
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

97

Manuscript received February 5, 2010
Manuscript revised February 20, 2010

Adaptive Reusability Risk Analysis Model (ARRA)
1G.Singaravel 2 Dr.V.Palanisamy 3 Dr.A.Krishnan

1 Professor, 3 Dean, Department of CSE, K.S.R.College of Engineering, Tiruchengode,TamilNadu,India
2 Principal ,Info Institution of Engineering, Coimbatore, TamilNadu, India

Abstract
Software Engineering is a quality software producing strategy.
In which software development life cycle involves a sequence
of different activities during the development process. Coding
is the process of execution of the software with sample data to
ensure that the software works correctly without any opposite
motion of risk. Risk analysis is an uninfluenced process to find
out any error in software development life cycle as a precaution
for risk in software projects. Object Oriented Program is
different from the former because of its special features such as
Polymorphism, Inheritance, Data Abstraction, and
Encapsulation. Besides, in Object oriented language it is easy
to identify the relationship between the object, element,
attributes etc., Reusability is a precedent to the transformation
process of the objects from one project to another with similar
properties. Risk analysis helps to avoid the adaptive reusability
problem for transformation of coding. Its main feature is that it
encourages the concept of reusability which paves the way for
use of functions and packages. But certain risk might occur
during coding phase of programming in this methodology. This
research work has hence resulted in the design and
development of an analysis model termed as ARRA to deal
with this problem. This innovative model ARRA would be
useful for reducing the coding risk for software development
team which is particularly working under the C++, Java,
Objective-C and Smalltalk platform environment.
Key words:
Software Engineering, Risk Analysis, Object Oriented
programming, Set Theory.

1. Introduction

Risk is a major threat in any software development
process. Risk analysis thus helps in mitigating the risk
factors during the early stages of
development[1],[7]..Reusable components present in the
software have to be analysed for the risks and reuse[2].
Therefore, the Adaptive Reusability Risk Analysis
(ARRA) models need has been established.
‘ARRA’ model is to analyze the risks encountered
during the usage of reusable components in the system.
Reusable components play a vital role in considerably
reducing the development time of the system. This model
helps to analyse risk involved in the system after the
application of software reusable components. It
ascertains the various risks occurred in the system on
account of software reuse. It makes the system efficient

by focusing on all the relevant risks which occur due to
software reusable components and its impact.

2. Purpose of the Model

The main aim of this model is to search for similar
systems, find out the necessary software reusable
components which help to reduce the development time
and all the possible risk factors which are encountered
during the system development process. ARRA model
detects reusable related risk and makes adaptability
analysis in Figure 1.

Fig.1. Adaptive Reusability Risk Analysis Model

2.1. Model Description

2.1.1 Assay of Reusability Transformation

Reusability Transformation is the process of copying and
pasting a near similar code to the proposed system from
an existing system which reduces the complexity in the
code development. Reusability is the one which helps to
identify the similar codes present in the project which
perform similar functions when compared to the
functionalities of the proposed system. Identifying the
similar system which performs the same functions as the
proposed system. It helps to build the new system with
the same particulars. Reusability Transformation is the
process of utilizing the software code from one system to
another which performs the similar functionality and it
can examine the codes in a particular system which
performs the similar function as the target system is
termed as one which resembles like another. Assay of
reusability transformation is to ensure the reusability
software code before transformation to other system.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

98

2.1.2 Adaptability Risk Analysis

After identifying the reusability code which are to be
retrieved from the system, the various parameters such as
function name, return type of the function and number of
parameters which are to be used in the function are
determined.
The various parameters which include the essential
features such as return type of the function play a major
role in performing the various operations. Also it
includes the data type of the parameters, which are used
in the function and the number of parameters in the
function. Functions and parameters from the
development software are to meet the requirements of
the new software. This module checks the adaptability of
the software code with the system by taking the various
parameters into account. They make the system
comfortable for using the software reuse code in future.
The system comprises of various levels of matching
based on the number of matching parameters obtained
from the software code.

2.1.3 Risk Identification

Risk Identification is the process of finding out the
various risks which occur due to the reusable software
code which are identified and utilized in the system. The
possible risks which occur due to the reusable software
codes are analyzed and its impact of usage in the
proposed system. This process makes our system to find
out the risk and risk relevant measures which result in
the improvement of the system.

2.1.4 Impact Level of Risk

After identifying the risk in the system and its has to
analyze the impact level of risk in the system. The two
type of risk involved in software development are
Enervative and Destructive risk. This two type of Risk
can be defined in terms of its impacts level on the
software code before recognition of reusability.

Example: Program for Enervative and Destructive
risk

#include<iostream.h>
#include<conio.h>
void main()
{
int a,b,c;
clrscr();
cout<<"Enter two numbers";
cin>>a>>b;
for (int i=1;i<a;i++)
{
for (int j=1;j<b;j++)
{

cout<<i<<"*"<<j<<"="<<i*j<<"\n";
}
}
getch();
}

Enervative Risk is the risk which has its impact on the
system which leads to the reduction of efficiency of the
entire system. If an error occurs in the system, it reflects
by reducing the performance of the system. It executes in
a normal fashion such that it won’t affect the normal
execution. Rather it reduces the efficiency up to which
the system produces the outcome.
In above example program, the execution of the loop
depends on the value given for the integer variables in
the program which determines the execution time of the
program. This will leads to the reduction in the
efficiency of the system and achieving the expected
output is also delayed. Hence it is termed as Enervative
risk.

Destructive Risk is the risk which destructs the entire
system by generating the unexpected outcome from the
proposed system. These are the errors which make the
system inefficient by producing the wrong outcome
which entirely leads to the failure of the system.
In the above example program, the loop variable is
declared as char which produces wrong output to the
system. This leads to the destruction of the system and
hence the impact will continue throughout the system
due to its effect in the value of the variable by producing
the wrong output. Hence it is called as destructive risk.

Enervative and destructive risk gives a detailed idea for
the impact of the risk on the system and utilizing the
software code effectively to reduce these risks and
increases the efficiency of the system.

2.1.5 Risk Level Planning Methodology

According to the risk level, and it can plan the risk
reduction factor which helps to reduce the risk level can
be performed by focusing on the main effectively risk
which leads to many consecutive sub risk factors.

2.1.6 Risk Reduction

Risk can be reduced by reusing the code in the proposed
similar system. So, that it reduces the development time
and the risk factors. These reusable components can
reduce further risk occurrence in the future system
implementation.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

99

2.1.7 Recognition of Reusability Transformation

After identifying the Reusability software code
components, it will be tested for utilizing the reusability
in the future project. This helps to reduce the
development time and also supports the reusability
concept of Object Oriented programming Language. If it
is not recognized to reuse the software code, again it
takes iteration process until the adaptive of reusability.

3. Characteristics of the Model

ARRA model focuses mainly on the reusable
components which are identified from the group of
similar system which performs the similar functionality.
The Characteristics of the Model are

• The ARRA model offers the object oriented
system which helps to reuse the various
components of the system.

• It supports the similar system functionalities and
makes the system efficient and transferable.

• It focuses on the functions and packages which
are reusable and transferable

• It manages procedure oriented and structure
oriented systems by converting them into an
object oriented paradigm which produces an
efficient system which satisfies all user
requirements.

• It ensures the efficient functioning of the system
after the successful transformation of the
reusable components.

• It finds out all possible risk factors in the
reusable components.

• It is an iterative process, which reduces the risk
until the zero effective level is reached.

4. Tested Model Strategy

The following testing strategies are covered by the
ARRA model.

(i) Smoke Testing
(ii) Comparison testing
(iii) System testing
(iv) Regression testing
(v) Acceptance testing

4.1. ARRA Model Comparison with Different
Model

* The table 1., listed the comparison of ARRA model
with its working principle and its risk coverage of
different model[3] and it clearly understood that there is
no model available for Adaptive Reusability Risk
Analysis (ARRA) model.

Table 1: Comparison of ARRA model

Model
Name Year

Working
principle of

model

Risk
Coverage

G risk –
model 2006

Continuous
improvemen
t of software

processes
and

products.

Software
factories

ARAMS

(adaptable
risk

assessmen
t modeling

system)

2007

Computer
based

modeling
and

database –
driven

analysis
system

developed,
provides the

common
framework
for linking
disparate

model and
database.

Measuring
data, human

and
ecological.

ARRA
(Adaptive
Reusabilit

y Risk
Analysis)

Model

*
Propose

d
model

Adaptive
checking of

Reusable
components

in Object
Oriented

Programs.

Risk cover in
function in
C++ and

package in
JAVA for

reusable code
transformation

.

4.2. Object Oriented Programming Concept in
ARRA Model

Object oriented languages provide a standard class
library that can be extended by user, thus saving a lot of
coding and debugging effort[8].Object Oriented
Programming construction of reusable components easily
modify and extend implementation of components[5].
Code reuse is possible both in conventional language as
well as in Object oriented language and greatly enhances
the possibility of reuse.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

100

Table 2: Parameter performance of reusability component

S.N
o

Parameter of
Performance

Efficiency (PPE)

Reusable
component(
Functions)

in C++

Reusable
component(Pac
kages) in C++

1. CPU Utilization More More
2. Memory Utilization Moderate Moderate
3. Response Time High High

4. Staff experience
effort Less Moderate

5. Rework Effort Less Less

Add.cpp and Mypack. Java are the two programs which
are used as an example to analyse the various Parameter
performance for reducing the unnecessary efficiency by
using of reusable components function in C++ and
package in JAVA are listed in table 2.

5. Properties of Functions with Relation to
Set Theory

This property deals with the elements which are common
in nature with the proposed system and the old system. If
it so, then it can make use of that function in the
proposed system. It assures that when the elements of the
system are similar and it can utilize the function for
another system. Consider any two projects P1 and P2. In
the project P1, have to check the similar elements which
can be reusable in the project P2 through the reflective,
transitive and symmetric properties as given below:

1. Project P1 consists of swap functions which are reused
in the project P2 with some modifications like variable
name and function name. If it is reused without any
modification from P1 to P2 and that process is termed as
reflexive which is the replica of swap function. i.e.., A ⊆
A (Reflexive).
2. Project P1 contains the swap function which is reused
by the Project P2 and the same function can be used in
some other project say P3 which in turn gives that the
function from Project P1 can be directly used by the
Project P3. i.e., (A⊂ B) ∧ (B ⊂ C) ⇒ (A ⊂ C)
(Transitive).
3. Consider a system which consists of add (a, b)
function that accepts the input parameter from the user
which can be symmetric if and only if it gives the same
output for the two exchanged inputs a and b. i.e.., (a, b)
∈ R ⇒(b, a)∈ R for all a, b in set A. (Symmetric). Thus
the inclusion property is satisfied.

Reflexive, Transitive and Symmetric properties are
satisfied through the Project 1 and Project 2[9].

6. Results and Discussion

The Table3: Shows the properties that ensure before and
after the transformation of reusable components. Some
properties can be used in functions of C++ and some
other properties can be used in packages of JAVA. By
using this property of ARRA Model, reduces the risk
factor of the software coding. This reduces the overall
risk factors of the project by using reusability component
for cost reduction, time series reduction, finding the
enervative and destructive risk in software coding
development. This model also has an iteration process
until the recognition of transformation in reusability
component. This model ensures the effective functioning
of the system under various factors.

Table3: Properties for Ensuring the Reusability Component.

Before transformation
of reusability

After transformation of
reusability

(checklist after adaptability
of reusable components)

• Usability and plan
for reuse

• Understandability
and clarity for
transformation

• Interoperability
and inheritability
for testing of
transformation.

• Portability and
flexibility for if
any modification
or components
reused before
transformation

• Validity checking
for reusability

• modularity

• Coupling and
Cohesion

• Integra ability
• Extensibility
• Usability and clarity
• Correctness
• Understandability
• Reliability
• Portability
• Flexibility
• Testability
• Efficiency
• Validity
• Functionality
• Maintainability

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

101

References
[1] Boehm B. W. (1991), ‘Software Risk Management:

Principles and Practices’, IEEE Software, vol.8, no 1, pp.
32-41.

[2] Fairley R (1994), ‘Risk management for Software Projects’
IEEE Software, vol. 11, No.3, pp.57-67.

[3] Foo S. W. and Muruganantham A (2000), ‘Software Risk
Assessment Model’. Proc. of the 2000 IEEE International
Conference on Management of Innovation and Technology,
2, 536-544.

[4] Han Van Loon (2007), ‘A Management Methodology to
Reduce Risk and Improve Quality’, I T P r o f e s s i o n a l ,
pp. 30-35.

[5] Ivar Jacobson (1996), ‘Object-Oriented software
Engineering, A Use Case Driven Approach’, Revised
printing, Addison-Wesley.

[6] Jingwen Cheng (1994), ‘A reusability-based software
development Environment’, International Conference on
System Sciences, Vol. 19, No. 2, pp. 57-62.

[7] Pressman R.S. (2000), ‘Software Engineering: A
Practitioner’s Approach’, Fifth Edition, Mc Graw-Hill
International Edition.

[8] Ryder B.G., Mary Lou Soffa and Margaret Burnett (2005),
‘The impact of software engineering research on modern
programming languages’, ACM Transactions on Software
Engineering and Methodology, Vol. 14, No. 4, pp. 432- 477.

[9] Tremblay J.P and Manohar R (1989), ‘ Discrete
Mathematical Structures with application to Computer
Science’, McGraw Hill.

G.Singaravel received his B.E in
Electrical and Electronics
Engineering from kongu Engineering
college, Perundurai, Bharathair
University and Master Degree in
Computer science and Engineering
from Madurai Kamaraj University,
Madurai. He is doing her Ph.D in
Software Engineering at Anna
University, Chennai. He is at present

working as an Professor in the Department of Computer
Science and Engineering, K.S.R. College ofEngineering,
Tiruchengode, Namakkal District, Tamilnadu. He field of
interest is Software Engineering ,Computer Architecture .He is
a member of MISTE and MCSI.

Dr.V.Palanisamy received his B.E
degree in Electronics and
Communication Engineering from
PSG College of Technology,
Coimbatore and Master Degree in
Communication systems from
University of Madras. He also
received his Ph.D in Antennas
Theory from Indian Institute of
Technology, Karagpur. Since 1974

he has been working in various capacities in the Department of
Technical Education in Tamilnadu. He is at present working as
a Principal of Info Institute of Engineering, Coimbatore. His
field of interest is Electronics, Antennas, Image Processing,
Communication Systems and VLSI Technologies.

Dr.A.Krishnan received his PhD
Degree in Electrical Engineering
from IIT, Kanpur. He is a IEEE
senior member. He is now working
as a Dean at K.S.R. College of
Engineering, Tiruchengode and
guide at Periyar University, Salem
and Anna University, Chennai. His
research interest includes Control

System, Digital Filter, Power Electronics, Digital Signal
Processing, and Artificial Intelligent Techniques. He is a
visiting professor in ISTE chapter and at foreign universities.
He has been Published more than 250 technical papers at
various National and International Conferences and Journals.

