
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010 
 

 
 

55

Manuscript received February 5, 2010 
Manuscript revised February 20, 2010 

Interval Algorithms for Coin Flipping 

Sung-il Pae, 
  

Hongik University, Seoul, Korea 
 

Summary 
We discuss two refinements of Han-Hoshi interval algorithm for 
random number generation in the context of coin flipping.  The 
ideas behind the refinements suggest a partial answer to the 
question that the original work of Han and Hoshi left: how to 
improve the interval subdivision process by rearranging the order 
of subintervals to obtain a better average cost for random number 
generation.  Experiment results are presented to demonstrate that 
our refinements perform better than the original interval 
algorithm. 
Key words: 
Random number generation, coin flipping, interval algorithm. 

1. Introduction 

When we flip a coin, if it turns heads with a probability p, 
then we call it a p-coin.  If p = 1/2, then we call the coin 
unbiased.  In this paper, we address the problem of coin 
flipping: given two real numbers p, r ∈ [0, 1), simulate an 
r-coin using a p-coin.  The p-coin is called source, and the 
r-coin is called target. 

The trick of von Neumann [10] is a classical example of 
coin flipping problem.  Let H and T be the events for 
heads and tails, respectively.  Flip the biased coin twice; if 
the result is HT (respectively TH), then output 0 (1), 
otherwise, (the events HH and TT) ignore the result and 
repeat the process.  The probabilities that we get 0 and 1 
are the same as Pr[HT] = Pr[TH] = pq.  Hence, this 
method simulates an unbiased coin.  Note, in this case, that 
von Neumann’s trick works regardless of the source bias p. 

Coin flipping is a subproblem of random number 
generation, in which we are concerned with generating an 
m-valued distribution r = <r1, . . . , rm> using an n-valued 
distribution p = <p1, . . . , pn> as source.  Most of early 
works on random number generation focused on the case 
where the source distribution is unknown, including von 
Neumann’s trick.  Elias [2], Hoeffding and Simon [4], 
Stout and Warren [9], Peres [8], Dijkstra[1], and Pae and 
Loui [7] improved or generalized von Neumann’s method 
in the case where the source distribution is unknown. 

When the source distribution is known, of course, we can 
pretend that we do not know the distribution and apply one 
of the above methods.  However, we should be able to take 
advantage of the knowledge of source distribution to 
improve in terms of the efficiency in usage of source.   

Knuth and Yao [5] presented an elegant method to 
generate an arbitrary discrete probability distribution using 
an unbiased coin as a source and proved that their method 
is optimum in terms of the required average number of 
source coin flip to generate a target distribution.  

As a first solution to the random number generation in the 
full generality, Han and Hoshi [3] proposed interval 
algorithm, which regards the source and target 
distributions as partitions of a unit interval and solves the 
problem, roughly speaking, by iteratively subdividing the 
target partition and approximating the target intervals by 
unions of small source subintervals.  Moreover, their 
method generalizes Knuth-Yao method: in the case that 
the source is an unbiased coin, the interval algorithm 
reduces to the Knuth-Yao method.  Hence, when the 
source is an unbiased coin, the interval algorithm is 
optimum.  However, when the source distribution is not 
uniform, the interval algorithm does not seem to be 
optimal.  In fact, Han and Hoshi [3] mention possible 
improvements of their method by rearranging the order of 
the subintervals and leave it as an open question.  In their 
paper, the order of approximating subintervals of source 
distribution is fixed over all the iteration steps, and the 
improvement by changing the order seems very plausible. 

In this paper, we investigate this question of improving 
interval algorithms in the context of coin flipping.  We will 
present three versions of interval algorithm including the 
plain Han-Hoshi version.  We present experiment results 
and compare the performances in terms of the average 
number of source coin flips, which we call the average 
cost, to generate one output.   

2. Coin Flipping with Han-Hoshi Interval 
Algorithm 

In this section, we discuss interval algorithms for the coin 
flipping problem for generating r-coin using p-coin. The 
symbols p and r are always the source bias and target bias, 
respectively.  We also fix notations for tails probability for 
the source and target as follows: q = 1 − p and s = 1 − r. 
Also, assume that p < 1/2. 

Han-Hoshi interval algorithm starts with a unit interval 
partitioned in proportion to the target distribution. So in 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010 
 

 

56

our problem of coin flipping, we consider an interval 
partition [0, r) ∪ [r, 1] as follows: 

 

(1) 

 

We will call the two subintervals of the partition r-interval 
and s-interval, respectively. Now consider another 
partition made of source subintervals, [0, p) ∪ [p, 1]:  

 

  (2) 

 

Again, we call these subintervals p-interval and q-intervals, 
respectively. In the above examples, the p-interval is 
included in the r-interval.  In this case, the included 
interval is crossed out, and the remaining q-interval is 
partitioned further into two subintervals [p, r) and [r, 1] 
and they become the target interval for the next iteration: 

 

(3) 

 

In terms of coin flipping, this process corresponds to the 
following tree: 

 

 

 

 

The tree represents a coin flipping process “flip the source 
coin; if it turns heads, output 0; otherwise, flip again and 
process according to the right subtree T′.”  The left edge is 
taken for heads and the right edge is taken for tails.  Now 
the subtree T′ corresponds to the subdivision starting from 
the remaining q-interval in (3), which is partitioned into 
the ratio r − p : s.  From this point, we solve the coin 
flipping problem for the new target (r −p)/q with the same 
source p.  Han-Hoshi interval algorithm proceeds by 
repeating subdivision as in (3) with a new target resulting 
from the previous iteration. 

Depending on the values of p and r, Han-Hoshi 
subdivision considers three different cases shown in Figure 
1.  We call them rules for the plain interval algorithm, and 
the three rules completely describe the subdivision 

algorithm together with the iteration process explained 
above. 

 

Fig. 1 The plain Han-Hoshi subdivision rules. 

In case p > r, the q-interval is crossed out, and the 
remaining p-interval becomes the next target interval.  If p 
= r, the target partition and source partition are the same 
and both source subintervals are crossed out, and the 
interval algorithm terminates.  In this case, “flip the source 
coin; if it turns heads, output 0; otherwise, output 1.” 

In order to see how this algorithm works with a real 
example, consider the case where p = 1/3 and r = 1/2.  
Figure 2 shows the subdivision process.  

 

 

Fig. 2 Han-Hoshi subdivisions for p=1/3 and r=1/2 . 

 

In the example shown in Figure 2, the target subintervals 
are [0, 1/2) and [1/2, 1] and they are approximated by the 
union of source subintervals in each iteration, that is, [0, 
1/2) = [0, 1/3) ∪ [1/3, 11/27) ∪ [11/27, 37/81) ∪ [37/81, 
119/243) ∪ · · · , and [1/2, 1] = [5/9, 1) ∪ · · · .   The 
approximating subintervals for [0, 1/2) correspond to the 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010 
 

 

57

 

output 0, and the size of the approximating subinterval is 
the probability of the output event occurs.  Hence, the 
probability that the corresponding coin flipping process 
outputs 0 is 1/2.  The same holds for the other starting 
target subinterval [1/2, 1].   The corresponding tree is as 
follows: 

 

 

 

(4) 

 

 

 

 

 

The average cost of coin flipping is the average number of 
source coin consumed to generate one output.  If the coin 
flip process is represented as a tree, then the average cost 
is the average depth of the tree in which the left edge is 
weighted by p and the right edge q.  The average cost of 
tree (4) is about 2.25.  Note that, in view of the plain 
interval algorithm rules in Figure 2, the output 0 occurs 
only on the left edge (heads of the source coin), and output 
1 always occur on the right edge (tails of the source coin). 

3. Refinements of Interval Algorithms 

3.1 Algorithm A 

An improvement that we can make on the plain interval 
algorithms is as follows.  Consider the case p = s (and thus 
q = r).  Since, in that case, p < r, the plain interval 
algorithm will result in a tree of the form  

 

 

 

and its average cost is larger than 1 depending on the value 
of p.  However, the following tree is clearly a better choice 
since its average cost is 1: 

 

 

In terms of the interval subdivision, we can represent this 
rule as follows: 

 

(5) 

 

and it refines the plain interval algorithm.  Note, in this 
rule, that the order of source subintervals is reversed.  
Similarly, the 0 output occurs on the right edge of the 
corresponding tree. 

Now let us consider another rule that takes advantage of 
reversing the order of the source subintervals.  When q < r 
(therefore, r > s), we can cross out q-interval, instead of p-
interval from r-interval:  

 

(6) 

 

 

This rule again refines the plain interval algorithm.  Again, 
the corresponding tree has an output 1 on the left edge, as 
opposed to the plain interval algorithm.   

Now, we define Algorithm A to be a new interval 
algorithm that consist of the rules of the plain interval 
algorithms in addition to the rules (5) and (6). 

Figure 3 shows the subdivision process by Algorithm A 
for the same source and target as in Figure 2.  We can 
view that rule (6) is better because it crosses out the bigger 
subinterval whenever it can, hence resulting in smaller 
average cost.  Indeed, as we can see in Figure 3, the target 
intervals shrink more quickly.  

 

 

Fig. 3 Subdivisions by Algorithm A for p=1/3 and r=1/2. 

 

The resulting tree from the subdivision process in Fig. 3 is 
as follows: 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010 
 

 

58

 

 

 

 

 

 

 

Its average cost is 15/7, which is smaller than that of (4).   

Figure 4 shows the average costs of the resulting trees 
from the plain interval algorithm and Algorithm A for p = 
1/3 and 0 < r < 1.  The dashed line is for the plain interval 
algorithm, and the performance of Algorithm A is always 
better or equal.  Although the result is for p = 1/3, we can 
show similar result for other values of p.   

Note that the average cost of Algorithm A shows a fractal-
like behavior, while the graph for the plain interval 
algorithm is a straight line.  The graphs were drawn by 
computing the average cost for the values of r = k 1/210 , 
k=0,1,…,210 .   There are values of r, for example 1/3, that 
results in average depth 1.  But the graph does not show 
those values, and if the graph of the average cost of  
Algorithm A is indeed a fractal, then it will be impossible 
to draw all the infinitely many discontinuities correctly.  
We will see a similar behavior with Algorithm B that we 
discuss below. 

 

0.2 0.4 0.6 0.8 1.0
r

1.8

2.0

2.2

2.4

2.6

2.8

3.0
Average Cost

 

Fig. 4 Comparison of plain interval algorithm and Algorithm A. 

 

3.2 Algorithm B 

Now consider the rules in Figure 5 that replace the rule of 
the previous two algorithms, the plain interval algorithm 

and Algorithm A, for the case (p < r). The resulting 
algorithm, which we call Algorithm B, crosses out the p-
interval when p is smaller than both target subintervals.  
When r ≤ s, the effect is the same as the rule that is 
replaced. But when r > s, the p interval removes part of the 
s-interval. By doing so, the next target distribution has the 
smaller entropy compared to the other case.  Although this 
heuristic seems to work for many cases but it does not 
always result in subdivision process with smaller average 
cost than Algorithm A.   

 

 

 

Fig. 5 New rules for Algorithm B  

 

Figure 6 shows the performance comparison of the plain 
interval algorithm and Algorithm B for p = 1/3 and 0 < r < 
1.  Algorithm B shows superior performance.   

 

0.2 0.4 0.6 0.8 1.0
r

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0
Average Cost

 

Fig. 6 Comparison of plain interval algorithm and Algorithm B. 

 

An apparent observation is that the average cost of 
Algorithm B is symmetric with respect to the target bias r.  
In terms of the average cost with respect to the target bias, 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010 
 

 

59

 

the plain interval algorithm is totally asymmetric, and 
Algorithm A is more symmetric but not fully symmetric.  
An explanation comes from the symmetry of the rules 
employed by the algorithms.  The rules of the plain 
interval algorithm are asymmetric with respect to r.  And 
two additional rules of Algorithm A recover the symmetry 
of the rules of the plain interval algorithm.  And the rules 
of Algorithm B fully recover the symmetry. 

Figure 7 shows the performance comparison of the 
Algorithm A and Algorithm B.  The latter performs 
generally better, although there are cases where Algorithm 
A is better. 

 

0.2 0.4 0.6 0.8 1.0
r

1.6

1.8

2.0

2.2

2.4

Average Cost

 

Fig. 7 Performance comparison of Algorithm A and Algorithm B. 

4. Conclusion and Remarks 

We discussed Han-Hoshi interval algorithm in the context 
of coin flipping problem. We presented two refinements of 
the original plain interval algorithm and demonstrated that 
both algorithms perform better in terms of the average cost.  
If we are to choose among the two algorithms, Algorithm 
B is probably a better choice since it generally performs 
better.  Although we presented the experiment results for 
the case p = 1/3, we reach the same conclusion from more 
experiments that shows consistent results. 

The idea that we employ to get Algorithm A and B, to 
improve upon the plain interval algorithm, is that it is 
better to cross out q-interval whenever possible.  In doing 
so, we change the order of the source subintervals if 
necessary.  To improve upon Algorithm A, Algorithm B 
removes p-interval from a smaller target subintervals, 
which results in a smaller entropy of the next target.   
While the first idea always improves the performance, the 
second idea does not guarantee improvement though it 
gives better results in general.  These two ideas provide 
guidelines for what Han and Hoshi’s original work [3] 
have left as a future work, namely, the problem of how to 

suitably permute the subintervals to get a better 
performance. 

Although we can improve the performance of the interval 
algorithms, the question of optimality still remains.  As we 
observed, neither Algorithm A nor B is optimal.  We can 
possibly get a better interval algorithm, for at least a fixed 
value of p, say 1/3, by identifying the ranges of r where 
Algorithm A is better than Algorithm B, and then 
employing the better algorithm for given r.  The resulting 
algorithm will be a further refinement of both, and as an 
interval algorithm it will have much more elaborate rules. 
Still, we do not know whether it will be optimal.  In fact, 
Pae and Loui [6] showed that it is impossible to get an 
optimal coin flipping using branching decision based on 
algebraic computation.  So the above refinement cannot be 
optimal, and by rearranging the order of subintervals we 
cannot obtain an optimal interval algorithm. 

Acknowledgment 

This work was supported in part by a Hongik University 
research grant and National Research Foundation of Korea 
Grant funded by the Korean Goverment (2009-0077288). 

References 

[1] Edsger W. Dijkstra. Making a fair roulette from a possibly 
biased coin. Information Processing Letters, 36:193, 1990. 

[2] Peter Elias. The efficient construction of an unbiased 
random sequence. The Annals of Mathematical Statistics, 
43(3):865–870, 1972.  

[3] Te Sun Han and Mamoru Hoshi. Interval algorithm for 
random number generation. IEEE Transactions on 
Information Theory, 43(2):599–611, 1997. 

[4] W. Hoeffding and G. Simons. Unbiased coin tossing with a 
biased coin. The Annals of Mathematical Statistics, 41:341–
352, 1970. 

[5] Donald E. Knuth and Andrew C-C. Yao. The complexity of 
nonuniform random number generation. In Joseph F. Traub, 
editor, Algorithms and Complexity: New Directions and 
Recent Results. Proceedings of a Symposium, pages 357–
428, New York, NY, 1976. Carnegie-Mellon University, 
Computer Science Department, Academic Press. Reprinted 
in Knuth’s Selected Papers on Analysis of Algorithms (CSLI, 
2000). 

[6] Sung-il Pae and Michael C. Loui. Optimal random number 
generation from a biased coin. In Proceedings of the 
Sixteenth Annual ACM-SIAM Symposium on Discrete 
Algorithms, pages 1079–1088, January 2005. 

[7] Sung-il Pae and Michael C. Loui. Randomizing functions: 
Simulation of discrete probability distribution using a source 
of unknown distribution. IEEE Transactions on Information 
Theory, 52(11):4965–4976, November 2006. 

[8] Yuval Peres. Iterating von Neumann's procedure for 
extracting random bits. Annals of Statistics, 20(1):590-597, 
1992. 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010 
 

 

60

[9] Quentin F. Stout and Bette Warren. Tree algorithms for 
unbiased coin tossing with a biased coin. Annals of 
Probability, 12(1):212–222, 1984. 

[10] John von Neumann. Various techniques for use in 
connection with random digits. Notes by G. E. Forsythe. In 
Monte Carlo Method, Applied Mathematics Series, volume 
12, pages 36–38. U.S. National Bureau of Standards, 
Washington D.C., 1951. Reprinted in von Neumann’s 
Collected Works 5 (Pergammon Press, 1963), 768–770. 
 

 
Sung-il Pae received the B.S. degree in 
Mathematics from Seoul National 
University in 1993, M.S. degree in 
Mathematics from University of Illinois at 
Urban-Champaign in 1997, and Ph.D. 
degree in Computer Science from 
University of Illinois at Urban-Champaign 
in 2005.  During 2005-2007, he stayed at 
Korea Institute for Advanced Study before 

he joined Computer Engineering department of Hongik 
University, Seoul, Korea.  His research interest includes 
Algorithms and Theoretical Computer Science. 


