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Summary 
Estimating a signal which is buried inside colored noise is 

challenging since significant amount of the noise frequencies 

with considerable or higher power (signal-to-noise ratio, SNR, 

being less than 0 dB) reside in the same band as that of the 

desired waveform. An optimization and eigen-decomposition-

based subspace approach has been investigated and tested to 

estimate signals which are highly corrupted by colored noise; Hu 

and Loizou [Y. Hu and P. C. Loizou, “A Generalized Subspace 

Approach for Enhancing Speech Corrupted by Colored Noise,” 

IEEE Transactions on Speech and Audio Processing, vol. 11, no. 

4, pp. 334-341, July 2003] introduced a non-symmetric basis 

matrix to be eigen-decomposed into its corresponding eigenvalue 

and eigenvector matrices; the generated eigenvector matrix is 

supposed to simultaneously diagonalize both the clean speech 

and noise covariance matrices. They also reported that the 

utilization of the eigenvector and eigenvalue matrices in the time-

domain constrained estimator would result in the optimal 

estimation of speech corrupted by colored noise. Here we 

critically examine these matrices and contend that the presented 

eigen-based equations are mathematically incorrect. The 

eigenvectors of the proposed basis matrix produce perfectly 

diagonal eigenvalues for the noise covariance matrix; however, 

the generated eigenvalues are not the degenerate identity matrix 

as claimed by the authors. An alternative solution by means of a 

modified gain matrix is proposed to rectify the mathematical 

inconsistencies. For validation purposes, the pre- and post-

modified algorithms have been assessed in their abilities to 

extract visual evoked potentials (VEPs) that are corrupted by 

colored electroencephalogram (EEG) noiseSNR values can be 

as low as -10 dB in real clinical environments. The simulation 

results produced by the post-modified SSA2 algorithm, show a 

higher degree of consistencies in detecting the VEP's P100, P200, 

and P300 peaks, in comparisons to the pre-modified SSA1 

method. Moreover, the results of the real patient data confirm the 

superiority of SSA2 over SSA1 in estimating VEP's P100 

latencies, which are used by doctors to assess the conduction of 

electrical signals from the subjects' retinas to the visual cortex 

parts of their brains. 
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1. Introduction 

In any signal enhancement methods, researchers normally  

 

seek to filter and reduce noise as much as possible without 

compromising the integrity of the desired signal. In general, 

subspace-based (principal component analysis) techniques 

have the capability to recover and preserve the quality of 

the desired signal, if properly exploited. 

 

Principal component analysis, originating in work by Karl 

Pearson around the turn of the last century and further 

developed in 1930s by Harold Hoteling, consists of finding 

an orthogonal transformation of the original – stochastic –  

variables to a new set of uncorrelated variables, which are 

derived in a decreasing order of importance. These so-

called principal components are linear combinations of the 

original variables such that their first few components will 

account for most of the variations in the original data, 

effectively reducing the dimensionality of the data [1]. 

 

Any subspace technique makes use of second order 

statistics, namely the correlation or covariance matrices of 

the pertinent signal vectors. Next, a subspace technique 

utilizes eigenvectors, eigenvalues and diagonalization 

which constitute the eigendecomposition of a correlation 

or covariance matrix. Normally, the eigenvalue 

decomposition operation is closely related with the 

Karhunen-Loeve Transform (KLT) approach [2]. However, 

it has been shown in [3] that a signal subspace approach 

based on non-unitary (non-KLT) transformation is still 

possible, providing that great care is taken in the selection 

of a basis matrix, the formation of transform and inverse 

transform matrices from the resulting non-unitary 

eigenvectors, and the choice of a matrix or matrices to be 

decorrelated.  

  

In the last ten years, subspace filtering techniques have 

frequently been used in spectrum estimation [4, 5], system 

identification [6, 7], digital speech processing [8, 9], and 

later in evoked potential estimation [3], due to its power 

and flexibility. One of the most notable subspace-based 

techniques is the one developed by Ephraim and Van Trees 

[8] to extract a speech signal that is contaminated by white 

noise. Based on this work, Rezayee and Gazor [10] 

extended the time and spectrum domain constrained 
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methods of [8] to deal with colored noise, without using a 

pre-whitening stage. Reference [10] applied a Karhunen-

Loéve transform (KLT) approach by introducing a unitary 

“common diagonalizing eigenvector matrix” (CDEM) 

derived from the eigendecomposition of the observed 

signal covariance matrix.  

 

Further, [10] acknowledged that the generated CDEM 

approximately diagonalizes both the covariance matrices 

of the clean signal and noise process. However, [11] 

argued that the selected CDEM would result in a sub-

optimal speech estimator since both the clean signal and 

noise covariance matrices are not fully diagonalized. 

Accordingly, [11] aimed at producing an optimal speech 

enhancer by suggesting explicit pre-whitening and 

proposing a non-KLT, and therefore a non-unitary CDEM 

(based on the eigendecomposition of a non-symmetric 

basis matrix) that would jointly diagonalize the signal and 

noise covariance matrices.  

 

In our preliminary investigations, we applied and evaluated 

the signal subspace principles in [10, 11] above in the 

estimation of visual evoked potentials (VEPs) from the 

brain. As far as VEP estimation is concerned, the approach 

in [10] actually outperforms that in [11] even though the 

method suggested by [10] is sub-optimal. Upon closer 

inspections the formulas proposed by [11] contain 

inconsistencies.  

 

In this paper, we review the generic signal subspace 

method based on a time-domain-constrained (TDC) 

approach [8] and thoroughly evaluate the estimator 

proposed by [11] to assess its mathematical soundness and 

suggest some changes to rectify the shortcomings of the 

equations. Subsequently, we compare the performance of 

the pre- and post-modified algorithms in the estimation of 

visual evoked potential (VEP) signals. 

 

The paper is organized as follows. The general TDC signal 

subspace technique is clearly explained in Section 2. The 

eigendecomposition method proposed by [11] is briefly 

described in Section 3. In Section 4, we derive the correct 

formulas for the TDC estimator, modifying the introduced 

gain matrix of [11]. Next, Section 5 describes the results of 

VEP latency estimationusing our modified signal 

subspace approach and the technique of [11]in simulated 

and real clinical environments.  Last, Section 6 concludes 

the paper.  

 

To ensure common understanding and consistencies, all 

mathematical symbols, operators, notations and 

terminologies used are in compliance with the acceptable 

styles and conventions normally adopted worldwide. 

Lower case boldface characters will generally refer to 

vectors. Upper case BOLDFACE characters will generally 

refer to matrices. Vector or matrix transposition will be 

denoted using (.)
T
, and MxM  denotes the real vector 

space of M × M dimensions. 

2. Model Development 

2.1 Signal Model 

In developing a mathematical expression for extracting the 

signal, the following model is defined. 
 

y(k) = x(k) + n(k)        (1) 
 

where, the lowercase k is the discrete time index;  

y(k)  M  is the M-dimensional vector of the corrupted 

(noisy) signal; x(k)  M  is the M-dimensional vector of 

the original (clean) signal; n(k)  M is the M-

dimensional vector of the additive colored noise which is 

assumed to be uncorrelated with x(k). Next, H(k)  MxM   

is defined as the MxM-dimensional matrix of the signal 

time-domain constrained linear estimator. Further,  

)(ˆ kx  M is defined as the M-dimensional vector of the 

estimated signal. Afterwards, any vectors or matrices that 

appear without a time index should be visualized as having 

the ks as their time indexes. 

2.2 Estimated Signal 

The estimated (speech or any other) signal x̂  is related to 

H and y in the following way [8]: 
 

 x̂  = Hopt .y                     (2) 
 

The estimated signal x̂  will never be exactly equal to the 

original (clean) signal x. In other words, errors will 

inevitably be produced in the estimated signal. Basically, 

the system equation in Eq. (2) is to minimize a specified 

error criterion, which is the ultimate measure of the signal 

estimation performance criterion. As such, the error signal 

ε obtained by this estimation is given by [8]: 
 

 
  Hnεx IHεεε

HnxIHxxε

     



nxnx and       , 

     ˆ
      (3) 

 
where εx represents the speech distortion and εn represents 

the residual noise. The energies of the signal distortion 
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and the energies of the residual noise 
 

    
matrix covariance noise colored         

 , tr Etr2





n
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T
nnn

R

HHRεεε
   (5) 

 
lead to the total residual energies 
 

222
nx εεε                                    (6) 

 
Our main goal is to minimize both the unwanted energies 

so that a minimal error signal is obtained. The challenge is 

when speech signal distortion is at its lowest, noise 

residues will be at its highest; on the other hand, if noise is 

fully minimized, distortion will be at its greatest. Therefore, 

a good balance needs to be set so that the noise residues 

can be reasonably minimized without introducing 

significant distortion to the processed signal.  

2.3 Estimator Optimization 

Now, the aim is to design a linear estimator H that 

minimizes the speech signal distortion over all linear filters. 

This can be achieved by maintaining the residual noise 

within a permissible level. Mathematically, the optimum 

linear estimator Hopt with time-domain constraints on the 

residual noise is formulated as [8]: 
 

222 :subject to    

           

min Mσnxopt  εε

H

H                  (7) 

where M is the dimension of the noisy vector space and 
2σ  is a positive constant noise threshold level. The 2σ  in 

Eq. (7) dictates the amount of the residual noise allowed to 

remain in the linear estimator. Next, the Lagrangian 

function in association with the “Kuhn-Tucker necessary 

conditions for constrained minimization” [8] are applied to 

Eq. (7) to obtain Hopt. The formed Lagrangian function can 

be expressed as: 
 

)(  ),( 222 Mσμμ nx  εεHL                       (8) 
 
It follows that the filter matrix H is a stationary feasible 

point if it satisfies the following gradient equation 

HL(H, ) = 0: 
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Subsequently, the gradient equation in Eq. (9) can be 

solved to be 
 

 1)(  nxx μRRRH                   (10) 
                                    

Other Kuhn-Tucker necessary conditions to be fulfilled are  
 

0)( 22 Mσμ nε                            (11) 
 

for  
 

0μ                                       (12) 
 

The values for  and 2σ satisfying Eqs. (11) and (12) need 

to be determined. Equation (11) can be simplified to yield 
 

22 Mσn ε                                  (13) 
 

The following expression for 2σ  is obtained by equating 

Eq. (13) with Eq. (5): 
 

 

 T
n
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              (14) 

 
Equation (14) is more meaningful if a relationship between  

2σ and  can be established. This is achieved by replacing 

H computed in Eq. (10) into Eq. (14).   
 

 nnxx μ
M

σ RRRR
222 )(tr

1                (15) 

 
One issue that arises from Eq. (15) is whether to first 

specify the permissible level of residual noise 2σ , or the 

Lagrange multiplier . The first approach is to specify 2σ  

in Eq. (15) and calculate  from it. On the other hand,  

can be carefully chosen so that 2σ can be calculated. 

Therefore,  which satisfies Eq. (15) also satisfies  

Eqs. (11) and (12). Hence,  must also be the Lagrange 

multiplier for the time-domain-constrained (TDC) 

optimization problem of Eq. (7). 

2.4 Eigendecomposition of Estimator Parameters 

The filter matrix H stated in Eq. (10) functions as a fixed 

filter, which performs well to estimate the desired signal 

for a relatively high SNR value. As the SNR degrades, it is 

desirable if H can be adjusted accordingly to minimize the 

colored noise residues while keeping the desired signal 

distortion at a minimal level.  

 

One possible way to achieve an adjustable filter matrix H 

is by taking the eigendecomposition of its Rx and Rn terms. 

When Rx and Rn are represented by their respective 

eigenvectors and eigenvalues, the fixed filter matrix H then 
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becomes adjustable. If the dimension of the Rx eigenvalues 

is not lowered, the filter H functions exactly as that 

denoted in Eq. (10)  keeping signal distortion to its very 

minimum and noise energy to its maximum. 

  

When the dimension of Rx is lowered to a certain rank, the 

filter H will eliminate certain noise portions. If a proper 

dimension of the Rx eigenvalues is used, the component in 

the “noise only” subspace will get nulled. The component 

that remains available at the output of the filter H is the 

wanted signal from the “signal” subspace. Of course, the 

wanted signal may not be completely free from noise since 

the “signal” subspace is actually a “signal plus noise” 

subspace. Nevertheless, the wanted signal is now clearly 

visible as the SNR value gets improved due to the 

subspace filtering technique.   

3. Hu and Loizou's Eigendecomposition 

Approach 

Hu and Loizou [11] suggested the usage of a common 

diagonalizing eigenvector matrix (CDEM) that 

simultaneously and fully diagonalizes the signal and noise 

covariance matrices. For this, [11] stated that there exists a 

basis matrix  that can supposedly produce the required 

CDEM, satisfying the following equations: 
 

  VΛV Ψ                                     (16) 

ΛΛVRV     xx
T                            (17) 

IΛVRV  nn
T                           (18) 

 
where Λ and V are, respectively, the eigenvalue and non-

unitary eigenvector matrices of  ; correspondingly, Λx 

and  Λn are the eigenvalues of Rx and Rn. In turn,   was 

set to Rn
1

Rx (i.e.,  = Rn
1

Rx). Applying Eqs. (16), (17) 

and (18) to (10), [11] simplified their optimal linear 

estimator HSSA1 as 
 

 

  1

1

 matrix gain ,        
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(19) 

 
Based on Eq. (2), the estimated (speech) signal was then 

calculated as [11] 

1)(  where         

      ˆ









IΛΛGyVGVR

yGVVyHx

μxx
T

n

TT
SSA1SSA1

      
(20) 

 
Upon closer scrutiny, the following facts have been 

revealed: 
 

1. Equation (16) holds true. In fact, this equation will hold 

true for the eigendecomposition of any matrix. It is to be 

noted that the eigendecomposition of  = Rn
1

Rx  results 

in a non-unitary eigenvector V.  
 
2. Equation (17) holds true, partly. It produces fully 

diagonal "non-unity" eigenvalues of Rx given as 
 

xx

T

xx

T

RVΛV

ΛΛVRV





 1

and , 
                     (21) 

However, it can be observed from Eq. (21) that Λx is 

totally different from Λ. 
 

3. Equation (18) does not hold true. It actually produces 

fully diagonal eigenvalues of Rn given as 
 

n
T

nn
T

nn
T

RIVV

RVΛV

IΛVRV











1

1 and  ,

     ,

                     (22) 

 
It is obvious that Λx and Λ in Eq. (21) are not equal to each 

other, and n in Eq. (22) is not an identity matrix I as 

stated (by [11]) in Eqs. (17) and (18), respectively. 

 

Equation (19) and subsequently (20) are valid if and only 

if Eqs. (17) and (18) are valid. However, since Eq. (18) is 

invalid, the algorithm proposed by [11] is arguable. Their 

claim in producing an optimal (speech) signal enhancer by 

introducing a non-unitary CDEM is flawed by the claim 

that Λx equals to Λ, and by assuming that n in Eq. (18) is 

equal to the identity matrix I. 

4. Corrections to Hu and Loizou's 

Eigendecomposition 

4.1 Proposed Modifications to SSA1 Algorithm 

The flaws in [11] can be easily corrected by substituting Rx 

and Rn in Eq. (10) with their corresponding expressions, as 

stated in Eqs. (21) and (22), respectively. It follows that 

the gain matrix G in Eq. (19) is actually 
 

1)(  nxx μΛΛΛG
                  

(23) 
 

The difference between G in Eq. (23) and that in Eq. (19) 

is that the former has the Λn term included as part of the 

computation. Hence, the modified estimator which makes 

Eq. (19) mathematically correct can be expressed as 

follows:  
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Equation (24) leads to the following estimated signal: 

 
  1
    ,    

   ˆ

 



nxx
TT

SSA2SSA2

μΛΛΛGyGVV

yHx

    
(25) 

 
The corrupted signal y in Eq. (25) is decorrelated by the 

non-KLT matrix V
T
. Then, the transformed signal is 

modified and enhanced by the signal subspace gain matrix 

G. Next, the modified signal is retransformed back into the 

original state (at a reduced rank) by the inverse non-KLT 

matrix V
-T

 to approximate the desired signal. 

4.2 Algorithm Implementation 

The proposed modified approach (i.e., SSA2) can be 

formulated in the following twelve steps: 
 

Step 1. Compute the correlation matrix of the colored 

noise Rn, using a background noise sample, 

just prior to the availability of the desired 

signal.  
  
Step 2. Compute the noisy correlation matrix Ry, using 

the observed (corrupted) sample. This is the 

point when both the wanted signal and colored 

noise are present. 
 
Step 3. Estimate the correlation matrix of the noiseless 

sample as Rx = Ry – Rn. 
 
Step 4. Perform the eigendecomposition operation on  

 = Rn
1

Rx using Eq. (16). Extract the 

eigenvector matrix V and eigenvalue matrix  

from the computation.  
 

Step 5. Calculate Λx and n using Eqs. (21) and (22), 

respectively.  
 

Step 6. Assuming that the eigenvalues of x are 

ordered as λ1 ≥ λ 2 ≥  …  ≥ λ M, estimate the 

dimension d of the required signal subspace as 

follows: 

d = arg{
Mk    1

max
 k > 0}           (26) 

 
Step 7. Form a diagonal matrix, xM, from the largest 

M diagonal values of x.  

Step 8. Correspondingly, form a diagonal matrix, nM, 

from the largest M diagonal values of n.  
 
Step 9. Form a matrix VM using eigenvectors of V that 

correspond to the largest M eigenvalues. 
 
Step 10. Choose a proper value for µ  as a compromise 

between signal distortion and noise residues. 

Empirically, in our VEP estimation 

experiments, we found that µ  = 2 is ideal in 

reducing the colored EEG noise to a certain 

level, while minimizing the VEP signal 

distortion at the same time.   
 
Step 11. Compute the optimal linear estimator using  

Eq. (24). 
 

Step 12. Estimate the desired signal using Eq. (25).  

5. Experiments, Results and Discussions 

5.1 Simulated Data 

In this subsection, the performances of the SSA2 

(represented by Eq. (25)) and SSA1 (represented by Eq. 

(20)) in estimating the VEP signals (specifically, the P100, 

P200, and P300 latencies) are tested in statistical forms 

using artificially generated VEP signals corrupted with 

colored noise at different SNR values. 

 

Artificial VEP and EEG waveforms are generated and 

added to each other in order to create a noisy VEP. The 

clean VEP x(k)  
M , is generated by superimposing J 

Gaussian functions [12], each of which having a different 

amplitude (A), variance (2
) and mean () as given by the 

following equation: 
 

T
J

n

n kk













 



)()(

1

gx                            (27) 

 
where gn(k) = [gn1, gn2, …, gnM], for k = 1, 2, , M, with 

the individual gnk given as  

  
2

2

2

)(

2
2

n

nk

n

n
nk e

A
g









                       (28) 

The values for An, n and n for each gn vector are 

experimentally tweaked to create precise peaks  

(i.e., latencies) with progressively descending amplitudes 

at 100, 200, and 300 ms simulating the real P100, P200 

and P300, respectively.  

         

The pre-stimulation EEG colored noise e(k) is generated 

using autoregressive (AR) model [13, 14, 15] given by the 

following equation. 
 

  e(k) = 1.5084e(k – 1) – 0.1587e(k – 2) – 

   0.3109e(k – 3) – 0.0510e(k – 4) + u(k)          (29) 
 

where u(k) is the input driving noise of the AR filter and 

e(k) is the filter output. The artificial post-stimulation EEG 

noise n is generated by changing the variance of e. Since 

noise is assumed to be additive, the artificially-corrupted 

VEP signal y is then produced by adding together x and n.  
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As a preliminary illustration, Fig. 1(a) below shows a 

sample of artificially generated VEP according to  

Eqs. (27) and (28)showing realistically simulated 

amplitudes and peaks precisely at 100 ms (P100), 200 ms 

(P200) and 300 ms (P300); a noisy VEP at SNR = -6 dB; 

and extracted VEPs using both the SSA2 and SSA1 

techniques. Further, Figs. 1(b) and 1(c) show the outcomes 

of the simulated experiments at SNRs equal to -8 and -10 

dB, respectively.  

 

From Fig. 1(a), it can be observed that SSA2 estimates the 

latencies of P100, P200 and P300 components as 106, 205 

and 297 ms, respectively. The pertinent latencies produced 

by SSA1 are 108 (for P100), 204 (for P200) and 295 ms 

(for P300). From Fig. 1(b), SSA2 generates 99, 192 and 

314 ms, while SSA1  produces 105, 192 and 326 ms of 

latencies. Further from Fig. 1(c), SSA2 estimates the P100, 

P200 and P300 components as 98, 205 and 320 ms, 

respectively. The pertinent latencies produced by SSA1 are 

98 (for P100), 212 (for P200) and 328 ms (for P300). 

These early observations indicate that SSA2 manages to 

extract and bring the P100, P200 and P300 peaks much 

closer to their reference values (i.e., 100, 200 or 300 ms) 

compared to SSA1.  

 

To compare the performances of the two algorithms in 

statistical forms, the SNR was varied from 0 to -10 dB and 

the algorithms were run 500 times for each SNR value. 

Failure rate and average errors are used in this paper as 

vital test tools in assessing the performance of the filters in 

single-trial estimation of VEPs.  

 

To measure failure rate, visual inspections were performed 

to judge whether or not the estimators’ processed 

waveforms are acceptable. The three highest peaks within 

100 ±10, 200 ±10 and 300 ±10 ms are considered as the 

wanted P100, P200 and P300 components. Any trial is 

noted as a failure with respect to a certain peak if the 

waveform fails to show clearly the pertinent peak within 

the stated ±10 ms tolerance. The failure rate for each 

algorithm with respect to a certain peak and SNR is 

expressed in terms of a percentage. It is calculated 

according to the following formula: 

 

100%x 
failures ofnumber 

 rate failure
N

        (30) 

where N is the number of runs (trials) per SNR which in this 

case equals to 500.  
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Fig. 1 Simulated waveforms of clean and noisy VEPs, and extracted 

VEPs using SSA2 and SSA1, at SNR equal to (a) -6 dB; (b) -8 dB; 

and (c) -10 dB. 

The average error in estimating P100 is obtained as follows: 
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where )(ˆ
100 itP  is the estimated latency (for each run) of 

the P100 in milliseconds. The average errors for P200 and 

P300 components can be calculated in the same way. The 

failure rates and average errors for the simulated data are 

shown in Table 1 below.  

Table 1: The failure rate and average errors of SSA2 and SSA1 as a 

function of SNR. 

 

SNR 

[dB] 

Failure Rate [%] Average error 

Peak SSA2 
SSA1 

[11] 
Peak SSA2 

SSA1 

[11] 

0 

P100 0.2 13.2 P100 3.8 6.1 

P200 0.6 23.6 P200 3.9 8.9 

P300 51.8 53.4 P300 12.1 14.5 

-2 

P100 0 14.4 P100 3.8 7.3 

P200 3.8 27.0 P200 4.2 9.5 

P300 50.2 55.4 P300 12.2 15.3 

-4 

P100 1.0 16.8 P100 3.9 8.2 

P200 5.8 25.0 P200 4.6 8.4 

P300 48.6 57.6 P300 11.9 15.4 

-6 

P100 1.2 13.0 P100 3.8 6.7 

P200 8.4 31.2 P200 5.1 10.1 

P300 53.0 58.2 P300 12.8 15.1 

-8 

P100 2.0 16.8 P100 4.2 8.3 

P200 9.0 31.0 P200 5.2 10.1 

P300 53.8 55.8 P300 12.3 15.8 

-10 

P100 2.4 18.2 P100 4.2 7.9 

P200 14.4 34.2 P200 6.1 10.7 

P300 54.8 61.4 P300 12.9 16.2 

 

 

From Table 1 it is clear that the proposed SSA2 algorithm 

outperforms SSA1 in terms of failure rates and accuracies 

over the considered range of SNRs. In general, both 

algorithms show better efficiencies in estimating the 

latencies of P100's than they are with the other P200 and 

P300 peaks.  

 

Further, performance metrics such as peak latency mean 

and peak latency standard deviations are also used to 

gauge accuracies and precisions of the techniques under 

investigations. For five hundred different runs per SNR, 

the average of the estimated P100 peak latencies, denoted 

as 100P , is calculated as 
 

 




500

1
100100 )(ˆ

i
P itP                        (32) 

 

where )(ˆ
100 itP  is the individually estimated latency of the 

P100 peak in milliseconds. Again, the 200P  and 300P  can 

be determined in the same way. It is important to note that 

the mean value of the P100 peak latency closer to 100 ms, 

may not always indicate better accuracy. Subsequently, the 

performance of a filter should not rely on just the average 

value; its performance must be judged using standard 

deviations.  

 

The standard deviation of the P100 peak latencies, denoted 

as 100P , for the five hundred runs per SNR is calculated 

using 
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where )(ˆ
100 itP  is the estimated latencies of the P100 in 

milliseconds, and 100Pt  is the average value (in 

milliseconds) of the five hundred P100 data sets. Similarly, 

200P  or 300P

 

can be calculated by replacing )(ˆ
100 itP  

and 100Pt  in Eq. (33) with )(ˆ
200 itP  and 200Pt , or 

)(ˆ
300 itP  and 300Pt . Overall, the smaller the standard 

deviation of the estimated peak latency, the better the 

performance of the technique is. Specifically, the P100 (or 

P200, or P300) with a peak latency average closer to  

100 ms (or 200 ms, or 300 ms), coupled with a narrower 

standard deviation indicates better performance.  

 

The peak latency mean and standard deviations are listed 

in Table 2 below. From Table 2, it can be observed that 

SSA2 and SSA1 produce comparable mean values of the 

peak latencies; however, SSA2 always produces lower 

standard deviations. This means SSA2 performs better than  

SSA1.  

 

The inclusion of the eigenvalue matrix n in the gain 

matrix G (Eq. 23) improves the performance of SSA2. 

Actually, the performance of SSA1 is relatively high; 

oversimplification in the original algorithm of [11] slightly 

affects its accuracy and precision, in comparison to the 

modified SSA2 method.  

 

Table 2: The mean (in ms) of peak latencies and standard deviations (std) 

of SSA2 and SSA1 as a function of SNR. 

 

SNR 

[dB] 

SSA2 SSA1 [11] 

Peak Mean Std Peak Mean Std 

0 

P100 103.8 1.5 P100 104.8 9.3 

P200 203.6 2.7 P200 201.7 15.9 

P300 302.8 13.9 P300 301.2 18.3 
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-2 

P100 103.9 1.8 P100 105.0 11.3 

P200 203.8 3.5 P200 201.8 14.6 

P300 301.2 15.3 P300 301.9 20.5 

-4 

P100 103.8 1.9 P100 105.5 12.4 

P200 203.6 4.4 P200 200.6 18.2 

P300 301.7 15.6 P300 300.9 25.4 

-6 

P100 104.3 3.5 P100 104.9 11.6 

P200 203.5 5.9 P200 201.7 18.5 

P300 301.9 14.5 P300 301.9 19.6 

-8 

P100 103.9 2.7 P100 104.9 13.7 

P200 203.3 6.1 P200 201.9 16.2 

P300 300.7 14.5 P300 300.1 23.7 

-10 

P100 104.2 2.8 P100 106.3 11.9 

P200 203.7 7.3 P200 201.2 16.6 

P300 301.5 15.7 P300 302.1 23.1 

 

To further validate the performance of the SSA2 and SSA1 

estimators, the next experiments will deal with real patient 

data. Nevertheless, the performance outcome and evidence 

collected in the simulated experiments above are the 

utmost crucial in proving the true capabilities of the filters 

as single-trial estimators; this is because the true forms of 

the individual VEPs from real patient data are not known a 

priori.   

 

5.2 Real Patient Data 

In this subsection, the accuracies of SSA2 and SSA1 as 

single-trial estimators of the P100 latencies, used in the 

objective assessment of the visual pathways from the retina 

to the visual cortex of the human brain, are tested. Real 

patient experiments were conducted at Selayang Hospital, 

Kuala Lumpur using RETIport32 equipment. The 

experiments were carried out on normal subjects without 

any neurological deficit or medication known to affect the 

EEG.  

 

Subjects were asked to watch a checkerboard pattern  

(1
o
 full field), the stimulus being a checker reversal  

(N = 50 stimuli). Scalp recordings were made according to 

the International 10/20 System, with one eye closed at any 

given time. The active electrode was connected to the 

middle of the occipital (O1, O2) area while the reference 

electrode was attached to the middle of the forehead.  

 

In this paper, we will show the results for artefact-free 

trials of four subjects taken from their right eyes only; for 

this purpose, each subject's right eye was left open while 

his/her left eye was shaded by an eye patch. Each trial was 

pre-filtered in the range 0.1 to 70 Hz and sampled 

accordingly, creating 512 data points within a 333 ms span.  

 

Each subject underwent two separate recording sessions. In 

the first session, eighty trials for each subject were 

obtained and automatically averaged (using ensemble 

averaging) by the RETIport32 equipment to get the VEP 

signal and accordingly the latency of P100, which is the 

peak of interest of doctors at the Ophthalmology 

Department, Selayang Hospital. In general, VEP latencies 

such as the P100’s are used by clinicians to check the 

integrity of the subjects' visual pathways from the retinas to 

the occipital cortex parts of their brains. 

 

Since ensemble averaging (EA) is a multi-trial technique, it 

is expected to produce good estimation of the VEP latency 

that can be used as a baseline for comparing the 

performances of GSA and TOC. 

  

In the second session, 333 ms (machine dependent) of 

recording time was allocated to capture the brain activity 

just before a visual stimulation was applied to the subject. 

The recorded data for the entire 333 ms duration pertain to 

the pre-stimulus EEG signal which basically describes the 

brain background colored noise. Then, the next 333 ms 

was used to record the post-stimulus waveform which 

comprises the VEP and post-EEG signals. These pre- and 

post-stimulation signals are required by the SSA2 and 

SSA1 algorithm.  

 

The P100 latencies of four different subjects estimated by 

the single-trial SSA2 and SSA1 estimators, together with 

the corresponding P100 values approximated by the multi-

trial ensemble averaging (EA) are shown in Figs. 2(a) 

through 2(d) below. Attention is given to any dominant 

(i.e., highest) peak(s) from 90 to 140 ms.  It should be 

noted that any peaks that occur below 90 ms and above 

140 ms are considered as noise and are therefore ignored. 

The results, in milliseconds, are summarized as follows: 
 
 Fig. 2(a): EA = 99; SSA2 = 100; SSA1 = 98 ms. 

 Fig. 2(b): EA = 119; SSA2 = 119; SSA1 = 118 ms. 

 Fig. 2(c): EA = 108; SSA2 = 111; SSA1 = 131 ms. 

 Fig. 2(d): EA = 117; SSA2 = 118; SSA1 = 120 ms. 

 

From the results obtained, it can be stated that SSA2 

outperforms SSA1 in estimating the latencies of the P100 

components. The latency values generated by SSA2 are 

closer to those generated by EA compared to those 

produced by SSA1. In brief, the simulated and real data 

experiments exhibit the capability of the subspace-based 

technique such as SSA2 in VEP latency estimation. Most 

importantly, the results of both experiments prove higher 

reliabilities and higher accuracies of the proposed SSA2 

algorithm over SSA1.   
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Fig. 2 The latency of P100 for four subjects estimated using the SSA2 

and SSA1, and 80-trials based EA techniques. 

6. Conclusion 

The eigendecomposition method proposed by [11] is 

mathematically flawed by the simplification of the 

eigenvalues of the signal and noise covariance matrices, x 

and n, in Eqs. (17) and (18), respectively. The 

eigenvector V of the basis matrix  = Rn
1

Rx  diagonalizes 

both Rx and Rn, but does not make x equal to , and does 

not produce n equal to I. The inconsistencies can be fixed 

by utilizing the proper x and n in the gain matrix G, as 

illustrated by Eq. (23). Subsequently, Eqs. (24) and (25) 

are fully derived from Eqs. (10), (21) and (22), producing 

valid mathematical terms, and generating more accurate 

results. In our visual evoked potential estimation 

experiments, it has been found that our signal subspace 

(i.e., SSA2) approach outperforms the original algorithm  

(i.e., SSA1) suggested by [11].  

 

Both experimental results reflect the capability of the 

subspace-based SSA2 technique to be used as an effective 

single trial estimator of biomedical signals, which are 

presently extracted by means of multi-trial ensemble 

averaging. 

 

With the favorable performance demonstrated by the 

outcome of the simulated and real patient data, SSA2 has 

the potentials to be used not only as biomedical signal 

estimators from the brain, but also as general purpose blind 

signal separators in any other fields where SNR values are 

relatively low. Among the fields which can benefit from 

the proposed algorithms include biology, communication, 

oil and gas, and agriculture. 
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