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Summary 
In this paper, we propose a reconfiguration algorithm for planar 
hexagonal metamorphic robot systems. We consider a distributed 
reconfiguration algorithm that doesn’t need any preprocessing or 
global communications. Additionally, our algorithm requires 
only little communication among adjacent modules. Our 
algorithm has no constraints on initial and goal configurations 
and no preprocessing steps. For this algorithm, we propose a new 
classification method for neighbor contact patterns which is easy 
to extend for various neighbor groups. 
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1. Introduction 

A metamorphic robot system is a collection of 
independently controlled homogeneous mobile robots [1], 
each of which has the same shape, the same ability to 
connect and disconnect to other modules. So they are 
completely interchangeable. This interchangeability 
provides a high degree of system fault tolerance. In 
metamorphic systems, modules autonomously change their 
relative position in order to change the shape of the overall 
system. This process called self-reconfiguration [2]. 
Potential applications of metamorphic systems include 
obstacle avoidance in highly constrained and unstructured 
environments, 'growing' structures composed of modules 
to form bridges, buttresses, and other civil structures in 
times of emergency [3]. 
In this paper, we propose a distributed reconfiguration 
algorithm for metamorphic robot systems. We focus on a 
system of planar, hexagonal robotic modules. We consider 
a distributed motion planning algorithm that doesn’t need 
any preprocessing or global communications. Additionally, 
our algorithm requires much fewer communications among 
modules compared to other approaches. 
This paper has three main contributions: 1) it provides a 
very simple and strong reconfiguration algorithm for 
general shape of initial and goal configurations, 2) there 
are no preprocessing steps, and 3) we suggest a new 
classification method for neighbor contact patterns. The 

rest of the paper is organized as follows. We introduce 
some previous works in section 2. In section 3 and 4, we 
present the system model and our algorithm for 
reconfigurations, respectively. The analysis and 
experimental results are shown in section 5. Finally, 
section 6 draws the conclusion. 

2. Related Works 

The motion planning for a metamorphic robotic system is 
to determine the sequence of robot motions required to 
reconfigure the whole system to a desired goal 
configuration from a given initial configuration. 
Unfortunately, there is no simple method for solving the 
motion planning problem. Because, given any number of 
modules, the number of possible connected configurations 
is exponential to the number of the modules [3]. So, there 
are many researches based on heuristic methods or 
restricted configurations in the literatures. 
Many existing motion planning algorithms use centralized 
method to plan and supervise the robot motion [2], [3], [4]. 
Some others propose distributed approaches which based 
on heuristic approximations and require communication 
among robots in the reconfiguration process [5], [6]. And 
some others suggest distributed deterministic algorithms 
with preprocessing [7], [8], [9], [10]. 
Proposed algorithm is a distributed deterministic algorithm. 
Comparing to previous algorithm, proposed algorithm 
takes little bit more step to reconfigure the system. But the 
proposed algorithm is still valuable in the point of view 
that there is no preprocessing or no global communications. 
Above all it is very simple and strong. 

3. The System Model and Some Definitions 

3.1 Coordinate System 

We consider hexagonal metamorphic robot system. Each 
module has identical hexagon shape and occupies exactly 
one cell in the plane. We assume that the plane is 
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partitioned and labeled as shown figure 1. It is the same 
coordinate system described in [1]. The coordinate system 
is generated from the patch shown in figure 2. In figure 2, 
N, S, W, E means North, South, West, and East 
respectively. 

 

Fig. 1. Coordinate system. 

 

Fig. 2. Numbering convention. 

3.2 Module Types and Assumptions 

Each module runs the same program and moves by 
rotating around another module, called substrate, 
clockwise (CW) or counter clockwise (CCW). There are 
three types of modules: 

1. Base: immovable base module, every other 
module should be connected to the base directly 
or in directly via their neighbors. 

2. Robot: the module explained above. 

3. Obstacle: kind of a robot but it can’t move. 

In our algorithm, there are no global coordinators or global 
communication among modules. Modules need only local 
communication with their neighbors and some initial 
knowledge about the position of the goal cells. At all times, 
each module knows its location and its unique robot 
identifier (RID). 

Modules move in lockstep rounds. In each rounds, a 
module M (in figure 3) can move clockwise (counter 
clockwise) if the cell S does not move, and cell C2 and C3 
(C1 and C2) are empty. 

 

Fig. 3. Moving a module in the plane. 

3.3 Module Contact Patterns 

In [1], they classify the module contact patterns in 12 
categories as shown in figure 4. 
 

Blocked
 

         
 

Free
 

       
 

Partitioning
 

     
 

Fig. 4. Possible contact patterns. 

Our algorithm also uses these contact patterns of neighbor, 
but at the same time our algorithm sees these patterns as a 
6 bit integer. For example, the connection pattern for the 
gray module in figure 5 will be represented as 001101. In 
the pattern, ‘0’ means the absence of neighbor and ‘1’ 
means the presence of neighbor in the order of ‘N’, ‘NE’, 
‘SE’, ‘S’, ‘SW’, ‘NW’. So, there are 64 patterns from 
000000 to 111111 and 0 to 63 in the decimal system.  
 

 

Fig. 5. A sample neighbor pattern. 

The bit patterns are also classified into 13 contact patterns, 
but every bit pattern is considered separately in our 
algorithm. We add mirror image of the last pattern of 
‘Partitioning’ patterns of figure 4. To consider the 
direction of modules destination, we treat every bit pattern 
separately even they classified as a same contact pattern. 
But the contact pattern is still very useful information in 
our algorithm. 
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4. Algorithm for Reconfigurations 

The overall algorithm runs in 3 steps: 
1. Decide the moving direction of each module. 
2. Check the substrate to prevent unpredictable 

movement. 
3. Check the neighbors to maintain the connectivity. 

In the following we will show the details of each step. 

4.1 Deciding the Moving Direction 

There are 64 contact patterns in 13 categories. But, for 
now, we use only 18 patterns in 3 categories for simplicity. 
This will be extended in further researches. These 3 
categories are the first 3 contact patterns in FREE 
categories of figure 4. Table 1 shows the moving direction 
for each pattern. 

Table 1: Moving direction for each pattern. 
pattern direction pattern direction 

000001(  1) N 011000(24) S 
000010(  2) NW 110000(48) SE 
000100(  4) SW 100001(33) NE 
001000(  8) S 000111(  7) N 
010000(16) SE 001110(14) NW 
100000(32) NE 011100(28) SW 
000011(  3) N 111000(56) S 
000110(  6) NW 110001(49) SE 
001100(12) SW 100011(35) NE 

 
Algorithm 1 shows how to generate the pattern from 
neighbor contact information. We use pseudo-code for 
brevity. 
 
// algorithm 1: pattern_generation 
 
enum direction {N=0,  NE, SE, S, SW, NW }; 
pattern =0; 
for (int i=0; i<6; i++) { 

pattern *=2; 
if (neighborInDirection[i] is  a ROBOT) 
    pattern +=1; 

} 
 

4.2 Checking the Substrate 

If the algorithm does not ensure immobile substrates, the 
results of the round are unpredictable. So, we check the 
substrate first. If the substrate is moving, then the module 
cancels the move. Each module can communicate with 
their neighbors so this process can be easily implemented 
using local communications. 

4.3 Checking the Neighbors 

Because of the algorithm uses only 16 patterns and 
modules are always move CCW, there is only one 
possibility to break the connectivity after a round. Figure 6 
shows the case. 
 

 

Fig. 6. The only connection pattern will be disconnected. 

To prevent disconnection, before move, we check the 
neighbors’ id. Only the module with the lowest RID has 
the right to move. Algorithm 2 shows how to implement 
the process. 
 
// algorithm 2: check_neighbor 
 
enum direction {N=0,  NE, SE, S, SW, NW }; 
lowestID = 0; 
for (int i=0; i<6; i++) 

if ((neighborInDirection[i]==ROBOT)  
&& (neighborInDirection[i].rid< lowestID)) 
    lowestID = neighborInDirection[i].rid; 

if (myrid< lowestID) move;  else do not move; 
 

5. Experimental Results 

We developed a java based object-oriented simulator to 
test our reconfiguration algorithms. In this section we will 
show the experimental results. 

5.1 Algorithm Demonstration 

Figure 7 shows initial configuration which will be solved 
by our algorithm. In the Figure, B, O, R, G, E means Base, 
Obstacle, Robot, Goal cell, Empty cell respectively. 

 

Fig. 7. Initial configuration. 
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In figure 8, we show the process of changing 
configurations by the proposed algorithm. 

   
After round 1 After round 2 After round 3 

   
After round 4 After round 5 After round 6 

   
After round 7 After round 8 After round 9 

   
After round 10 After round 11 After round 12 

Fig. 8. Process of changing configurations. 

5.2 Comparison to Previous Results 

Here, we compare the result of proposed algorithm to the 
result of J. Walter et al. [5]. As the result shows, proposed 
algorithm runs 141% more rounds, but, the proposed 
algorithm is still valuable in the point of view that there is 
no preprocessing, and no constrains on the initial 
configurations in the algorithm. 

Table 2: Comparison to the result of J. Walter et al. 
Size(n) Walter et al. Ours O/W ratio 

  11   24   34 142% 
  16   35   46 131% 
  10   22   28 127% 
  37 103 123 119% 
  35   77 134 174% 
  24   58   84 145% 
total 319 449 141% 

 

5.3 Experimental Results on Various Configurations 

Finally, we test the relationship between the number of 
modules and rounds (and the number of module moves). 
We carried out two types of experiments. The first one is 
the case that both initial and goal configurations are linear. 
In the second experiment, both initial and goal 
configurations are square. Figure 9 shows the result. 

 
 (a) Linear initial configuration and linear goal configuration 

 

(b) Square initial configuration and square goal configuration 

Fig. 9. Running time in rounds. 

6. Conclusions and Further Works 

In this paper, we propose a distributed reconfiguration 
algorithm for planar hexagonal metamorphic robot system. 
Proposed algorithm doesn’t need any preprocessing or 
global communications and requires significantly fewer 
communications among modules. Also, we propose a new 
classification method for neighbor contact patterns. 

Further studies may include extending the algorithm in 3D 
case and adding global coordinators that will be the 
skeleton of the goal configuration. We think, these global 
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coordinators are essential to rapid reconfiguration for very 
complex goal configuration. 
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