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Abstract 
Computer Graphics applications are passing through the 
problem of having complex polygonal surface models for the 
limited available hardware capacity. These models cause large 
processing time and less transmission speed.  There is a trade off 
between quality of these models and processing time. As we 
improve the quality of mesh the processing time increases and 
vice-versa. It is proposed to address this problem by simplifying 
the surface while maintaining its quality at run time. The 
algorithm uses iterative contractions of edges to simplify models. 
The main issue of edge contraction is to decide which edge to be 
contracted. This is answered by the use of quadric error matrices. 
Each edge is assigned with a quality attribute based on quadric 
error technique and the edges will be deleted on the “least 
quality contract first” basis. The proposed concept is 
implemented in MAYA API programming and complex models 
can be easily simplified through plug in. 
Keywords: 
surface simplification, edge contraction, quadric error metric, 
MAYA API. 

1. Introduction 

Polygonal surface models are used by computer graphics 
applications for display and simulation purposes. These 
models have large set of polygons; and to get more 
realism more numbers of polygons are required. But large 
amount of polygons i.e. large detail will challenge the 
hardware capability and lead to increase the processing 
time and transmission time. A focus is required to address 
this problem and to propose to simplify the high detailed 
polygon model into much simplified model. Simplified 
model should contain fewer numbers of polygons without 
compromising the quality of original model.  
In medical, scientific, entertainment, and computer aided 
design systems; polygonal models are commonly used for 
representation. In all these applications and many more, 
highly detailed and complex models are generally 
required. But to achieve acceptable running times and 
hardware capacity, simpler model should substitute the 
original detailed model. Recent work on polygonal 
simplification algorithms has focused on this goal. 
Different methods have been proposed in this context, like 
vertex clustering, polyhedral refinement, region merging, 

wavelet decomposition, decimation of vertex and 
contraction of edges. Care should be taken to find the cost 
of each edge and the least cost edge should be contracted 
first. 
Some predominant geometry like boundary features 
should not be simplified in order to sustain the basic 
quality of model. An error measuring techniques may be 
used to estimate the quality of the model at every step of 
simplifying algorithm. 

2. Related work 

2.1 Error metric methods: 

Error metric methods are used for assigning a quality 
attribute to every edge of the polygonal model. 
Some of the error metric methods are: 

2.1.1 Hausdroff error metric: 

Hausdroff error was used in order to improve the quality 
of polygonal simplification by Klein et al. [1] Hausdroff 
distance is a distance metric between point sets. Given 
two sets of points, A and B, the Hausdroff distance is 
defined as 
 
H (A, B)= max (h (A, B), h (B, A)) 
Where h (A, B) ≠ h (B, A).  
 
Because a surface is a particular type of continuous point 
set, Hausdroff distance provides a useful measure of the 
distance between two surfaces. 

2.1.2 Quadric error metric: 

Quadric error metric was used by Garland and Heckbert 
[2] for extending the quality of simplification. While 
calculating the error instead of taking only points on the 
surface for consideration, this uses geometric local 
information of the input surface.  
Each face in the original model defines a plane, which 
satisfies the equation 
nT. v+d=0 
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where n=[nx,ny,nz]T is a unit normal vector and d is a 
constant. The squared distance of a vertex v=[x,y,z] to this 
plane is given by  
 
D2  = [ nT.v+d ]2= (v Tn+d) (nTv+d) = vT(n 
nT)v+2dnTv+d2. 
 
This is a quadratic form, plus linear term, plus a constant. 
We can conveniently represent D2 using a quadric Q 
 
Q = (a,b,c) 
 
Therefore, if we are merging two vertices v1 and v2, the 
resulting quadric is merely the sum 
 
Q = Q1+Q2 
 
This defines the cost of a contraction error. This estimates 
about the distance error between the simplified and 
original object. 

2.1.3 Discrete differential error metric: 

Discrete differential error metric is based on the theory of 
local differential geometry in such a way that the first and 
second order discrete differential approximation is done 
locally. It is proposed by Sun–Jeong Kim [3]. Though 
previous error metric methods give visually pleasing 
results with a reasonably fast speed, it is hard to measure 
an accurate geometric error on highly curved and thin 
regions since error measured by distance metric is small 
in such cases and causes a loss of visually important 
features. To overcome such drawback, first and the 
second order discrete differentials are approximated to 
take care of slope and curvature preservation of surface 
features. 

2.2 Surface simplification methods: 

Surface simplification methods are broadly classified into 
two categories: 
 
• Refinement: These types of algorithms begin 
with coarse approximations and refine the approximation 
by adding up elements at each step. 
• Decimation: It is a reverse of refinement. The 
algorithms that use this methodology start with the fully 
detailed surface (finest level) and extracts elements at 
each step iteratively. 
 
Some of the polygonal simplification methods are: 
 

2.2.1 Manual Preparation 

Different details of surface model are constructed through 
human hand. Hence the process becomes more time 
consuming and having a lot of overheads.  

2.2.2 Polyhedral Refinement 

These algorithms use the refinement methodologies in 
background. But the decimation methodology has been 
much more widely used, because there are some practical 
difficulties associated with the refinement process. The 
coarse approximation must have the same topology as the 
original one which cannot be easily discovered in the 
beginning. 

2.2.3 Vertex Clustering 

The Vertex clustering algorithm was proposed by 
Rossignac and Borrel [4]. The cluster in which all the 
vertices have existed is divided uniformly. All vertices 
within each cluster are unified to a single representative 
vertex. Numerous vertex clustering algorithms have been 
proposed. Low and Tan [5] have proposed modified 
algorithm that uses floating clustering in place of uniform 
clustering, which enhances the consistency of 
simplification. Kanaya, Teshima, Nishio and Kobori [6] 
have proposed topology preserving simplification 
algorithm that uses depth first search tree on a vertex 
clustering algorithm. But it was observed that using 
clustering methods, the degree of simplification obtained 
is not satisfactory. 

2.2.4 Region Merging 

Simplification algorithms [7, 8] are based upon region 
merging. Kalvin & Taylor [7] have proposed superfaces 
algorithm. It uses bounded approximation approach which 
describes that a simplified model approximates the 
original one to a pre-specified tolerance.  Hinker & 
Hanson [8] have proposed Geometric optimization. They 
gave an application independent algorithm that merges 
coplanar and nearly coplanar polygons into large 
polygons and then re triangulated into simpler polygons. 

2.2.5 Wavelet Decomposition 

According to Stollnitz, DeRose, Salesin [9], wavelet 
decomposition functions can be used for decomposing a 
surface into series of details. That’s why; this method is 
an efficient way to produce multi-resolution modeling. 
Kin, Valette, Jung & Prost [10] have proposed local 
wavelet decomposition for 3D surfaces. Their approach is 
an extension of the work of Lounsbery et al. He has 
proposed the wavelet decomposition only for regular 
triangular mesh subdivision. 
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2.2.6 Vertex Decimation 

It was firstly proposed by Schroeder et al [11]. He 
proposed an algorithm that reduces the number of 
triangles by removing vertices which are selected in the 
decimation process. All the triangles associated with that 
vertex are also removed and the total shape is re-
triangulated (fig. 1). Algorithm of Schroeder has some 
deficiency in preserving smooth surfaces. These surfaces 
will become quite rough during process of simplification. 
Renze and Oliver [12] have proposed generalized surface 
decimation that uses vertices as a primitive element for 
removal. Franc and Skala [13] proposed a mesh 
decimation algorithm without sorting. Through this, we 
can achieve a fast algorithm for mesh simplification in 
parallel environment.  
 

 
Figure 1: Vertex Decimation. 

2.2.7 Iterative Contraction of edges 

Hoppe et al [14] and co-workers have used edge collapse 
with swapping of edges and their splitting for 
simplification of surfaces. The algorithm that will 
describe in this paper is also based on this method. 
When an edge is contracted, its end points are replaced by 
a single point and all the triangles that are associated with 
that edge are removed and the resulting model is re-
triangulated (figure 2). 
 

 
Figure 2: Edge Contraction. 

 
Hoppe et al [14] used a distance measure for determining 
target vertex positions. Ronfard and Rossignac [15] have 
proposed an algorithm for approximation of a polyhedral 
object at different detail levels. The algorithm collapses 
the edges on the basis of deviation from initial shape. The 
algorithm was based upon local incremental operations 
but they also kept track of the history of the original 
surface. Garland and Heckbert [2] have developed a 
surface simplification algorithm that contract vertex pairs 

by making use of quadric error metric technique. 
According to Jia-xin CHEN and Hai-he HU [16] the 
standard quadric error metric proposed by Garland can 
lead to inaccurate simplification, they proposed their 
algorithm that also uses edge contraction method and 
improved quadric error metric as background. 

2.3 Implementations through MAYA API 

2.3.1 Manipulation of Elastically Deformable 
Surfaces through Maya Plug-in: 

Efforts were made to develop a mathematical model from 
the theory of plate bending in elasticity which relates 
physical properties of a surface to its elastic deformation. 
It presents the finite difference solution of the 
mathematical model and implements it using the Maya 
API [17] and the MEL [18] scripting language. It was 
examined the effects of material properties and other 
factors on surface shapes and demonstrate applications of 
the proposed approach in controlling the shape of 
elastically deformable surfaces. 

2.3.2 Virtual Scene for Telerobotic Operation: 

Efforts were made on building virtual modeling 
environments which can provide instant visualization for 
Humanoid Teleoperation system as the visual feedback is 
an essential part of any telerobotic system. Here virtual 
scene includes reconstruction of Humanoid robot BHR02, 
and objects like table etc, where as reconstruction of 
BHR02 and interface for rendering the data of real robot 
was already developed [19]. The main goal of this work is 
to enhance our visual teleoperation system for BHR02 
developing virtual environment includes objects like table, 
etc to avoid any collision during real time operation. 3D 
modeling software Maya is used for modeling and 
simulations. Maya plug-ins in VC++ provides efficient 
modeling convention, real time interaction, and time 
saving rendering approach in a virtual environment. In 
this paper we describe the overview of method of creating 
geometrical shape of objects and rendering the data of 
scene in visual environment. 

3. MAYA API 

3.1 Introduction 

MAYA API is used to provide the MAYA software with 
new capabilities and functionalities. It uses a set of C++ 
classes to embed these functionalities in MAYA.[20]  
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3.2 Overview of MAYA architecture 

MAYA is open source software, which is very flexible 
and extensible in nature. At lower level architecture, 
MAYA comprises of a database called dependency graph 
(DG) for storing graphical information in objects called 
nodes. These nodes are characterized by different types of 
attributes. Data flows from one node to another, by 
connecting similar type of attributes. In spite of the 
flexibility and working power of DG, it limits the 
operations on a scene. To overcome this limitation, 
MAYA provides approximately 900 commands. These 
commands performs various functions like creation of DG 
nodes, setting and connecting their attributes, and creating 
transform nodes, which define the positioning of elements 
on the scene. Some of these commands are used for 
creation of user interfaces like building windows, menus, 
buttons etc. Also, if the user needs to add a non-existing 
MAYA command, it can be easily accomplished with the 
help of MAYA API, which is used as a plug-in. 

3.3 Overview of DAG hierarchy 

In Maya, elements such as position, orientation and scale 
of geometry are defined by a directed acyclic graph 
(DAG). This DAG comprises of two type of nodes viz. 
transform nodes, and shape nodes. 

3.3.1 Transform Node: 

It maintains the parenting as well as the transformation 
(translation, rotation, scaling etc.) information. 

3.3.2 Shape Node: 

It maintains all the geometrical information. A shape node 
does not maintain transformation related information, so it 
needs a transform node directly above it to support a 
particular geometry. Thus all geometry requires two 
nodes, a shape node directly above it, and a transform 
node above the shape node. 

3.4 The Polygon API 

To handle polygon geometry in Maya, Maya API 
provides a Polygon API as its subset. It uses some basic 
data structures for representation of polygon components 
like faces, edges, vertices etc. Encapsulation of these data 
structures into polygon shape nodes forms the dependency 
graphs, which is the core of Maya architecture. 
Polygon components: Polygon meshes are comprised of 
three basic components viz. faces, vertices and edges, and 
two additional components viz. face-vertices and UVs. 
 

3.4.1 Vertices:  

A vertex array data structure stores the vertices of a 
polygon mesh in the form of 3D float points 
corresponding to each entry of a vertex-id. All the edges 
and faces correspond to this array. 
 

 

3.4.2 Edges: 

An edge array data structure is used to store edges of a 
polygon mesh in a two integer format. Corresponding to 
each entry of an edge-id in the edge array, there resides a 
(start vertex-id, end vertex-id) integer pair which defines 
the starting and ending vertices of an edge. It also 
provides vertex composition and direction. 
 

 

3.4.3 Faces: 

An integer array is used to store the faces of a polygon 
mesh. The indices of the array represent the edge id’s and 
each face is made up of a number of sequences of integers 
corresponding to these indices. The boundary of the face 
is represented by first sequence of edges. Holes in the face 
are represented by any subsequent sequences. Finally, the 
internal flags are used for marking the start and end of 
each sequence, and the end of a face description. 
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3.4.4 Face-Vertices: 

When two or more faces are adjacent to each other, they 
share common vertices. Such vertices are known as face-
vertices. They came into existence for fulfilling the need 
of associating data to a vertex of a specific face, while 
distinguishing the same vertex from any faces that it share. 
A face array data structure is used to store face vertices. 
These are conceptual features used by the polygon 
features such as color per vertex and UVs. 

4. Proposed Simplification Algorithm 

4.1 Approximation through quadric error metric 

To contract an edge there must be some criteria upon 
which edge is chosen to be collapsed; i.e. there is a 
requirement of assigning cost to every edge. To define 
cost, quadric error metric is used. 

4.2 Algorithm overview 

Simplification method consists of repeatedly selecting the 
edge with a minimum cost, collapsing this edge, and then 
re-evaluating the cost of edges affected by this edge 
collapse. The cost of the edge is evaluated using quadric 
error metric technique. 
 
The algorithm itself can be summarized as follows: 

1. Calculate quadric error metric for each vertex 
(Jia-xin CHEN and Hai-he HU [16]) using 

nQfQ
n

i
iivi
⎟
⎠

⎞
⎜
⎝

⎛= ∑
=1  

Where 
 n = number of triangular planes associated with the 
vertex Vi. 
 Qi = Standard quadric error metric 
fi = Area of triangular plane of order i. 
  
2. Extract all edges from source model. 
 
3. Assign a cost of contraction to each edge. 

Cost of edge:  =ΔV VQV
e

T

 
Where  
V

 = Target vertex made after collapse. 

eQ   = Quadric error metric for edge 

  eQ  = viQ + vjQ
 

viQ , vjQ
 = Quadric error metric for vertices connected 

to the edge e. 

4. Put the edges in priority queue and sort them 
based on the cost of contraction. 
 
5. Repeat until desired approximation is reached. 
 
o Remove the edge(i, j) with the least 
cost from the queue. 
o Contract this edge in to the single 

vertex
V

, update the mesh neighborhood. 

   
V

= Position which minimizes the cost of edge    

VΔ . Thus  
V

 is calculated by solving
0=

∂
Δ∂
x , 

0=
∂
Δ∂
y  , 

0=
∂
Δ∂
z . 

o Update costs for all edges 
connected to Vi, Vj. 
 

The standard quadric metric can be used to calculate both 
the cost of a contraction and target position of the vertex.  
According to Jia-xin CHEN and Hai-he HU [16] the 
standard quadric error metric, as we know that in 3D 
model there are some triangles associated with every 
vertex. Because of the process of simplification it may be 
possible that number of triangles to a vertex become so 
much so that the error of that vertex will be naturally 
higher. This phenomenon leads the cost of peripheral 
vertices to be lower than middle vertices. Thus peripheral 
vertices will be chosen to simplify and lead to inaccurate 
simplification and inaccurate visual effect. 
This is caused because the standard quadric error is 
defined by summation. It was proposed to make the 
quadric error in form of average error and add the area of 
triangular areas. Hence, the cost of internal vertices will 
not be larger than outer vertices. Now the quadric error 
metric of each vertex is expressed as: 

 

nQfQ
n

i
iivi
⎟
⎠

⎞
⎜
⎝

⎛= ∑
=1  

 
where n = number of triangular planes associated with the 
vertex Vi. 

  
Qi = Standard quadric error metric 
fi = Area of triangular plane of order i. 

4.3 Derivations for quadrics 

The average quadric error can be determined by using the 
formula: 
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nQfQ
n

i
iivi
⎟
⎠

⎞
⎜
⎝

⎛= ∑
=1  1. 

To get this quadrics we must have the value of  fi and  Qi. 
 

4.3.1 Calculation for Qi which is standard quadric 
error metric: 

 Plane P = [ ]Tdcba ,,,  
Where a, b and c are the x, y and z component of the 
normal and d value of the plane equation represents the 
distance of the plane to the origin only when the normal is 
unit length.  
 
Vertex V = Tzyx ]1,,,[  
The error of the vertex VΔ = sum of squared distances to 
its planes (the planes of the triangles that meet that vertex). 
It is the cost of that vertex. 
 
Distance from vertex to Plane 

=
222 cba
dczbyax

++

+++
 

Here 222 cba ++ =1 
So Distance = dczbyax +++  
Distance2 = ( dczbyax +++ )2 

Distance2 = [ ]

2

1

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

zyx

d
c
b
a

 

Distance2= 2)( VPT  
 

So VΔ = ∑
∈ Vat  PlanesP

2)( VPT  

VΔ = VQV i
T  

 
Here PK  = Quadric error metric for plane P. 

And iQ  = standard quadric error metric for vertex Vi. 

which is sum of all PK . 

As PK = TPP  

PK = [ ]dcba

d
c
b
a

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

 

iQ  = ∑
∈ Vat  Planesp

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

2

2

2

2

dcdbdad
cdcbcac
bdbcbab
adacaba

 

Let iQ  be 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

44434241

34333231

24232221

14131211

qqqq
qqqq
qqqq
qqqq

……2. 

4.3.2 Calculation for fi : 

As fi is the area of plane related to vertex i. and we know 
the plane is triangular so according to the Heron’s formula 
the area of a triangle is: 
 

fi= ))()(( csbsass −−− …………3. 
Where a, b, c are the sides of the triangle  

And 
2

cbas ++
=   

4.3.3 Final Quadric error metric for vertex Vi : 

The quadric error metric for vertex Vi. from equation 1= 
 

nQfQ
n

i
iivi
⎟
⎠

⎞
⎜
⎝

⎛= ∑
=1

 

 
by substituting the values of fi  and iQ  from equation 2 
and 3 into equation 1 we get =  

n

qqqq
qqqq
qqqq
qqqq

csbsassQ
n

i
Vi

/)

*)))()((((

44434241

34333231

24232221

14131211

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−= ∑
=

….4. 
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4.3.4 Cost of edge: 

The cost of edge = =ΔV VQV
e

T …..5. 

Where  
V  = target vertex made after collapse. 

eQ   = Quadric error metric for edge 

eQ  = viQ + vjQ ……………….6. 

viQ , vjQ  = Quadric error metric for vertices connected to 
the edge e. 

4.3.5 Determining the position of target vertex V  
made after collapsing the edge: 

After contracting the edge a target vertex is made let’s 
suppose it isV . Now the issue is to determine the position 

of vertexV . V will be the position of the vertex which 

minimizes the cost of edge which is VΔ  . From equation 
5 we have  

=ΔV VQV
e

T . 

Now maxima and minima approach is used to find out the 
location of vertexV . 

[ ]TzyxV 1,,,=  

Minimization of VΔ  is:  

0,0,0 =
∂
Δ∂

=
∂
Δ∂

=
∂
Δ∂

⇒Δ
zyx

V  

 
From equation 6 we have 

 

eQ  = viQ + vjQ  
  

Let suppose the value of eQ  is: 

eQ  = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

44434241

34333231

24232221

14131211

qqqq
qqqq
qqqq
qqqq

 

 

as =ΔV VQV
e

T . 

=ΔV  [ ]1,,, zyx

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

44434241

34333231

24232221

14131211

qqqq
qqqq
qqqq
qqqq

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

 

=ΔV  

44434241

34
2

3332312423

2
2221141312

2
11

qzqyqxq
zqzqzyqzxqyqyzq

yqyxqxqxzqxyqxq

+++
++++++

++++++
 

   ……………..7. 
 

Now minimization process: 
 

Partial differentiation of equation 7: 

(i) 0=
∂
Δ∂
x

  (ii) 0=
∂
Δ∂
y

 (iii) 0=
∂
Δ∂
z

 

 
By equation 8, 9 and 10 we get 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

16151413
1211109
8765
4321

qqqq
qqqq
qqqq
qqqq

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
0
0
0

1
z
y
x

 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

16151413
1211109
8765
4321

qqqq
qqqq
qqqq
qqqq

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
0
0
0

V  

  
Hence position of target vertex will be =  

 

=ΔV

1

16151413
1211109
8765
4321 −

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

qqqq
qqqq
qqqq
qqqq

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
0
0
0

 

5. Conclusion 

A surface simplification algorithm which is capable of 
producing quality approximations of complex polygonal 
models developed through MAYA API plug-in is 
proposed. Iterative edge contractions are used for 
simplification. Quadric error metric is used to determine 
the error of simplification. Further the paper describes the 
following: 
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Quadric Error Metric: Quadric error metric is used for 
assigning a quality attribute to every edge of the 
polygonal model to sustain the overall shape of the model. 
Surface Simplification Algorithm:  The edge collapse 
method is used as a surface simplification algorithm. By 
combining the quadric error metric with edge collapse 
we’ll be benefited with a fast and quality based 
approximation. This also requires less hardware capacity. 
MAYA API:  The implementation of algorithm can be 
done using MAYA API programming. Polygonal models 
can be easily simplified through plug-in. This 
implementation will be very beneficial as it reduces 
processing time, hardware requirement and in fast 
transmission of 3 D models while working on heavy 
model of network. 

6. Future Scope  

The proposed algorithm can efficiently be implemented. 
The implementation of the surface simplification can be 
beneficial for the software applications for 3D digital 
animation and visual effects like MAYA, 3D Max etc. 
One can create like this feature as plug-in and effectively 
work on 3D models with less processing time and 
capacity requirements. 
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