
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

50

Manuscript received February 5, 2010

Manuscript revised February 20, 2010

A Simple and Strong Algorithm for Reconfiguration of
Hexagonal Metamorphic Robots

KwangEui Lee†

† Department of Multimedia Engineering, Dongeui University, Busan, Korea

Summary
In this paper, we propose a reconfiguration algorithm for planar
hexagonal metamorphic robot systems. We consider a distributed
reconfiguration algorithm that doesn’t need any preprocessing or
global communications. Additionally, our algorithm requires
only little communication among adjacent modules. Our
algorithm has no constraints on initial and goal configurations
and no preprocessing steps. For this algorithm, we propose a new
classification method for neighbor contact patterns which is easy
to extend for various neighbor groups.

Key words:
Hexagonal metamorphic robot, Distributed Reconfiguration,
Self-reconfigurable robot system.

1. Introduction

A metamorphic robot system is a collection of
independently controlled homogeneous mobile robots [1],
each of which has the same shape, the same ability to
connect and disconnect to other modules. So they are
completely interchangeable. This interchangeability
provides a high degree of system fault tolerance. In
metamorphic systems, modules autonomously change their
relative position in order to change the shape of the overall
system. This process called self-reconfiguration [2].
Potential applications of metamorphic systems include
obstacle avoidance in highly constrained and unstructured
environments, 'growing' structures composed of modules
to form bridges, buttresses, and other civil structures in
times of emergency [3].
In this paper, we propose a distributed reconfiguration
algorithm for metamorphic robot systems. We focus on a
system of planar, hexagonal robotic modules. We consider
a distributed motion planning algorithm that doesn’t need
any preprocessing or global communications. Additionally,
our algorithm requires much fewer communications among
modules compared to other approaches.
This paper has three main contributions: 1) it provides a
very simple and strong reconfiguration algorithm for
general shape of initial and goal configurations, 2) there
are no preprocessing steps, and 3) we suggest a new
classification method for neighbor contact patterns. The

rest of the paper is organized as follows. We introduce
some previous works in section 2. In section 3 and 4, we
present the system model and our algorithm for
reconfigurations, respectively. The analysis and
experimental results are shown in section 5. Finally,
section 6 draws the conclusion.

2. Related Works

The motion planning for a metamorphic robotic system is
to determine the sequence of robot motions required to
reconfigure the whole system to a desired goal
configuration from a given initial configuration.
Unfortunately, there is no simple method for solving the
motion planning problem. Because, given any number of
modules, the number of possible connected configurations
is exponential to the number of the modules [3]. So, there
are many researches based on heuristic methods or
restricted configurations in the literatures.
Many existing motion planning algorithms use centralized
method to plan and supervise the robot motion [2], [3], [4].
Some others propose distributed approaches which based
on heuristic approximations and require communication
among robots in the reconfiguration process [5], [6]. And
some others suggest distributed deterministic algorithms
with preprocessing [7], [8], [9], [10].
Proposed algorithm is a distributed deterministic algorithm.
Comparing to previous algorithm, proposed algorithm
takes little bit more step to reconfigure the system. But the
proposed algorithm is still valuable in the point of view
that there is no preprocessing or no global communications.
Above all it is very simple and strong.

3. The System Model and Some Definitions

3.1 Coordinate System

We consider hexagonal metamorphic robot system. Each
module has identical hexagon shape and occupies exactly
one cell in the plane. We assume that the plane is

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

51

partitioned and labeled as shown figure 1. It is the same
coordinate system described in [1]. The coordinate system
is generated from the patch shown in figure 2. In figure 2,
N, S, W, E means North, South, West, and East
respectively.

Fig. 1. Coordinate system.

Fig. 2. Numbering convention.

3.2 Module Types and Assumptions

Each module runs the same program and moves by
rotating around another module, called substrate,
clockwise (CW) or counter clockwise (CCW). There are
three types of modules:

1. Base: immovable base module, every other
module should be connected to the base directly
or in directly via their neighbors.

2. Robot: the module explained above.

3. Obstacle: kind of a robot but it can’t move.

In our algorithm, there are no global coordinators or global
communication among modules. Modules need only local
communication with their neighbors and some initial
knowledge about the position of the goal cells. At all times,
each module knows its location and its unique robot
identifier (RID).

Modules move in lockstep rounds. In each rounds, a
module M (in figure 3) can move clockwise (counter
clockwise) if the cell S does not move, and cell C2 and C3
(C1 and C2) are empty.

Fig. 3. Moving a module in the plane.

3.3 Module Contact Patterns

In [1], they classify the module contact patterns in 12
categories as shown in figure 4.

Blocked

Free

Partitioning

Fig. 4. Possible contact patterns.

Our algorithm also uses these contact patterns of neighbor,
but at the same time our algorithm sees these patterns as a
6 bit integer. For example, the connection pattern for the
gray module in figure 5 will be represented as 001101. In
the pattern, ‘0’ means the absence of neighbor and ‘1’
means the presence of neighbor in the order of ‘N’, ‘NE’,
‘SE’, ‘S’, ‘SW’, ‘NW’. So, there are 64 patterns from
000000 to 111111 and 0 to 63 in the decimal system.

Fig. 5. A sample neighbor pattern.

The bit patterns are also classified into 13 contact patterns,
but every bit pattern is considered separately in our
algorithm. We add mirror image of the last pattern of
‘Partitioning’ patterns of figure 4. To consider the
direction of modules destination, we treat every bit pattern
separately even they classified as a same contact pattern.
But the contact pattern is still very useful information in
our algorithm.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

52

4. Algorithm for Reconfigurations

The overall algorithm runs in 3 steps:
1. Decide the moving direction of each module.
2. Check the substrate to prevent unpredictable

movement.
3. Check the neighbors to maintain the connectivity.

In the following we will show the details of each step.

4.1 Deciding the Moving Direction

There are 64 contact patterns in 13 categories. But, for
now, we use only 18 patterns in 3 categories for simplicity.
This will be extended in further researches. These 3
categories are the first 3 contact patterns in FREE
categories of figure 4. Table 1 shows the moving direction
for each pattern.

Table 1: Moving direction for each pattern.
pattern direction pattern direction

000001(1) N 011000(24) S
000010(2) NW 110000(48) SE
000100(4) SW 100001(33) NE
001000(8) S 000111(7) N
010000(16) SE 001110(14) NW
100000(32) NE 011100(28) SW
000011(3) N 111000(56) S
000110(6) NW 110001(49) SE
001100(12) SW 100011(35) NE

Algorithm 1 shows how to generate the pattern from
neighbor contact information. We use pseudo-code for
brevity.

// algorithm 1: pattern_generation

enum direction {N=0, NE, SE, S, SW, NW };
pattern =0;
for (int i=0; i<6; i++) {

pattern *=2;
if (neighborInDirection[i] is a ROBOT)
 pattern +=1;

}

4.2 Checking the Substrate

If the algorithm does not ensure immobile substrates, the
results of the round are unpredictable. So, we check the
substrate first. If the substrate is moving, then the module
cancels the move. Each module can communicate with
their neighbors so this process can be easily implemented
using local communications.

4.3 Checking the Neighbors

Because of the algorithm uses only 16 patterns and
modules are always move CCW, there is only one
possibility to break the connectivity after a round. Figure 6
shows the case.

Fig. 6. The only connection pattern will be disconnected.

To prevent disconnection, before move, we check the
neighbors’ id. Only the module with the lowest RID has
the right to move. Algorithm 2 shows how to implement
the process.

// algorithm 2: check_neighbor

enum direction {N=0, NE, SE, S, SW, NW };
lowestID = 0;
for (int i=0; i<6; i++)

if ((neighborInDirection[i]==ROBOT)
&& (neighborInDirection[i].rid< lowestID))
 lowestID = neighborInDirection[i].rid;

if (myrid< lowestID) move; else do not move;

5. Experimental Results

We developed a java based object-oriented simulator to
test our reconfiguration algorithms. In this section we will
show the experimental results.

5.1 Algorithm Demonstration

Figure 7 shows initial configuration which will be solved
by our algorithm. In the Figure, B, O, R, G, E means Base,
Obstacle, Robot, Goal cell, Empty cell respectively.

Fig. 7. Initial configuration.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

53

In figure 8, we show the process of changing
configurations by the proposed algorithm.

After round 1 After round 2 After round 3

After round 4 After round 5 After round 6

After round 7 After round 8 After round 9

After round 10 After round 11 After round 12

Fig. 8. Process of changing configurations.

5.2 Comparison to Previous Results

Here, we compare the result of proposed algorithm to the
result of J. Walter et al. [5]. As the result shows, proposed
algorithm runs 141% more rounds, but, the proposed
algorithm is still valuable in the point of view that there is
no preprocessing, and no constrains on the initial
configurations in the algorithm.

Table 2: Comparison to the result of J. Walter et al.
Size(n) Walter et al. Ours O/W ratio

 11 24 34 142%
 16 35 46 131%
 10 22 28 127%
 37 103 123 119%
 35 77 134 174%
 24 58 84 145%
total 319 449 141%

5.3 Experimental Results on Various Configurations

Finally, we test the relationship between the number of
modules and rounds (and the number of module moves).
We carried out two types of experiments. The first one is
the case that both initial and goal configurations are linear.
In the second experiment, both initial and goal
configurations are square. Figure 9 shows the result.

 (a) Linear initial configuration and linear goal configuration

(b) Square initial configuration and square goal configuration

Fig. 9. Running time in rounds.

6. Conclusions and Further Works

In this paper, we propose a distributed reconfiguration
algorithm for planar hexagonal metamorphic robot system.
Proposed algorithm doesn’t need any preprocessing or
global communications and requires significantly fewer
communications among modules. Also, we propose a new
classification method for neighbor contact patterns.

Further studies may include extending the algorithm in 3D
case and adding global coordinators that will be the
skeleton of the goal configuration. We think, these global

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

54

coordinators are essential to rapid reconfiguration for very
complex goal configuration.

Acknowledgments

This work was supported by Dong-eui University
Foundation Grant (2007)

References
[1] G. S. Chirikjian, “Kinematics of a metamorphic robotic

system,” in Proc. of IEEE Intl. Conf. on Robotics and
Automation, pp. 449-455, 1994.

[2] K. Kotay, D. Rus, M. Vona, and C. McGray, “The self-
reconfiguring robotic molecule: Design and control
algorithms,” in Proc. Workshop Algorithmic Foundations of
Robotics, pp. 376–386, 1998.

[3] A. Pamecha, I. Ebert-Uphoff, and G. Chirikjian, “Useful
metrics for modular robot motion planning,” in IEEE
Transactions on Robotics and Automation, vol. 13, pp. 531-
515, 1997.

[4] A. Casal and M. Yim, “Self-reconfiguration planning for a
class of modular robots,” in Proc. SPIE Symp. Intelligent
Systems and Advanced Manufacturing, vol. 3839, pp. 246–
256, 1999.

[5] S. Murata, H. Kurokawa, and S. Kokaji, “Self-assembling
machine,” in Proc. IEEE Int. Conf. Robotics and
Automation, pp. 441–448, 1994.

[6] Y. Zhang, M. Yim, J. Lamping, and E. Mao, “Distributed
control for 3D shape metamorphosis,” Autonomous Robots,
vol. 10, no. 1, pp. 41–56, Jan. 2001.

[7] J. Walter, E. Tsai, and N. Amato, “Choosing good paths for
distributed reconfiguration of hexagonal metamorphic
robots,” in Proc. IEEE Int. Conf. Robotics and Automation,
pp. 102–109, 2002.

[8] J. Walter, J. Welch, and N. Amato, “Distributed
reconfiguration of metamorphic robot chains,” in Proc.
ACM Symp. Principles of Distributed Computing, pp. 171–
180, 2000.

[9] J. Walter, E. Tsai, and N. Amato, "Algorithms for Fast
Concurrent Reconfiguration of Hexagonal Metamorphic
Robots," IEEE TRANSACTIONS ON ROBOTICS, VOL.
21, NO. 4, pp. 621-631, 2005.

[10] S. Matysik, J. Walter, "Using a Pocket-Filling Strategy for
Distributed Reconfiguration of a System of Hexagonal
Metamorphic Robots in an Obstacle-Cluttered
Environment," in Proc. of IEEE Intl. Conf. on Robotics and
Automation, pp. 4265-4272, 2009.

 KwangEui Lee received his B.S., M.S.
and Ph.D. degrees from Sogang University,
Seoul, Korea in 1990, 1992, and 1997,
respectively. From 1997 to 2001, he joined
ETRI as a senior research member. Since
2001, He has been an associate professor
of Dongeui University. His research
interests include computation theory,
artificial life and their applications.

