nbr nodes) . velocity = 10m/s

Figure 10 shows number of clusters formed along
simulations in terms of number of nodes in the network.
We note that our clustering solution gives best results
with Manhattan model.

Figure 11 : clusters duration = f(nbr nodes). velocity = 10m/s

Figure 11 shows clusters duration in terms of the number
of nodes in the network. We note that clustering behavior
is practically the same for all models, except the
Manhattan model wich gives the best duration..

3.5 Algorithm enhancement

• Clustering interval enhancement

As we have already seen, the clustering interval represents
the period during which a cluster is maintained. We chose
for this interval a period equal to three times the interval
of Hello messages emission. According to the simulation
results of the previous sections, we note that the clustering
algorithm appears much more stable with a clustering
interval of three times the Hello interval. And to see the
algorithm behavior with other values of clustering interval,
we made measurements for intervals of 6 times and 9
times of the Hello messages transmiting interval.
Results are as shown in following diagrams.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

45

Figure 12 : nbr clusters = f(nbr of nodes) . velocity = 10m/s

Figure 12 shows the number of clusters formed during the
simulation based on the number of nodes in the network.
Nodes speed is lesse than 10 m / s. We note that the
number of clusters decreases when interval clustering
becomes important, which proves that our algorithm
behaves well with clustering interval changes. To improve
performance for dense networks; we propose to make an
automatic choice of the clustering interval.

Figure 13 : cluster duration= f(nbr nodes). velocity = 10m/s

Figure 13 shows the lifetime of a cluster based on the
number of nodes in the network; speed of nodes does not
exceed 10 m / s. We note that clusters remain for a longer
time for interval of 9X than for intervals of low values.

Figure 14 : nbr clusters = f(velocity). with 70 nœuds

Figure 14 shows the behavior of the clustering system for
a network of 70 nodes with speeds ranging from 1 m /s to
40 m /s. the diagram shows the number of clusters formed
during the simulation depending on the speed of nodes.
Obviously, we still note that the interval of 9X gives
better results compared to low values of clustering
interval.

Figure 15 : cluster duration= f(velocity). with 70 nodes

In Figure 15 we observe the behavior of the clustering
algorithm in a network of 70 nodes with speeds ranging
from 1 m /s to 40 m /s. This figure gives the time during
which a cluster is maintained depending on speed of
nodes in the network. Again, the range of 9X gives better
results compared to low values of clustering interval.

Improvements

According to results presented in this section, we note that
the clustering system, in general, behaves almost the same
ways for networks with low density (number of nodes less
than 60). But from 70 nodes, the curves begin to diverge,
and the difference becomes remarkable.
This means that the number of clusters formed during the
simulation increases when the number of nodes in the
network also increases. And conversely, how long has
maintained a cluster decreases when the number of nodes
in the network increases.
To control this behavior, we propose an intrinsic
management to the protocol, which automates the control
and the choice of the clustering interval. Thus, the
protocol monitor the number of nodes in the network, and
according to this parameter can choose the most suitable
interval to maximize the clustering algorithm performance.
This improvement will be addressed in a near future work.

• Clusters depth enhancement

In our clustering solution, clusters are built around nodes
with the densest neighborhood, i.e. node that has the
highest number of one hop symmetric neighbors is elected
as cluster head. In this way, the cluster head is represented
by the node that covers the largest number of nodes in the

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

46

cluster. So we called "density of a node i", the number of
one hop symmetric neighbors wich is denoted Di. The
network will thus be divided into clusters of depth equal
to 1 hop. Choosing the one hop neighborhood, will cause
a large number of clusters in the network. To improve this
parameter, we chose to deepen the level of clusters depth
by choosing two hops symmetrical neighborhoods. The
election of cluster heads will focus on nodes with the
densest neighborhood of 1 and two hops.
We note (D2i) the sum of the number of one hop
symmetric neighbors and two hops symmetric neighbors
from node i. The choice of the head of the cluster will
focus on the node with the highest value of D2.
We have implemented this improvement on an OLSR
network and as shown in the following graphs, we
obtained better results.

Figure 16 : nbr clusters = f(nbr nodes) . velocity = 10m/s

In Figure 16, we observe the number of clusters (NC)
formed during the simulation based on the number of
nodes in the network; the maximum speed of nodes is 10
m /s. We note a very good improvement of the clustering
system in the case of deep level 2 (D2) where the number
of clusters formed is around 10 clusters, while it is around
50 to a depth of level 1 .

Figure 17 : cluster duration = f(nbr nodes). velocity = 10m/s

Figure 17 shows the average lifetime of a cluster based on

the number of nodes in the network, the maximum speed
of nodes is 10 m /s. We see a great improvement for this
parameter with a depth of level 2. This figure shows that
clusters last much longer with a depth of level 2 than
those with a depth of level 1.

Figure 18 : nbr clusters = f(velocity). with 70 nodes

Figure 18 shows the number of cluster formed during the
simulation depending on network speed of 70 knots. It is
clear from the graph that, for the same number of nodes in
the network, the number of clusters formed during the
simulations to a depth of level 2 is much less than number
of clusters for a depth of level 1.

In Figure 19, we observe the average time during which a
cluster is built for different speeds ranging from 1 m /s to
40 m /s with a network size of 70 nodes. We note that
with a depth D2, the average length of a cluster is 7 times
greater than depth D1.

Figure 19 : cluster duration = f(velocity). with 70 nodes

The results presented in this section, we conclude that the
transition from one hop neighborhood to a neighborhood
with two hops, has remarkably increased the performance
of our clustering algorithm. The number of clusters
formed in the network has decreased by a factor of 10,
and the lifetime of a cluster has increased by a factor of 10.
Therefore, clustering system performance has almost

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

47

increased by a factor of 10.
In a forthcoming work, we propose to pass from a depth
of level 2 to a three level range. We therefore propose to
increase the size of a cluster to reach the three hops
neighborhood while keeping criterion election of cluster
heads, the densest two hops neighborhood.

4. Key management scheme

As in any distributed system, in ad hoc networks the
security is based on the use of a proper key management
system. As ad hoc networks significantly vary from each
other in many aspects, an environment-specific and
efficient key management system is needed.

The security in networking depends, in may cases, on
proper key management. Key management consists of
various services, of which each is vital for the security of
the networking systems. The services must provide
solutions to be able to answer the following questions:
Trust model, Cryptosystems, Key creation, Key storage
and Key distribution [15].

4.1 The proposed solution

Approaches presented in the literature tried to solve key
management problem in ad hoc networks, but these
solutions still carry many limits (administrator availability
and congestion, dependence of nodes on the administrator
and so on). In this section, we are going to describe the
approach that we propose for key management in ad hoc
networks. Our solution is based on the clustering
technique and is inspired from the partially distributed
PKI solutionand uses a (k,n) Threshold Secret Sharing
Scheme.

• (K,N)Threshold Secret Sharing Scheme

In secret sharing scheme, a secret is shared among a group
of users called shareholders. The secret is shared in such a
way that no single user can deduce the secret from his
share alone and in order to construct the secret, one need
to combine a sufficient number of shares. Adi Shamir [16]
proposed a classical (k,n) secret sharing algorithm based
on polynomial interpolation. The scheme describes how a
secret S can be divided in to n partial shares
(S1,S2,...,Sn) where a minimum of k out of n are partial
shares are needed to generate a secret S. The threshold
value k is balance point between fault tolerance and
service availability. Asmuth and Bloom [17], Brickell
[18], and Karin-Greene-Hellman [19] have enhanced this
work. Also, work has been done in the issues related to
verifiable secret sharing [20] and verifiable secret
redistribution [21].

4.2 Description of Scheme

Once clusters are formed, and heads are designated, as
described in above section, we propose in this section a
scheme in which we gather the cluster heads services of
cluster heads in a single service called Council. Each
Council node will have equal functionality and utilize the
(k,n) threshold secret sharing scheme for performing the
cluster head functionality. The main functionality of
Council will be key management. A certificate will be
formed by participation of at least k nodes out of n
Council member. The key management cluster head
functionality will now be able to work even when more
than one (but limited to min {k,n-k+1})cluster heads are
compromised.

In our scheme, we propose a novel scheme that we call as
Council based clusters. The scheme uses a collaborative
approach to perform Council based clusters functionality
throughout the network, making it extremely efficient.
Once the Council based clusters are formed, each Council
member can apply (k,n) threshold secret sharing such that
a minimum of k cluster heads out n needs to participate
together to perform any cluster head functionality. For
example, for key distribution functionality, Council
members (each serving as CA) will have a partial secret
share and at least k such partial secrets will be required to
form the secret. By having multi-cluster heads, each
having partial shared secret, the network will be able to
work even when more than one (but limited to min {k,n-
k+1}) cluster heads are compromised. The requirement
for the Council nodes is that they must be fully connected,
i.e., each of them must have bi-directional links to all
other nodes in the Council.

• Key Management Scheme on Council Based
Cluster

Key management is an important aspect of ad hoc
network security. To ensure security using public key
cryptography scheme, each node carries a public-private
key pair and a certificate issued by the CA. As discussed
earlier, one of cluster head functionality can be to function
as the CA. A CA certifies that a public key belongs to a
particular entity. Having a single centralized CA is not
suitable for highly vulnerable ad hoc networks. Using our
scheme, the process of certification can be distributed
among all Council nodes within each cluster. Each cluster
will have a public/private key pair. The public key of the
cluster is known to each Council member while only a
share of cluster private key (also known as secret)is
known to each member. Council issues a certificate to a
member node‘s public key by digitally signing it with the
private key of the cluster. In order to construct the private
key of the cluster, at least k Council members out of the n
need to work together and combine their partial shares.
Since at least k among n partial shares of the private key

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

48

are required to generate the cluster private key, system
will work even if more than 1 but limited to min (k,n-
k+1)Council members are compromised.

• Why Limited to Min (K, N-K+1) Compromised
Cluster Heads

In the above section we have mentioned that the cluster
head functionality will be able to work even when more
than one but limited to min {k,n-k+1}cluster heads are
compromised. Let us discuss why our (k,n)threshold
scheme is limited to min {k,n-k+1}. In (k,n)secret sharing
scheme, a minimum of k cluster heads out n needs to
participate together to perform any cluster head
functionality. If k or more cluster heads are compromised
than they can combine their secret share together to
perform any compromised cluster head functionality.
Thus the total number of compromised nodes cannot
exceed k-1. Also in order to perform cluster head service
we require at least k non-compromising cluster heads; the
system will not if number of compromised cluster heads
are equal to or greater than n-k+1. In general our (k, n)
secret sharing scheme will work for any T compromised
cluster heads where 1< T < min {k,n-k+1}. For ex. in (5,
12) secret scheme, the system will not work for 5 or more
compromised cluster heads as minimum of 5
compromised cluster heads can participate together to
perform any cluster head functionality. The (7,12)scheme
will not work if 6 or more cluster heads are compromised,
as minimum of 7 cluster heads are required for making the
decision.

• Finding (K, N)

We have also addressed the problem of choosing a
suitable (k,n) pair on Council based clusters. The whole
network not being uniformly distributed makes the choice
of (k,n) difficult. We find the value of n in an adaptive
fashion depending on the availability in the networks. In
short the number of Council members per cluster will give
us the value of n. The threshold value k is a balance point
between fault tolerance and service availability. Lets us
discuss the special cases of choosing k:
• k =1: The secret is shared by n nodes and anyone of
them can get the secret using just 1 share. This scheme is
similar to single cluster head and hence vulnerable to
single point of failure.
• k =n: The secret is shared by n nodes and all these nodes
need to participate together with their shares in order to
get the secret. This scheme provides maximum security
but requires accessibility to all the nodes. For highly
secure network like military applications, we will choose
k =n and apply (n,n) threshold secret share concept on
Council.
• 1<k <n: W e chose such a k such that there is a balance
between security and availability.

5. Conclusion and perspectives

The clustering mechanism allows dividing ad hoc network
into several zones. The solution we propose in this work
enables clustering OLSR networks without causing
changes in the structure of control messages. Therefore, to
make our algorithm more stable, we added the concept of
clustering interval which represents the interval at which
each node starts the calculation of densities. According to
the results of simulations that we made, we notice a great
improvement and better system stability with the adopted
solution.

To evaluate the proposal performance, we also measured
the behavior of our algorithm with several mobility
models.

As an initial improvement of our algorithm, we measured
its performance for different intervals of clustering, and
we propose to automate clustering interval. This interval
will be self-adjustable according to the nature of nodes
and their behavior in the network.

The second improvement is done by increasing the
clusters size to minimize their number. Thus, to calculate
the density of a node, our solution considers all nodes in
the one hop symmetric neighborhood in addition to nodes
in the two hop neighborhood, and thus we have reduced
the number of clusters in the network.

In a forthcoming work, we propose to pass from a 2 level
depth to a three level range. We therefore propose to
increase the size of a cluster to reach the three hops
neighborhood while keeping criterion election of cluster
heads, the densest two hops neighborhood.

Also, we project to add other suitable criteria to select the
best cluster heads; because it is not enough that a node has
the densest neighborhood for being elected as cluster head.
Thus, in the next version of our algorithm, the criterion
for electing cluster heads will focus on a system metric
that will engage density, energy and the radio range of
each node in the network.

Finally, for the key management scheme, we plane to
implement our theoretical idea to evaluate the system
behavior with a complete solution for key management in
an ad hoc environment.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

49

REFERENCES
[1] T. CLAUSEN ET P. JACQUET. Optimized Link State

Routing Protocol
(OLSR).http://www.ietf.org/rfc/rfc3626.txt, 2003, RFC
3626

[2] Qayyum, L. Viennot, A. Laouiti, “Multipoint Relaying: An
Efficient Technique for Flooding in MobileWireless
Networks,” INRIA Research Report RR-3898, March 2000.

[3] M. L. Jiang, J. Y. Li, and Y. C. Tay, “ Cluster Based
Routing Protocol (CBRP) Functional Specification.” draft-
ietf-manet-cbrp-spec-01.txt, Aug. 1999.

[4] E. Baccelli. “OLSR Trees: A simple Clustering Mechanism
for OLSR.” Mediterranean Workshop on Ad-Hoc Networks
(MED-HOC-NET), Porquerolles, France, June 2005.

[5] Y. Lacharite, M. Wang, P. Minet, T. Clausen.
“ Hierarchical OLSR “ draft-lacharite-manet-holsr-02.txt
July 13, 2009

[6] J.Y.Yu and P.H.J.Chong, “A survey of clustering schemes
for mobile ad hoc networks,” IEEE Communications
Surveys & Tutorials, vol.7, no.1, pp.32–48, 2005.

[7] Francisco J. Ros, Pedro M. Ruiz “Cluster-based OLSR
extensions to reduce control overhead in mobile ad hoc
networks” IWCMC '07: Proceedings of the 2007
international conference on Wireless communications and
mobile computing. August 2007. Honolulu, Hawaii, USA

[8] E. Baccelli, T. Zahn, J. Schiller. “DHT-OLSR” Published
in INRIA Research Report RR-6194, May 2007.

[9] E. Baccelli. “OLSR Scaling with Hierarchical Routing and
Dynamic Tree Clustering”. Published in International
Conference on Networks and Communication Systems
(NCS), Chiang Mai, Thailand, March 2006.

[10] D.B. Johnson and D.A. Maltz. Dynamic Source Routing in
Ad Hoc Wireless Networks. In Mobile Computing, edited
by T. Imielinski and H. Korth, Chapter 5, pp. 153-181,
Kluwer Publishing Company, 1996.

[11] X. Hong, M. Gerla, G. Pei, and C.-C. Chiang. A Group
MobilityModel for Ad hoc Wireless Networks. In
Proceedings of the ACM/IEEE MSWIM’99, pp.53-60,
Seattle, WA, August.1999.

[12] Fan Bai, Narayanan Sadagopan, Ahmed Helmy.
IMPORTANT: A framework to systematically analyze the
Impact of Mobility on Performance of RouTing protocols
for Adhoc NeTworks. Infocom’03, April 1-3, 2003, San
Francisco, California, USA.

[13] T. Camp, J. Boleng, and V. Davies, “A Survey of Mobility
Models for Ad Hoc Network Research”, Wireless
Communications & Mobile Computing (WCMC): Special
issue on Mobile Ad Hoc Networking: Research, Trends and
Applications, Vol. 2, No. 5. (2002), pp. 483- 502, 2002.

[14] C. E. Perkins, “Ad hoc networking”, Addison-Wesley Pub
Co, 1st edition December 29, 2000.

[15] Kärpijoki Vesa, .Security in Ad Hoc Networks.,
Telecommunications Software and Multimedia Laboratory
2002

[16] A. Shamir, “How to Share a secret”, Communication of the
ACM, Vol. 22, pp. 612-613, November 1979.

[17] C. Asmuth anf J. Bloom, “A Modular Approach to Key
Safeguarding”, IEEE Trans. On Information Theory, IT-29,
pp. 208-211, 1983

[18] E. F Brickell, “Some Ideal Secret Sharing Schemes”,
Journal of Combinatorial Mathematics and Combinatorial

Computing, No. 6, pp. 105-113, 1989.
[19] E. D. Karnin, J. W. Greene, and M. E. Hellman, “On Secret

Sharing Systems”, IEEE Trans. On Information Theory, IT-
29, pp. 35- 41, 1983

[20] T. P. Pederson, “Non-Interactive and Information-Theoretic
Secure Verifiable Secret Sharing “, Lecture Notes in
Computer Science, pp. 129-140, 1992

[21] Y. Desmedt and S. Jajodia, “Redistribution Secret Shares to
New Access Structures and its Applications”, Technical
Repport ISSE TR-97-01, George Mason University, Fairfax,
VA, July, 1997.

[22] Vivek Shah, “Parallel Cluster Formation for Secured
Communication in Wireless Ad hoc Networks”, work
submitted as part of requirement for the degree of Master of
Science in Computer Science. University of Cincinnati.
2004

