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Summary 
Classifying galaxy information is one of the most important 
challenges for astronomers as it can provide important clues 
about the origin and evolution of the universe. In this paper; the 
performance of ten artificial neural networks (ANNs) based 
classifiers was evaluated and tested, based on a selected set of 
features. These features were extracted in frequency and wavelet 
domain; and then divided into three categories: (i) Fourier 
transform based; (ii) Cosine transform based, and (iii) wavelet 
transform based. The number of features in each category was 
determined empirically. The results showed that; (i) the support 
vector machine provided the best results with Fourier based 
features; (ii) the Jordan/Elman network (JEN) provided the best 
results in cosine and wavelet based features. In general, the 
cosine transform based features with JEN classifier provided the 
best results among all transformed based classifiers; about 
0.45718% error in classification. The data set was taken from 
standardized catalogue from Zsolt Frei website. 
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1. Introduction 

 Galaxies have a wide variety of appearances. Some are 
smooth and some are lumpy. Another some have a well-
ordered symmetrical spiral pattern, while others are diffuse, 
patchy, and irregular. For many decades, astronomers have 
tried to find the underlying order in the diverse properties 
of galaxies. This desire has led to the development of the 
Hubble sequence; a system of classification that groups 
galaxies into a series of types, based only on images; Fig.1 
is the famous Hubble tuning fork diagram. Although the 
Hubble sequence is used to classify galaxies solely on the 
basis of images seen through a single filter (i.e. images 
that would appear to be black and white if printed), 
astronomers have found that many other properties of the 
galaxies, such as their colours and spectra, also correlate 
with their Hubble classification. In other words, galaxies 
that differ structurally or morphologically also tend to 
differ in their colours and spectral properties. The origin of 
this remarkable correlation is still not understood [1, 2]. 
 

1.1The Hubble Classification Scheme 
  
Morphological galaxy classification is a system used by 
astronomers to classify galaxies based on their structure 
and appearance. The most common classification scheme 

is the system devised by Sir Edwin Hubble in 1936; he 
proposed the following classifications: (i) Elliptical: E0, 
E3, E5, and E7; (ii) Spiral: S0, Sa, Sb, Sc, and Sd; (iii) 
Barred spiral: SBa, SBb, and SBc; and (iv) Irregular: Im, 
and Ibm. Galaxies which fall early in this sequence are 
sometimes called early-type and galaxies near the end of 
the sequence are called late-type. A galaxy's Hubble type 
is based on the prominence of many different features, 
some of which are labelled in Fig.1. The most important of 
these features are: (i) the size of the bulge compared to the 
disk. Galaxies with a strong bulge but no detectable disk 
are classified as elliptical; denoted as 'E'. Galaxies with 
disks but no detectable bulges are classified as late-type 
spirals 'Sd' or irregulars 'Irr'. In between these two 
extremes are galaxies with both disks and bulges. These 
are classified as 'S0', 'Sa', 'Sb', and 'Sc', with galaxies of 
smaller bulges appear later in this sequence; (ii) the 
presence or absence of spiral arms. Galaxies with spiral 
arms are   classified as 'Sa', 'Sb', 'Sc', and 'Sd'. Galaxies 
with smooth disks, but no spiral arms, are classified as 'S0'. 
Galaxies with lumpy irregular disks, but without spiral 
arms, are classified as irregulars 'Irr'; (iii) the tightness of 
the spiral arms: in early-type galaxies 'Sa', 'Sb', the spiral 
arms are very tightly wound around the galaxy. In many 
cases the arms are so tightly wound that one could not 
count how many spiral arms are present. In "late-type" 
galaxies 'Sc', 'Sd', the spiral arms are open and very loosely 
wound, making it easy to trace a spiral arm outwards from 
the center of a galaxy; (iv) the lumpiness of the spiral 
arms: the spiral arms of early-type galaxies tend to be very 
smooth, with few lumps. The spiral arms of late-type 
galaxies 'Sc', 'Sd' tends to be very lumpy. The lumps are 
actually compact regions of star formation known as HII 
regions, and (v) the presence or absence of bars: many 
spiral galaxies have linear   arrangements of stars in their 
central regions that are distinct from the central bulge. 
These features are known as 'bars'. Spiral galaxies with 
bars are denoted with a capital 'B' after the initial 'S', so 
that a Sa galaxy with a bar is classified as a SBa, 'B' is 
always capitalized for barred galaxies [3]. 
 

1.2 Understanding Galaxy images 
  
Two images of the same spiral galaxy are shown in Fig.2. 
The left panel shows the Familiar image that you would 
see if you took a picture of the galaxy through a single 
filter.  The image on the right shows the "negative" (or 
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"inverse") of the image on the left. The negative image has 
been altered so that dim parts of the original image are 
now white, and bright parts are now dark. Astronomers use 
these “negative” images to classify galaxies, because they 
typically show more detail than the more traditional 
“white-on-black" view. 
 

 

 
 
1.3 System Architecture 
 
The architecture of the system; shown in Fig. 3, is divided 
into four main phases: (i) image pre-processing; (ii) feature 
extraction; (iii) machine learning, and (iv) classification. In 
the image pre-processing phase, each galaxy is 
individually scaled, rotated, cropped, and centred to appear 
uniform for more accurate feature extraction. Then, in 
feature extraction, the dimension of the data has been 
reduced and thus retaining the most salient features using 
many techniques. In the machine learning and 
classification phase; we have used ANNs based classifiers 
to make learning process from these features. 

2. Data Collection 

The images used in this paper were obtained from the 
Zsolt Frei Catalogue provided by the department of 
Astrophysical Sciences at Princeton University [4]. This 
catalogue contains approximately 113 different galaxy 
images and is often used as a benchmark for astronomical 
study as the images are carefully calibrated. Taking into 
account the occurrence of galaxies and charged coupled 
device (CCD) camera multiple images stacking and 
supported by Sloan Digital Sky Survey (SDSS) [5]. 
 These 113 galaxies were divided into two categories: (i) 
31 galaxies were taken with the 1.5m telescope of the 
Palomar observatory in 1991, and (ii) 82 galaxies were 

taken with the 1.1m telescope of the Lowell observatory in 
1989. At Palomar the acquisition process was 
accomplished using a camera with a resolution of 800×800 
TI CCD, on the other hand, at Lowell the camera had a 
resolution of RCA 512×320 CCD. Palomar images are 
available in three passbands of the Thuan-Gunn system: g, 
r, and i. Lowell images are in two passbands (J and R) of 
the filter system developed by Gullixon et al. [6]. 134 
images were randomly chosen from the catalogue to 
evaluate the performance of used techniques taking in 
account 30% of the selected images for the testing process. 
 The selected dataset of the Zsolt Frei catalogue has the 
following features: (i) high resolution; (ii) good quality, 
and (iii) careful calibration. Due to these characteristics, 
there will be no need for the preprocessing phase; image 
enhancement, histogram equalization, gamma correction, 
and debluring, in the proposed system. Hence, the 
following processing algorithms are performed to the raw 
dataset. 

3. Performance Indices 

Four different measures have been used to evaluate the 
performance of the ANN-based classification techniques: 
(i) mean-square-error (MSE); (ii) normalized mean-
square-error (NMSE); (iii) correlation coefficient (r), and 
(iv) error percentage (%error). The mean squared error of 
an individual case (i) is evaluated by the equation: 
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The correlation coefficient(r) is a quantity that gives the quality 
of a least squares fitting to the original image. For two data sets 
x, y; the auto correlation is given by: 

   
( ) ( )yxyxr σσ ×= /,cov                                    (3) 

where  σx and σy are the standard deviation of image x and y. 
Finally; the error percentage is calculated as the percentage 
difference between the measured value and the accepted value. 

4. FEATURE EXTRACTION 

Feature extraction phase is generally used to reduce galaxy 
data dimensionality. In this paper three basic feature 
extraction techniques were extracted for the selected 
database of galaxy images [6]. 

Fig. 2 Two Images of the Same Spiral Galaxy 

Fig.1 Hubble's Tuning Fork Diagram 
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4.1 Discrete Fourier Transform (DFT)  
 
 A DFT decomposes a sequence of values into 
components of different frequencies. This operation is 
useful in many fields but computing it directly from the 
definition is often too slow to be practical. Fast Fourier 
Transform (FFT) is a way to compute the same result more 
quickly; so FFT is an efficient algorithm to compute DFT, 
and it's inverse [7]. The sequence of N spatial complex 
coefficients x0, x1…xN-1 is transformed into the sequence 
of N frequency complex coefficients X0, X1…XN-1 by DFT 
according to the formula: 
   (4) 
 
4.2 Discrete Cosine Transform (DCT) 
 
 A DCT expresses a sequence of finitely data points in 
terms of a sum of cosine functions oscillating at different 
frequencies however the use of cosine rather than sine 
functions turns out that cosine functions are much more 
efficient; due to: (i) energy compaction; (ii) decorrelation; 
(iii) separability; (iv) symmetry; and (v) orthognality. The 
DCT, and in particular the DCT-II, is often used in signal 
and image processing. The DCT is given according to the 
formula: 
  (5) 

The DCT-II implies the boundary conditions: xn is even 
around n=-1/2 and even around n=N-1/2; Xk is even around 
k=0 and odd around k=N [8]. 
 
4.3 Discrete Wavelet Transform (DWT) 
  
The wavelet transform has gained widespread acceptance in 
signal and image processing; because of their inherent 
multiresolution nature. Wavelet-coding schemes are 
especially suitable for applications where scalability and 
tolerable degradation are important.  

 The most commonly used wavelets were formulated by 
the Belgian mathematician Ingrid Daubechies in 1988. This 
formulation is based on the use of recurrence relations to 
generate progressively finer discrete samplings of an implicit 
mother wavelet function; each resolution is twice that of the 
previous scale [9]. The DWT of a signal (x) is calculated by 
passing it through a series of filters. First the samples are 
passed through a low pass filter with impulse response (g) 
resulting an output that given by: 
  (6) 
 The signal is also decomposed simultaneously using a 
high-pass filter; h. The outputs are then divided into: (i) 
detail coefficients; from the high-pass filter, and (ii) 
approximation coefficients; from the low-pass. It should be 
noted that, the two filters are related to each other and they 
are known as a quadrature mirror filter.  However, half the 
frequencies of the signal have now been removed and half 
the samples can be discarded according to Nyquist’s rule. 
The filter outputs are then sub sampled by 2 as follow: 
   (7) 
   (8) 
 This decomposition has halved the time resolution since 
only half of each filter output characterizes the signal. 
However, each output has half the frequency band of the 
input so the frequency resolution has been doubled, Fig.4. 
This decomposition is repeated to further increase the 
frequency resolution and the approximation coefficients 
decomposed with high and low pass filters and then down-
sampled. This is represented as a binary tree with nodes 
representing a sub-space with different time-frequency 
localization. The tree is known as a filter bank as shown in 
Fig.5. For the galaxy images the proposed coefficients are 
extracted using the technique showed in Fig.6. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

5. Galaxy Classification Techniques 

  An institutive goal of classification is to discriminate 
between stars and galaxies, while a more ambitious goal 
may be to classify different galaxy types or to measure 
structural properties of these galaxies. The end product of 

Fig.4. block diagram of filter analysis 

Fig.5. an example for 3 level filter bank 
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classification is a source catalogue which lists the sources 
and their properties. There is a large number of ANNs 
based classifiers however the performance of ten of them 
will be evaluated and assessed. 
 
 
 
 
 
 
 
 

 
 
 
 

 

5.1 Multilayer Perceptron (MLP) 
 
 MLP is a layered feed forward networks typically 
trained with static back propagation [10]. These networks 
have found their way into countless applications requiring 
static pattern classification. Their main advantage is that 
they are ease to use, and that they can approximate any 
input/output map. The key disadvantages are that they 
train slowly, and require lots of training data (typically 
three times more training samples than network weights). 
 
5.2 Generalized Feed-Forward (GFF) 
  
GFF networks are a generalization of the MLP such that 
connections can jump over one or more layers. In theory, a 
MLP can solve any problem that a generalized feed-
forward network can solve. In practice, however, GFF 
networks often solve the problem much more efficiently. It 
suffices to say that a standard MLP requires hundreds of 
times more training epochs than the GFF network 
containing the same number of processing elements [11]. 
 
5.3 Modular Neural Network (MNN) 
 
 MNN networks are a special class of MLP. These 
networks process inputs using several parallel MLPs, and 
then recombine the results. This tends to create some 
structures within the topology, which will foster 
specialization of function in each sub-module. In contrast 
to MLP modular networks don’t have full 
interconnectivity between their layers [12]. 
 Therefore, a smaller number of weights are required for 
the same size network. This tends to speed up training 
times and reduce the number of required training 
exemplars. There are many ways to segment a MLP into 
modules. It is unclear how to best design the modular 
topology based on the data. There are no guarantees that 
each module is specializing its training on a unique portion 
of the data. 

   
5.4 Jordan/Elman Network (JEN) 
 
 Jordan and Elman networks extend the multilayer 
perceptron with context units, which are processing 
elements (PEs) that remember past activity. Context units 
provide the network with the ability to extract temporal 
information from the data. In the Elman network, the 
activities of the first hidden PEs are copied to the context 
units, while the Jordan network copies the output of the 
network. Networks which feed the input and the last 
hidden layer to the context units are also available [13]. 
 
5.5 Principal Component Analysis (PCA) Network 
 
 Principal component analysis networks (PCAs) combine 
unsupervised and supervised learning in the same 
topology. Principal component analysis is an unsupervised 
linear procedure that finds a set of uncorrelated features, 
principal components, from the input. A MLP is 
supervised to perform the nonlinear classification from 
these components [14]. 
 
5.6 Radial Basis Function (RBF) Networks 
 
 Radial basis function (RBF) networks are nonlinear 
hybrid networks typically containing a single hidden layer 
of processing elements. This layer uses Gaussian transfer 
functions, rather than the standard sigmoidal functions 
employed by MLPs. The centres and widths of the 
Gaussians are set by unsupervised learning rules, and 
supervised learning is applied to the output layer. These 
networks tend to learn much faster than MLPs. If a 
generalized regression (GRNN) probabilistic (PNN) net is 
chosen, all the weights of the network can be calculated 
analytically. In this case, the number of cluster centres is 
by definition equal to the number of exemplars, and they 
are all set to the same variance [15]. 
 
5.7 Self Organized Maps (SOMs) 
 
 Self-organizing maps (SOMs) transform the input of 
arbitrary dimension into a one or two dimensional discrete 
map subject to a topological (neighbourhood preserving) 
constraint. The feature maps are computed using Kohonen 
unsupervised learning. The output of the SOMs can be 
used as input to a supervised classification neural network 
such as the MLP .This network's key advantage is the 
clustering produced by the SOM which reduces the input 
space into representative features using a self-organizing 
process. Hence the underlying structure of the input space 
is kept, while the dimensionality of the space is reduced 
[16]. 
5.8 Time Lagged Recurrent Networks (TLRNs) 
 

Fig.6. 2D DWT for galaxy image 
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 Time lagged recurrent networks (TLRNs) are MLPs 
extended with short term memory structures. Most real-
world data contains information in its time structure, i.e. 
how the data changes with time. Yet, most neural networks 
are purely static classifiers. TLRNs are the state of the art 
in nonlinear time series prediction, system identification 
and temporal pattern classification [17]. 
 
5.9 Recurrent Networks (RNs) 
 
 Actually, there are two types of recurrent networks: (i) 
fully recurrent networks feedback the hidden layer to itself 
and (ii) partially recurrent networks start with a fully 
recurrent net and add a feed forward connection that 
bypasses the recurrency, effectively treating the recurrent 
part as a state memory. These recurrent networks can have 
an infinite memory depth and thus find relationships 
through time as well as through the instantaneous input 
space. Most real-world data contains information in its 
time structure. Recurrent networks are the state of the art 
in nonlinear time series prediction, system identification, 
and temporal pattern classification [18]. 
 
5.10 Support Vector Machine (SVM) 
  
Support Vector Machine (SVM) is implemented using the 
kernel Adatron algorithm. The kernel Adatron maps inputs 
to a high-dimensional feature space, and then optimally 
separates data into their respective classes by isolating 
those inputs which fall close to the data boundaries. 
Therefore, the kernel Adatron is especially effective in 
separating sets of data which share complex boundaries. 
SVMs can only be used for classification, not for function 
approximation [19]. 
 
6. Results 
  
The performances of all tested ANN-based classifiers were 
evaluated through four performance indices; MSE; NMSE; 
r, and %Error. Table.1 through Table.10 illustrates the 
results of the ten discussed ANN classifiers. All these 
classifiers are trained with the following parameters: (i) 10 
processing elements; (ii) one hidden layer, and (iii) 1000 
epochs. As a result of the comparative study it has been 
found that:(i) the DFT features were applied to all ANN-
based classifiers, it was found that; the classifier based on 
SVM provides the best results: MSE=0.00836; 
NMSE=0.01141; r=0.99846, and %Error=1.13857, (ii) the 
DCT features were applied to all ANN-based classifiers, it 
was found that; the classifier based on JEN provides the 
best results: MSE=0.00311;NMSE=0.00524;r=0.99798, and 
Error= 0.45718, and (iii) the DWT (based on dB2 and one 
level decomposition) features were applied to all ANN-
based classifiers, it was found that; the classifier based on 

JEN provides the best results: MSE=0.00442; 
NMSE=0.00747; r=0.99715, and %Error=0.67527. 
 On the other hand, the RBF based classifiers provides 
the worst results for all cases.Fig.7, Fig.8, Fig.9, Fig.10, 
Fig.11; and Fig.12 show the active cost of the learning and 
classification curves for these best cases discussed below 
respectively.  

Table.1: results of MLP classifier 
 DFT DCT DWT 

MSE 0.43849 0.07679 0.01364 
NMSE 0.73909 0.12944 0.02306 

r 0.49311 0.93913 0.99061 
% Error 13.0751 3.24279 1.00487 

 

Table.2: results of GFF classifier 
 DFT DCT DWT 

MSE 0.04831 0.01396 0.02958 
NMSE 0.08142 0.02353 0.05000 

r 0.95775 0.98436 0.97582 
% Error 3.00228 0.94146 1.76802 

 

Table.3: results of MNN classifier 
 DFT DCT DWT 

MSE 0.13445 0.04373 0.15087 
NMSE 0.22663 0.07372 0.25501 

r 0.87432 0.95995 0.85021 
% Error 5.68324 2.45103 5.81759 

 

Table.4: results of JEN classifier 
 DFT DCT DWT 

MSE 0.10777 0.00311 0.00442 
NMSE 0.18164 0.00524 0.00747 

r 0.88035 0.99798 0.99715 
% Error 4.24276 0.45718 0.67527 

 
 

Table.5: results of PCA classifier 
 DFT DCT DWT 

MSE 0.48388 0.31199 0.17576 
NMSE 0.81558 0.52586 0.29707 

r 0.39004 0.65896 0.81618 
% Error 15.1219 10.0772 6.07928 

 

Table.6: results of RBF classifier 
 DFT DCT DWT 

MSE 0.48144 0.56608 0.52590 
NMSE 0.81147 0.95414 0.88889 

r 0.43377 0.42383 0.42643 
% Error 15.1285 16.2810 15.9994 

 

Table.7: results of SOM classifier 
 DFT DCT DWT 

MSE 0.22028 0.46530 0.38146 
NMSE 0.37129 0.78428 0.64475 

r 0.80245 0.50135 0.60854 
% Error 7.44578 14.1873 11.7651 

 

Table.8: results of TLRN classifier 
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 DFT DCT DWT 
MSE 0.13128 0.11715 0.12257 

NMSE 0.22127 0.19746 0.20717 
r 0.89027 0.90200 0.89609 

% Error 2.99721 2.6699 2.92627 
 

Table.9: results of RN classifier 
 DFT DCT DWT 

MSE 0.24598 0.11507 0.24618 
NMSE 0.41460 0.19396 0.41610 

r 0.76844 0.90726 0.76889 
%Error 7.66501 3.7318 5.74637 

 

Table.10: results of SVM classifier 
 DFT DCT DWT 

MSE 0.00836 0.00890 0.01148 
NMSE 0.01141 0.01215 0.01572 

r 0.99846 0.99729 0.99405 
% Error 1.13857 1.13740 1.13858 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Conclusion 

 The process of classifying galaxy information has gained 
importance; with the growth of scope development and accurate 
database capturing. During, the past decade the analysis of 
galaxy information was concerned with morphological features 
as well as principal component analysis based features; or 
different combinations between them. In this thesis, we have 
developed ANN-based classifiers based on the transformed 
domain features.  As a result of the comparative study it was 

found that: (i) with DFT-features; the SVM provided the best 
results; (ii) with DCT-features; JEN provided the best results, and 
(iii) with DWT-features; JEN provided the best results. As a final 
conclusion, the DCT-features with JEN-based classifier provided 
the best results among all discussed classifiers: MSE=0.00311; 
NMSE=0.00524; r=0.99798, and %Error= 0.45718. 
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Fig.7. learning curve of DFT/SVM 
based classifier 

Fig.9. learning curve of DCT/JEN 
based classifier 

Fig.10. testing curve of DCT/JEN 
based classifier

Fig.11. learning curve of DWT/JEN 
based classifier 

Fig.12 testing curve of JEN based 
classifier 

Fig.8. testing curve of DFT/SVM 
based classifier 


