
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

105

Manuscript received February 5, 2010
Manuscript revised February 20, 2010

An approach of quality simplification of 3D model using MAYA
API

Prof. Yogesh Singh1 Prof. B.V.R.Reddy2 Mr. R. Rama Kishore3

1Professor, USIT, Guru Gobind Singh Indraprastha University, Delhi 06;
2 Professor, USIT, Guru Gobind Singh Indraprastha University, Delhi 06;

3Assistant. Professor, USIT, Guru Gobind Singh Indraprastha University, Delhi 06;

Abstract
Computer Graphics applications are passing through the
problem of having complex polygonal surface models for the
limited available hardware capacity. These models cause large
processing time and less transmission speed. There is a trade off
between quality of these models and processing time. As we
improve the quality of mesh the processing time increases and
vice-versa. It is proposed to address this problem by simplifying
the surface while maintaining its quality at run time. The
algorithm uses iterative contractions of edges to simplify models.
The main issue of edge contraction is to decide which edge to be
contracted. This is answered by the use of quadric error matrices.
Each edge is assigned with a quality attribute based on quadric
error technique and the edges will be deleted on the “least
quality contract first” basis. The proposed concept is
implemented in MAYA API programming and complex models
can be easily simplified through plug in.
Keywords:
surface simplification, edge contraction, quadric error metric,
MAYA API.

1. Introduction

Polygonal surface models are used by computer graphics
applications for display and simulation purposes. These
models have large set of polygons; and to get more
realism more numbers of polygons are required. But large
amount of polygons i.e. large detail will challenge the
hardware capability and lead to increase the processing
time and transmission time. A focus is required to address
this problem and to propose to simplify the high detailed
polygon model into much simplified model. Simplified
model should contain fewer numbers of polygons without
compromising the quality of original model.
In medical, scientific, entertainment, and computer aided
design systems; polygonal models are commonly used for
representation. In all these applications and many more,
highly detailed and complex models are generally
required. But to achieve acceptable running times and
hardware capacity, simpler model should substitute the
original detailed model. Recent work on polygonal
simplification algorithms has focused on this goal.
Different methods have been proposed in this context, like
vertex clustering, polyhedral refinement, region merging,

wavelet decomposition, decimation of vertex and
contraction of edges. Care should be taken to find the cost
of each edge and the least cost edge should be contracted
first.
Some predominant geometry like boundary features
should not be simplified in order to sustain the basic
quality of model. An error measuring techniques may be
used to estimate the quality of the model at every step of
simplifying algorithm.

2. Related work

2.1 Error metric methods:

Error metric methods are used for assigning a quality
attribute to every edge of the polygonal model.
Some of the error metric methods are:

2.1.1 Hausdroff error metric:

Hausdroff error was used in order to improve the quality
of polygonal simplification by Klein et al. [1] Hausdroff
distance is a distance metric between point sets. Given
two sets of points, A and B, the Hausdroff distance is
defined as

H (A, B)= max (h (A, B), h (B, A))
Where h (A, B) ≠ h (B, A).

Because a surface is a particular type of continuous point
set, Hausdroff distance provides a useful measure of the
distance between two surfaces.

2.1.2 Quadric error metric:

Quadric error metric was used by Garland and Heckbert
[2] for extending the quality of simplification. While
calculating the error instead of taking only points on the
surface for consideration, this uses geometric local
information of the input surface.
Each face in the original model defines a plane, which
satisfies the equation
nT. v+d=0

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

106

where n=[nx,ny,nz]T is a unit normal vector and d is a
constant. The squared distance of a vertex v=[x,y,z] to this
plane is given by

D2 = [nT.v+d]2= (v Tn+d) (nTv+d) = vT(n
nT)v+2dnTv+d2.

This is a quadratic form, plus linear term, plus a constant.
We can conveniently represent D2 using a quadric Q

Q = (a,b,c)

Therefore, if we are merging two vertices v1 and v2, the
resulting quadric is merely the sum

Q = Q1+Q2

This defines the cost of a contraction error. This estimates
about the distance error between the simplified and
original object.

2.1.3 Discrete differential error metric:

Discrete differential error metric is based on the theory of
local differential geometry in such a way that the first and
second order discrete differential approximation is done
locally. It is proposed by Sun–Jeong Kim [3]. Though
previous error metric methods give visually pleasing
results with a reasonably fast speed, it is hard to measure
an accurate geometric error on highly curved and thin
regions since error measured by distance metric is small
in such cases and causes a loss of visually important
features. To overcome such drawback, first and the
second order discrete differentials are approximated to
take care of slope and curvature preservation of surface
features.

2.2 Surface simplification methods:

Surface simplification methods are broadly classified into
two categories:

• Refinement: These types of algorithms begin
with coarse approximations and refine the approximation
by adding up elements at each step.
• Decimation: It is a reverse of refinement. The
algorithms that use this methodology start with the fully
detailed surface (finest level) and extracts elements at
each step iteratively.

Some of the polygonal simplification methods are:

2.2.1 Manual Preparation

Different details of surface model are constructed through
human hand. Hence the process becomes more time
consuming and having a lot of overheads.

2.2.2 Polyhedral Refinement

These algorithms use the refinement methodologies in
background. But the decimation methodology has been
much more widely used, because there are some practical
difficulties associated with the refinement process. The
coarse approximation must have the same topology as the
original one which cannot be easily discovered in the
beginning.

2.2.3 Vertex Clustering

The Vertex clustering algorithm was proposed by
Rossignac and Borrel [4]. The cluster in which all the
vertices have existed is divided uniformly. All vertices
within each cluster are unified to a single representative
vertex. Numerous vertex clustering algorithms have been
proposed. Low and Tan [5] have proposed modified
algorithm that uses floating clustering in place of uniform
clustering, which enhances the consistency of
simplification. Kanaya, Teshima, Nishio and Kobori [6]
have proposed topology preserving simplification
algorithm that uses depth first search tree on a vertex
clustering algorithm. But it was observed that using
clustering methods, the degree of simplification obtained
is not satisfactory.

2.2.4 Region Merging

Simplification algorithms [7, 8] are based upon region
merging. Kalvin & Taylor [7] have proposed superfaces
algorithm. It uses bounded approximation approach which
describes that a simplified model approximates the
original one to a pre-specified tolerance. Hinker &
Hanson [8] have proposed Geometric optimization. They
gave an application independent algorithm that merges
coplanar and nearly coplanar polygons into large
polygons and then re triangulated into simpler polygons.

2.2.5 Wavelet Decomposition

According to Stollnitz, DeRose, Salesin [9], wavelet
decomposition functions can be used for decomposing a
surface into series of details. That’s why; this method is
an efficient way to produce multi-resolution modeling.
Kin, Valette, Jung & Prost [10] have proposed local
wavelet decomposition for 3D surfaces. Their approach is
an extension of the work of Lounsbery et al. He has
proposed the wavelet decomposition only for regular
triangular mesh subdivision.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

107

2.2.6 Vertex Decimation

It was firstly proposed by Schroeder et al [11]. He
proposed an algorithm that reduces the number of
triangles by removing vertices which are selected in the
decimation process. All the triangles associated with that
vertex are also removed and the total shape is re-
triangulated (fig. 1). Algorithm of Schroeder has some
deficiency in preserving smooth surfaces. These surfaces
will become quite rough during process of simplification.
Renze and Oliver [12] have proposed generalized surface
decimation that uses vertices as a primitive element for
removal. Franc and Skala [13] proposed a mesh
decimation algorithm without sorting. Through this, we
can achieve a fast algorithm for mesh simplification in
parallel environment.

Figure 1: Vertex Decimation.

2.2.7 Iterative Contraction of edges

Hoppe et al [14] and co-workers have used edge collapse
with swapping of edges and their splitting for
simplification of surfaces. The algorithm that will
describe in this paper is also based on this method.
When an edge is contracted, its end points are replaced by
a single point and all the triangles that are associated with
that edge are removed and the resulting model is re-
triangulated (figure 2).

Figure 2: Edge Contraction.

Hoppe et al [14] used a distance measure for determining
target vertex positions. Ronfard and Rossignac [15] have
proposed an algorithm for approximation of a polyhedral
object at different detail levels. The algorithm collapses
the edges on the basis of deviation from initial shape. The
algorithm was based upon local incremental operations
but they also kept track of the history of the original
surface. Garland and Heckbert [2] have developed a
surface simplification algorithm that contract vertex pairs

by making use of quadric error metric technique.
According to Jia-xin CHEN and Hai-he HU [16] the
standard quadric error metric proposed by Garland can
lead to inaccurate simplification, they proposed their
algorithm that also uses edge contraction method and
improved quadric error metric as background.

2.3 Implementations through MAYA API

2.3.1 Manipulation of Elastically Deformable
Surfaces through Maya Plug-in:

Efforts were made to develop a mathematical model from
the theory of plate bending in elasticity which relates
physical properties of a surface to its elastic deformation.
It presents the finite difference solution of the
mathematical model and implements it using the Maya
API [17] and the MEL [18] scripting language. It was
examined the effects of material properties and other
factors on surface shapes and demonstrate applications of
the proposed approach in controlling the shape of
elastically deformable surfaces.

2.3.2 Virtual Scene for Telerobotic Operation:

Efforts were made on building virtual modeling
environments which can provide instant visualization for
Humanoid Teleoperation system as the visual feedback is
an essential part of any telerobotic system. Here virtual
scene includes reconstruction of Humanoid robot BHR02,
and objects like table etc, where as reconstruction of
BHR02 and interface for rendering the data of real robot
was already developed [19]. The main goal of this work is
to enhance our visual teleoperation system for BHR02
developing virtual environment includes objects like table,
etc to avoid any collision during real time operation. 3D
modeling software Maya is used for modeling and
simulations. Maya plug-ins in VC++ provides efficient
modeling convention, real time interaction, and time
saving rendering approach in a virtual environment. In
this paper we describe the overview of method of creating
geometrical shape of objects and rendering the data of
scene in visual environment.

3. MAYA API

3.1 Introduction

MAYA API is used to provide the MAYA software with
new capabilities and functionalities. It uses a set of C++
classes to embed these functionalities in MAYA.[20]

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

108

3.2 Overview of MAYA architecture

MAYA is open source software, which is very flexible
and extensible in nature. At lower level architecture,
MAYA comprises of a database called dependency graph
(DG) for storing graphical information in objects called
nodes. These nodes are characterized by different types of
attributes. Data flows from one node to another, by
connecting similar type of attributes. In spite of the
flexibility and working power of DG, it limits the
operations on a scene. To overcome this limitation,
MAYA provides approximately 900 commands. These
commands performs various functions like creation of DG
nodes, setting and connecting their attributes, and creating
transform nodes, which define the positioning of elements
on the scene. Some of these commands are used for
creation of user interfaces like building windows, menus,
buttons etc. Also, if the user needs to add a non-existing
MAYA command, it can be easily accomplished with the
help of MAYA API, which is used as a plug-in.

3.3 Overview of DAG hierarchy

In Maya, elements such as position, orientation and scale
of geometry are defined by a directed acyclic graph
(DAG). This DAG comprises of two type of nodes viz.
transform nodes, and shape nodes.

3.3.1 Transform Node:

It maintains the parenting as well as the transformation
(translation, rotation, scaling etc.) information.

3.3.2 Shape Node:

It maintains all the geometrical information. A shape node
does not maintain transformation related information, so it
needs a transform node directly above it to support a
particular geometry. Thus all geometry requires two
nodes, a shape node directly above it, and a transform
node above the shape node.

3.4 The Polygon API

To handle polygon geometry in Maya, Maya API
provides a Polygon API as its subset. It uses some basic
data structures for representation of polygon components
like faces, edges, vertices etc. Encapsulation of these data
structures into polygon shape nodes forms the dependency
graphs, which is the core of Maya architecture.
Polygon components: Polygon meshes are comprised of
three basic components viz. faces, vertices and edges, and
two additional components viz. face-vertices and UVs.

3.4.1 Vertices:

A vertex array data structure stores the vertices of a
polygon mesh in the form of 3D float points
corresponding to each entry of a vertex-id. All the edges
and faces correspond to this array.

3.4.2 Edges:

An edge array data structure is used to store edges of a
polygon mesh in a two integer format. Corresponding to
each entry of an edge-id in the edge array, there resides a
(start vertex-id, end vertex-id) integer pair which defines
the starting and ending vertices of an edge. It also
provides vertex composition and direction.

3.4.3 Faces:

An integer array is used to store the faces of a polygon
mesh. The indices of the array represent the edge id’s and
each face is made up of a number of sequences of integers
corresponding to these indices. The boundary of the face
is represented by first sequence of edges. Holes in the face
are represented by any subsequent sequences. Finally, the
internal flags are used for marking the start and end of
each sequence, and the end of a face description.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

109

3.4.4 Face-Vertices:

When two or more faces are adjacent to each other, they
share common vertices. Such vertices are known as face-
vertices. They came into existence for fulfilling the need
of associating data to a vertex of a specific face, while
distinguishing the same vertex from any faces that it share.
A face array data structure is used to store face vertices.
These are conceptual features used by the polygon
features such as color per vertex and UVs.

4. Proposed Simplification Algorithm

4.1 Approximation through quadric error metric

To contract an edge there must be some criteria upon
which edge is chosen to be collapsed; i.e. there is a
requirement of assigning cost to every edge. To define
cost, quadric error metric is used.

4.2 Algorithm overview

Simplification method consists of repeatedly selecting the
edge with a minimum cost, collapsing this edge, and then
re-evaluating the cost of edges affected by this edge
collapse. The cost of the edge is evaluated using quadric
error metric technique.

The algorithm itself can be summarized as follows:

1. Calculate quadric error metric for each vertex
(Jia-xin CHEN and Hai-he HU [16]) using

nQfQ
n

i
iivi
⎟
⎠

⎞
⎜
⎝

⎛= ∑
=1

Where
 n = number of triangular planes associated with the
vertex Vi.
 Qi = Standard quadric error metric
fi = Area of triangular plane of order i.

2. Extract all edges from source model.

3. Assign a cost of contraction to each edge.

Cost of edge: =ΔV VQV
e

T

Where
V

 = Target vertex made after collapse.

eQ = Quadric error metric for edge

 eQ = viQ + vjQ

viQ , vjQ
 = Quadric error metric for vertices connected

to the edge e.

4. Put the edges in priority queue and sort them
based on the cost of contraction.

5. Repeat until desired approximation is reached.

o Remove the edge(i, j) with the least
cost from the queue.
o Contract this edge in to the single

vertex
V

, update the mesh neighborhood.

V

= Position which minimizes the cost of edge

VΔ . Thus
V

 is calculated by solving
0=

∂
Δ∂
x ,

0=
∂
Δ∂
y ,

0=
∂
Δ∂
z .

o Update costs for all edges
connected to Vi, Vj.

The standard quadric metric can be used to calculate both
the cost of a contraction and target position of the vertex.
According to Jia-xin CHEN and Hai-he HU [16] the
standard quadric error metric, as we know that in 3D
model there are some triangles associated with every
vertex. Because of the process of simplification it may be
possible that number of triangles to a vertex become so
much so that the error of that vertex will be naturally
higher. This phenomenon leads the cost of peripheral
vertices to be lower than middle vertices. Thus peripheral
vertices will be chosen to simplify and lead to inaccurate
simplification and inaccurate visual effect.
This is caused because the standard quadric error is
defined by summation. It was proposed to make the
quadric error in form of average error and add the area of
triangular areas. Hence, the cost of internal vertices will
not be larger than outer vertices. Now the quadric error
metric of each vertex is expressed as:

nQfQ
n

i
iivi
⎟
⎠

⎞
⎜
⎝

⎛= ∑
=1

where n = number of triangular planes associated with the
vertex Vi.

Qi = Standard quadric error metric
fi = Area of triangular plane of order i.

4.3 Derivations for quadrics

The average quadric error can be determined by using the
formula:

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

110

nQfQ
n

i
iivi
⎟
⎠

⎞
⎜
⎝

⎛= ∑
=1 1.

To get this quadrics we must have the value of fi and Qi.

4.3.1 Calculation for Qi which is standard quadric
error metric:

 Plane P = []Tdcba ,,,
Where a, b and c are the x, y and z component of the
normal and d value of the plane equation represents the
distance of the plane to the origin only when the normal is
unit length.

Vertex V = Tzyx]1,,,[
The error of the vertex VΔ = sum of squared distances to
its planes (the planes of the triangles that meet that vertex).
It is the cost of that vertex.

Distance from vertex to Plane

=
222 cba
dczbyax

++

+++

Here 222 cba ++ =1
So Distance = dczbyax +++
Distance2 = (dczbyax +++)2

Distance2 = []

2

1

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

zyx

d
c
b
a

Distance2= 2)(VPT

So VΔ = ∑
∈ Vat PlanesP

2)(VPT

VΔ = VQV i
T

Here PK = Quadric error metric for plane P.

And iQ = standard quadric error metric for vertex Vi.

which is sum of all PK .

As PK = TPP

PK = []dcba

d
c
b
a

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

iQ = ∑
∈ Vat Planesp

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

2

2

2

2

dcdbdad
cdcbcac
bdbcbab
adacaba

Let iQ be

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

44434241

34333231

24232221

14131211

qqqq
qqqq
qqqq
qqqq

……2.

4.3.2 Calculation for fi :

As fi is the area of plane related to vertex i. and we know
the plane is triangular so according to the Heron’s formula
the area of a triangle is:

fi=))()((csbsass −−− …………3.
Where a, b, c are the sides of the triangle

And
2

cbas ++
=

4.3.3 Final Quadric error metric for vertex Vi :

The quadric error metric for vertex Vi. from equation 1=

nQfQ
n

i
iivi
⎟
⎠

⎞
⎜
⎝

⎛= ∑
=1

by substituting the values of fi and iQ from equation 2
and 3 into equation 1 we get =

n

qqqq
qqqq
qqqq
qqqq

csbsassQ
n

i
Vi

/)

*)))()((((

44434241

34333231

24232221

14131211

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−= ∑
=

….4.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

111

4.3.4 Cost of edge:

The cost of edge = =ΔV VQV
e

T …..5.

Where
V = target vertex made after collapse.

eQ = Quadric error metric for edge

eQ = viQ + vjQ ……………….6.

viQ , vjQ = Quadric error metric for vertices connected to
the edge e.

4.3.5 Determining the position of target vertex V
made after collapsing the edge:

After contracting the edge a target vertex is made let’s
suppose it isV . Now the issue is to determine the position

of vertexV . V will be the position of the vertex which

minimizes the cost of edge which is VΔ . From equation
5 we have

=ΔV VQV
e

T .

Now maxima and minima approach is used to find out the
location of vertexV .

[]TzyxV 1,,,=

Minimization of VΔ is:

0,0,0 =
∂
Δ∂

=
∂
Δ∂

=
∂
Δ∂

⇒Δ
zyx

V

From equation 6 we have

eQ = viQ + vjQ

Let suppose the value of eQ is:

eQ =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

44434241

34333231

24232221

14131211

qqqq
qqqq
qqqq
qqqq

as =ΔV VQV
e

T .

=ΔV []1,,, zyx

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

44434241

34333231

24232221

14131211

qqqq
qqqq
qqqq
qqqq

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

=ΔV

44434241

34
2

3332312423

2
2221141312

2
11

qzqyqxq
zqzqzyqzxqyqyzq

yqyxqxqxzqxyqxq

+++
++++++

++++++

 ……………..7.

Now minimization process:

Partial differentiation of equation 7:

(i) 0=
∂
Δ∂
x

 (ii) 0=
∂
Δ∂
y

 (iii) 0=
∂
Δ∂
z

By equation 8, 9 and 10 we get

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

16151413
1211109
8765
4321

qqqq
qqqq
qqqq
qqqq

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
0
0
0

1
z
y
x

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

16151413
1211109
8765
4321

qqqq
qqqq
qqqq
qqqq

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
0
0
0

V

Hence position of target vertex will be =

=ΔV

1

16151413
1211109
8765
4321 −

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

qqqq
qqqq
qqqq
qqqq

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
0
0
0

5. Conclusion

A surface simplification algorithm which is capable of
producing quality approximations of complex polygonal
models developed through MAYA API plug-in is
proposed. Iterative edge contractions are used for
simplification. Quadric error metric is used to determine
the error of simplification. Further the paper describes the
following:

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

112

Quadric Error Metric: Quadric error metric is used for
assigning a quality attribute to every edge of the
polygonal model to sustain the overall shape of the model.
Surface Simplification Algorithm: The edge collapse
method is used as a surface simplification algorithm. By
combining the quadric error metric with edge collapse
we’ll be benefited with a fast and quality based
approximation. This also requires less hardware capacity.
MAYA API: The implementation of algorithm can be
done using MAYA API programming. Polygonal models
can be easily simplified through plug-in. This
implementation will be very beneficial as it reduces
processing time, hardware requirement and in fast
transmission of 3 D models while working on heavy
model of network.

6. Future Scope

The proposed algorithm can efficiently be implemented.
The implementation of the surface simplification can be
beneficial for the software applications for 3D digital
animation and visual effects like MAYA, 3D Max etc.
One can create like this feature as plug-in and effectively
work on 3D models with less processing time and
capacity requirements.

References
[1] Klein, Reinhard, Gunther Liebich, and Wolfgang Straßer,

“Mesh Reduction with Error Control”, Proceedings of IEEE
Visualization '96.

[2] Garland, Michael and Paul Heckbert, “Surface
Simplification using Quadric Error Metrics”, Proceedings
of SIGGRAPH 97. pp. 209-216.

[3] Sun-Jeong Kim, Soo-Kyun Kim and Chang-hum Kim,
“Discrete Differential Error Metric for Surface
Simplification”, computer Graphics and Applications
Proceedings, 276-283, 2002.

[4] Jarek Rossignac, Paul Borrel. Multi-resolution 3D
approximations for rendering complex scenes. In Geometric
Modeling in Computer Graphics , pp. 455-465, Springer
Verlag, Eds. B. Falcidieno and T.L. Kunii, Genova, Italy,
June 28-July 2,
1993.http://www.gvu.gatech.edu/~jarek/Papers/VertexClust
ring.pdf

[5] Kok-Lim Low, Tiow-Seng Tan. Model Simplification
Using Vertex-Clustering. In 1997
http://portal.acm.org/citation.cfm?id=253310&dl=acm&col
l=portal

[6] Takayuki Kanaya, Yuji Teshima, Koji Nishio, Ken-ichi
Kobori. A Topology-Preserving Polygonal Simpli?cation
Using Vertex Clustering. In 2005

http://portal.acm.org/ft_gateway.cfm?id=1101410&type=p
df

[7] Alan D. Kalvin, Russell H. Taylor. Polygonal
Mesh Simplification with Bounded Error. In 1996
http://ieeexplore.ieee.org/iel1/38/10541/00491187.pdf
http://portal.acm.org/citation.cfm?id=618962

[8] Paul Hinker, Charles Hanson. Geometric optimization. In
1993
http://ieeexplore.ieee.org/iel5/2945/28178/01260766.pdf?tp
=&arnumber=1260766&isnumber=28178

[9] Eric J. Stollnitz, Tony D. DeRose, David H. Salesin.
Wavelets for Computer Graphics. In 1995
http://portal.acm.org/citation.cfm?id=616037.618291&coll
=portal&dl=ACM&CFID=15151515&CFTOKEN=618461
8

[10] Yun-Sang Kim, Sebastien Valette, Ho-You Jug, and
Remy Prost. Local Wavelets Decomposition for 3-D
Surfaces. In 1999
http://ieeexplore.ieee.org/iel5/6632/17687/00819612.pdf?ar
number=819612

[11] William J. Schroeder, Jonathan A. Zarge, William E.
Lorensen. Decimation of triangle meshes. In 1992
http://portal.acm.org/citation.cfm?id=134010

[12] Kevin J. Renze, James H. Oliver. Generalized Surface
and Volume Decimation for Unstructured Tessellated
Domains. In 1996
http://ieeexplore.ieee.org/iel2/3517/10587/00490518.pdf?ar
number=490518

[13] Martin Franc, Vaclav Skala. Parallel Triangular Mesh
Decimation Without Sorting. In 2001
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=94533
3

[14] Hugues Hoppe, Tony DeRose, Tom Duchamp,John
McDonald, Werner Stuetzle. Mesh Optimization.
http://research.microsoft.com/~hoppe/meshopt.pdf

[15] R. Ronfard and, J. Rossignac. Full-range approximation of
triangulated polyhedra. In 1996,
http://perception.inrialpes.fr/publications/1996/rrr96/fullran
ge01.pdf

[16] Jia-xin CHEN, Hai-he HU. One Mesh Model Simplification
Method Based on Shape Transform of Triangles. IEEE
Computer Society, 2006.
http://ieeexplore.ieee.org/iel5/4089190/4089191/04089302.
pdf

[17] L.H. You,Javier Romero Rodriguez,Jian
J.Ahang.,”Manupulation of Elastically Deformable
Surfaces through Maya Plug-in”, Proceedings of the
Geometric Modelling and imaging- New Trends,IEEE2006.

[18] A.M.Day,D.B.Arnold, S.Havemann, D.W. Fellner,
“Combining Polygonal and subdivision Surface approaches
to modeling and rendering of urban
environments”,Computers &Graphics 28(2004) 497-507.
ELSEVIER

[19] M. Usman Keerio, A.Fattah Chandio, A. Khawaja and A
Raza Jafri , “ Virtual Scene for Telerobotic Operation”,
International Conference on emerging Trends IEEE2006.

[20] Maya 8.0 manuals, Discreet product.

