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Summary 

A number of scientific simulations are explained which 

were programmed in Lab view .We choose Lab view 

because of its convenience for visualization.  The scientific 

topics covered in the paper are “Radioactive decay” and 

“Electron trapped in an infinite potential well”, with a 

brief theory and background of both the processes along 

with the mathematical equations. The algorithm used to 

produce the decay simulation is based on random process 

for which we used Monte Carlo method. Specifically we 

are to determine when radioactive decay looks exponential 

and when it looks stochastic (i.e. determined by 

chance).Where as the other simulation is based on the 

analytical equation. Every probable aspect in the programs 

is elaborated in terms of charts and graphs for better 

understanding. 
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1. Introduction 

The investigation of certain physical mechanisms by 

numerical modeling i.e. simulating nature by applying the 

laws of Physics to virtual processes is becoming 

increasingly important. The method can lead to an 

understanding of the overall impact when specific 

parameters are selectively modified. If the parameters can 

be changed and adjusted interactively while their effect on 

a given system is visualized, a student may gain an 

understanding of the process by observing the effects of 

the changes.  

Also it allows us to produce interactive software for all 

major computer platforms (Windows, Linux, and Sun 

UNIX). 

 

2. Lab View 

 In Recent years the programming concept has evolved 

with great significance and priorities due to their reliability 

and machine based measurements.  

 

The pattern of text-based languages emerged gradually 

which summed up with into a huge collection and 

classification, for example C/C++, FORTRAN, Java, 

Pascal etc. Lab view has graphical interface for the 

programmer. Commands of this language are visually 

designed functions therefore it is termed as “VISUAL-

BASED” programming language. The programs created in 

Lab view environment are known as Virtual Instruments 

(or simply VI‟s). Lab view follows a dataflow model for 

running VI‟s. A block diagram “node” executes when all 

its inputs are available from its input terminals. When a 

node completes execution, it supplies data to its output 

terminals and passes the output data to the next node (if 

available for calculation) in the dataflow path or simply for 

visualization. 
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Why to use Lab View? 

 

1. Lab VIEW provides extremely efficient graphical 

programming environment, in which data acquisition, data 

storage and visual presentations are governed easily. 

 

2. Lab VIEW accompanies a utility software used for 

handling data acquired through external devices(DAQ) 

called MAX(Measurement & Automation Explorer).This 

utility software meets the industry standards. 

 

3.  Lab VIEW provides DAQ devices that are cost 

effective. 

 

3. Electron trapped in an infinite potential 

well 

 

It is a problem that provides several illustrations of 

prosperities of wave functions and also is one of the 

easiest problems to solve using time-independent one-

dimensional Schrödinger equation (1) is that of the infinite 

square (particle in a BOX). A macroscopic example is a 

bead moving on a frictionless wire b/w two massive stops 

clamped to the wire.  Here heights of the barriers between 

which the particle is bound, are infinite, so particle cannot 

penetrate through it, but rebounds from barrier.  

 

- 
ℎ2

2𝑚
 
𝑑2(𝑥)

𝑑𝑥2
+ 𝑉 𝑥   𝑥 = 𝐸  𝑥    (1) 

 

 (x) Must have zero value at walls and all points 

beyond the walls, signifying that probability of finding the 

particle in those locations is zero. So standing waves can 

be setup in the string subject to boundary condition that 

displacement of string is zero at two rigid supports. We 

can ease our introduction to Q-Mechanics by exploring 

analogy b/w mechanical waves propagating along a 

stretched string and matter waves associated with an 

electron trapped in infinite well.  

 

3.1 Energy Levels 

 

The quantized Energy values or Eigen values are found 

from equation: 

 

 

 En = n
2
E1 

 

 Ground state energy is E1 =  2 2   / 2m L
2 

 

The nth state of potential is called Eigen state of total 

energy with Eigen value En.  

 

Constant „A‟ in Wave-Function ( (x) =A Sin kx) is 

determined by Normalization condition: 

 

1=    x  
2

∞

-∞

dx= A 2  sin
2 kx 

L

0

dx= A 2
L

2
 

 

Then Eigen functions are: 

 


𝑛

(x)= 
2

𝐿
 sin  𝑛𝜋 

𝑥

𝐿
 𝑤ℎ𝑒𝑟𝑒 𝑛 = 1 ,2 ,3 ,4…. 

 

4. Radioactive decay 

 

One nucleus changes into another with the emission of 

radiation.  

 

4.1 Decay constant 

 

The Probability of decay of a nucleus per unit time is 

denoted by    and is called Decay constant.  If N is the 

total number of nuclei present in a sample, then the 

number of nuclei decaying per unit time is the product of 

the number of radioactive nuclei and the decay probability 

of the nucleus. 

 
𝑑𝑁

𝑑𝑡
 = N  

 

The Decay constant is a characteristic of the nucleus. This 

means no two nuclei with different constituents have the 
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same Decay constant.  Therefore the determination of the 

Decay constant leads to the qualitative analysis 

(identification) of material and determination of the 

activity leads to the quantitative analysis (composition)    

of the material. 

 

4.2 Exponential Decay Law  

 

According to Equation:    
𝑑𝑁

𝑑𝑡
 = N  

  

Or     N
dt

dN
  

Where the negative sign indicates that N is decreasing with 

time.  If at t=0, the number of radioactive nuclei  present in 

a sample are No , then the number of nuclei N at time t can 

be determined by integrating  the above equation with 

respect to time and we get: 

 

   N = No e 
- t  

And the activity is:  

   A =   N = -  No e 
- t  

 

   A = Ao e
- t  

 

This means that Activity or the number of radioactive 

nuclei decreases exponentially with time. 

 

 

4.3 Half Life (T) of a Substance 

 

It is defined as the time interval in which the number of 

radioactive nuclei present in the substance is reduced by a 

factor of 2.  

According to      

  N = No e 
- t  

 

Therefore at t =T, N = No / 2 and substituting in the above 

equation  

 

  1/2 =  e 
- t  

Or  

   

   T = ln (2) 

 

    T = ln (2) /   = 0.693 /   

 

Since    is a characteristic of a nucleus, so T is also a 

characteristic of a nucleus. This important fact is used to 

distinguish different types of nuclei.  

 

The Half-Life remains constant whatsoever may be the 

change in the chemical and physical shape of the materials. 

 

The number of atoms remained after different half lives 

are: 

  At t=1T, N/No = 1/2 

 

  At t=2T,   N/No = (½ )
2
 

 

  At t=3T,   N/No = (½ )
3 

 

After n half lives, where n = t/T 

 

  
𝑁

𝑁0
 = (½ )

n 

 

5. Monte Carlo Method 
 

• This method is used to find the solution of such 

physical phenomena whose Mathematical model 

depends on probability. 

• Monte-Carlo calculation depends on the random 

number generator 

 

Spontaneous decay is a natural process in which a particle 

decays into other particles. Because the exact moment of 

when any one particle will decay is random, it doesn‟t 

matter how long the particle has been around or what is 

happening to the other particles. In other words the 

probability of any particle decaying per unit time is a 

constant, also when that particle decays, it gone forever. 

As the number of particles decreases with time, so will the 

number of decays. 

  



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010 

 

 

134 

 

6. Implementation  

 

6.1 Radioactive Decay Simulation 

 

 
Fig 6.1.1 

 

6.1.1 Decay Simulation Algorithm 

 

Start 

1. input N, lambda; 

2. initialize delN = 0,decay 

3. loop (while N !=0) 

decay = Random number b/w 0-1 

If (decay < lambda) 

 delN = delN +1 

N = N-delN. 

End loop 

4. Output  Display graph of N , DelN 

End 

 

6.1.2 Procedure to use the Decay VI: 

 

1. Select the total number of nuclides in the sample 

using the KNOB “n0”. 

2. Select the Decay parameter of the element used in 

the sample using the KNOB “lambda”. 

3. Press Ctrl+R to run the simulation. 

4. Read data from indicators. 

5. Read Data from the graph (Logarithmic curve of 

n0) using the cursor legends, drag the yellow 

cursors upon any two diff places on the curve.  

6. Determine the slope of the curve, where slope = 

decay parameter. 

7. Put the value of slope in slope control and it will 

calculate the half life of the element. 

 

6.1.3 Charts & Graphs in the Decay VI:  

 

 
 

Fig 6.1.2 this plot is generated by reading the entire periodic 

table from a file, the curve provides vital information about the 

elements that the isotopes above the curve give beta +ve emitters 

and below are beta –ev emitters. 

 

 
 

Fig 6.1.3 displays how n0 decays exponentially 
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Fig 6.1.4 fits the exponential data into straight line to show the 

stochastic & continuous behavior in del t. 

 

 
 

Fig 6.1.5 displays decayed particles per unit time interval, this 

curve is required to be proportional to the Log curve of n0. 

 

 
 

Fig 6.1.6 this graph displays the different curves for different 

number of nuclei‟s in different samples belonging to the same 

element type, every element has unique decay parameter. 

 

 

 
 

Fig 6.1.7 fits the exponential data into straight line to show the 

stochastic & continuous behavior in given time interval; also we 

can determine the slope of the curve using cursor legend by 

dragging the yellow indicators on the curve to find the half life of 

the element. 

 

6.2 Electron trapped in an infinite potential well 

Simulation 

 

 
 

Fig 6.2.1 

 

6.2.1 Potential Well algorithm: 

 

Start 

 

1. Input width, Eigen state. 

2. Calculate the Eigen value. 

3. Solve Schrödinger equation and generate Eigen 

function for corresponding Eigen value. 

4. Calculate the probability density using 

normalization condition. 

5. Output Graph Eigen function, Probability Density. 

End 
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6.2.2 Procedure to use the VI: 

 

1. Input width of the potential well in the control “-L/2”. 

2. Input Eigen state (quantum number) in the control 

“Eigen states”. 

3. Press Ctrl+R to run the simulation. 

4. The “Eigen value” indicator gives output 

corresponding to the quantum number. 

5. Read data from plots by placing cursor on different 

points to find energy at that point. 

6. Also use multi-state plot to find variations in different 

Eigen functions. 

 

6.2.3 Charts & Graphs in the Well VI: 

 

 
 

Fig 6.2.2 displays how Eigen function simulates to corresponding 

Eigen value. 

 

 
 

Fig 6.2.3 fits the Eigen function to find the %position of electron 

(particle) in a particular region. 

 
 

Fig 6.2.4 this graph displays the wave function obtained for 

certain Eigen value (energy), uses the cursor legend to display 

the particular value of wave function at any particular point. 

 

 
 

Fig 6.2.5 this graph displays the Probability obtained from wave 

function expression, uses the cursor legend to display the 

particular value of probability at any particular point. 
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Fig 6.2.6 this graph displays all the wave functions starting from 

gourd state to the “Eigen state” (control), use cursor legend to 

determine variation among different wave function. 

 

 
 

Fig 6.2.7 This graph displays all the Probabilities corresponding 

to all the wave functions starting from ground state to the “Eigen 

state” (control), use cursor legend to determine variation among 

different probabilities. 

 

Conclusion  

Our aim was to get a hand full experience in computing in 

lab view, now we hope to extend our work from general to 

more specific calculations using the same platform in more 

computing applications, 

for example numerical simulations of specific elements in 

the periodic table, distinguishing between the radiation 

emission from different elements, applications of 

numerical solution of Schrödinger‟s equation, applications 

for image processing using neural networks etc. 
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