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Summary 
Matrix multiplication is the kernel operation used in many image 
and signal processing applications. In this paper, we present the 
design and Field Programmable Gate Array (FPGA) 
implementation of matrix multiplier architectures for use in 
image and signal processing applications. The designs are 
optimized for speed which is the main requirement in these 
applications. First design involves computation of dense matrix-
vector multiplication which is used in image processing 
application. The design has been implemented on Virtex-4 FPGA 
and the performance is evaluated by computing the execution 
time on FPGA. Implementation results demonstrate that it can 
provide a throughput of 16970 frames per second which is quite 
adequate for most image processing applications. The second 
design involves multiplication of tri-matrix (three matrices) 
which is used in signal processing application. The proposed 
design for the multiplication of three matrices has been 
implemented on Spartan-3 and Virtex-II Pro platform FPGAs 
respectively. Implementation results are presented which 
demonstrate the suitability of FPGAs for such applications. 
Key words: 
FPGA, Matrix Multiplier, Systolic Array, VLSI. 

1. Introduction 

Computation intensive algorithms used in image and 
signal processing, multimedia, telecommunications, 
cryptography, networking and computation domains in 
general were first realized using software running on 
Digital Signal Processors (DSPs) or General Purpose 
Processors (GPPs). Significant speed-up in computation 
time can be achieved by assigning complex computation 
intensive tasks to hardware and by exploiting the 
parallelism in algorithms [1].  
Recently, Field Programmable Gate Arrays (FPGAs) have 
become a platform of choice for hardware realization of 
computation-intensive applications [1-13]. Especially, 
when the design at hand requires very high performance, 
designers can benefit from high density and high 
performance FPGAs instead of costly multicore Digital 
Signal Processing (DSP) systems [1]. FPGAs enable a 
high degree of parallelism and can achieve orders of 
magnitude speedup over GPPs [7]. This is as a result of 
the increasing embedded resources on FPGA.  

 
 
FPGA have the benefits of the hardware speed and the 
software flexibility; also they have a price/performance 
ratio much more favorable than Application Specific 
Integrated Circuits (ASICs). Since the major resources for 
implementing computation-intensive algorithms are 
embedded on FPGA, latency associated with device 
communication has been eliminated. However, these 
embedded resources are limited hence it is important to 
use these resources optimally.  
The last decade has seen ever increasing application areas 
for FPGAs. Modern FPGAs currently accommodate more 
than ten million gates with clock rates approaching 550 
MHz [13]. Example application areas include single chip 
replacements for old multichip technology designs, DSP, 
image processing, multimedia applications, high-speed 
communications and networking equipment such as 
routers and switches, the implementation of bus protocols 
such as Peripheral Component Interconnect (PCI), 
microprocessor glue logic, coprocessors and controllers.  
Most of the computation intensive algorithms such as 
those used in signal, image and video processing, 
numerical analysis, computer graphics and vision involve 
matrix operation as the kernel operation. In this paper, 
different architectures of matrix multiplication for use in 
image and signal processing applications are considered 
for hardware realization using FPGA.  
The paper is organized as follows. Section 2 presents a 
brief overview of FPGA technology and its comparison 
with other technologies is presented in section 3. The 
design methodology adopted in this work is presented in 
section 4. A brief literature review on the use of FPGAs 
for hardware implementation of matrix multiplication is 
presented in section 5. Section 6 and 7 presents FPGA 
design and implementation of different matrix multiplier 
architectures. Finally, concluding remarks are discussed in 
section 8. 

2. FPGA Overview  

Programmable devices, such as programmable logic arrays 
(PLAs), have been available since 1970s. However, for a 
number of years, their use was quite limited, mainly due to 
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technological reasons. In the early 1980s, programmable 
array logic (PALs) devices started to be used as glue-logic 
parts but suffered from power consumption problems. The 
extension of the gate array technique to post 
manufacturing customization, based on the idea of using 
arrays of custom logic blocks (LBs) that are surrounded by 
a perimeter of input/output (I/O) blocks, all of which 
could be assembled arbitrarily [14-15], gave rise to  the 
FPGA concept, which was introduced by Xilinx’ 
cofounder Ross Freeman in 1985.  
FPGAs are digital integrated circuits (ICs) that belong to a 
family of programmable logic devices (PLDs). An FPGA 
chip includes I/O blocks and the core programmable fabric. 
The I/O blocks are located around the periphery of the 
chip, providing programmable I/O connections and 
support for various I/O standards. The core programmable 
fabric consists of programmable logic blocks also called 
configurable logic blocks (CLBs) and programmable 
routing architectures. By using the appropriate 
configuration, FPGAs can, in principle, implement any 
digital circuit as long as their available resources are 
adequate. Fig. 1 illustrates a general FPGA fabric [16], 
which represents a popular architecture that many 
commercial FPGAs are based on, and is also a widely 
accepted architecture model used by FPGA researchers. 
 

 

Fig. 1  General FPGA fabric. 

FPGAs can be programmed after it is manufactured rather 
being limited to a predetermined, unchangeable hardware 
function. The term “field programmable” refers to the fact 
that its programming takes place “in the field” as opposed 
to devices whose internal functionality is hardwired by the 
manufacturer [17-18]. Many different architecture and 
programming technologies have evolved to provide better 
designs that make FPGAs economically viable and an 
attractive alternative to ASICs. Modern FPGAs have 
superior logic density, low chip cost and performance 

specifications comparable to low end microprocessor. 
With multimillion programmable gates per chip, current 
FPGAs can be used to implement digital systems capable 
of operating at frequencies up to 550 MHz. In many cases, 
it is possible to implement an entire system using a single 
FPGA. This is very economical for specialized 
applications that do not require the performance of custom 
hardware.  
Significant technological advancements have led to 
architectures that combine FPGA’s logic blocks and 
interconnect matrices, with one or more microprocessors, 
embedded Intellectual Property (IP) cores, memory blocks, 
DSP blocks integrated on a single chip to facilitate the 
implementation of Programmable System-on-a-Chip 
(PSoC) designs [19-20].  
Examples of PSoC are the Xilinx Virtex-II Pro, Virtex-4 
and Virtex-5 FPGA families, which include one or more 
hard-core PowerPC processors embedded along with the 
FPGA’s logic fabric [21-23]. Alternatively, soft processor 
cores that are implemented using part of the FPGA logic 
fabric are also available. Many soft processor cores are 
now available such as: Xilinx 32-bit MicroBlaze [24] and 
PicoBlaze, and the Altera Nios and the 32-bit Nios II 
processor [14].  

3. Comparison of FPGAs with ASICs, GPPs 
and DSPs  

An ASIC is highly optimized for one specific application 
or product. ASICs can provide the best performance and 
lowest power consumption. For large volume applications, 
ASICs can also provide the lowest chip cost and system 
cost. Despite the advantages of ASICs, they are often 
infeasible or uneconomical for many embedded systems 
because of high nonrecurring engineering (NRE) cost and 
longer design time [13-14, 25]. As compared to ASICs, 
FPGAs offer many advantages such as reduced NRE cost 
and shorter time to market. However, relatively high size 
and power consumption shown by FPGA devices has been 
the most important drawback of that technology.  
GPPs on the other hand are microprocessors that are 
designed to perform a wide range of computing tasks. As 
mentioned earlier, FPGAs are most often contrasted with 
ASICs.  However, before deciding on the implementation 
technology, it is very important to study the application 
carefully and then determine if it is possible to meet 
performance requirements with existing programmable 
processors-GPPs or DSPs. Development of code for such 
processors require much less effort as compared to that 
required for FPGAs or ASICs, because developing 
software with sequential languages such as C or C++ is 
much less challenging than writing parallel code with 
Hardware Description Languages (HDLs). 
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GPPs are also generally cheaper than FPGAs. Hence, if a 
GPP can meet application requirements (performance, 
power, etc.), it is almost always the best choice. In general, 
FPGAs are well suited to applications that demand 
extremely high performance and reprogrammability.  
DSPs are also microprocessors that are specifically 
optimized for the efficient execution of common signal 
processing tasks. DSPs are not as specialized as ASICs, so 
they are usually not as efficient in terms of speed, power 
consumption and price. DSPs are characterized by their 
flexibility and ease of programming relative to the FPGA. 
In a DSP system, the programmer does not need to 
understand the hardware architecture [26]; the hardware 
implementation is hidden from the user. The DSP 
programmer uses either C or assembly language. 
With respect to the performance criterion, the speed is 
limited by the clock speed of the DSPs, given that the 
DSPs operate in a sequential manner and accordingly 
cannot be fully parallelized. FPGAs, on the other hand, 
can work very fast if an appropriate parallelized 
architecture is designed. Reconfigurability in DSPs can be 
achieved by changing the memory content of its program. 
This is in contrast to FPGAs where reconfigurability can 
be performed by downloading reconfiguration data to the 
RAM.  
Power consumption in a DSP depends on the number of 
memory elements used regardless of the size of the 
executable program. For FPGA, the power consumption 
depends on the circuit design. FPGAs are important when 
there is a need to implement a parallel algorithm, that is, 
when different components operate in parallel to 
implement the system functionality. Thus the speed of 
execution is independent of the number of modules. This 
is in contrast to DSP systems where the execution speed is 
inversely proportional to the number of functionalities. 
FPGAs deliver an order of magnitude higher performance 
than DSPs [27]. 

4. Design Methodology  

Design methodology for the hardware realization of 
computation intensive algorithm is a combined effort of 
Electronic Design Automation (EDA) tools, methods and 
FPGA technology that enables to produce the optimized 
circuit for the end applications. A right combination of 
FPGA hardware, designed IP core and EDA tools will 
definitely enhance the efficiency of the design 
methodology. 
By design methodology, we imply the step-by-step 
process of FPGA design. The FPGA design methodology 
is used as a guideline for the hardware realization of 
algorithms. A number of design flows are used by 
different FPGA vendors but all are basically similar in 
sequence of tasks performed. These steps are common in 

all FPGA EDA tools and are essential in today’s FPGA 
design process. The EDA tools like Xilinx Integrated 
Software Environment (ISE), Altera’s Quartus II and 
Mentor Graphics’ FPGA Advantage plays a very 
important role in obtaining an optimized digital circuit 
using FPGA [13-14]. A typical FPGA design flow 
followed in this work is shown in fig. 2.  
In this flow, design Entry is used to describe the 
algorithm/circuit that has to be implemented onto the 
FPGA device. There are two standard approaches to 
specify the FPGA designs: HDL-based and Schematic-
based depending upon the complexity of FPGA design. 
However, for complex and computationally intensive 
algorithms HDL-based (VHDL or Verilog) design entry is 
the dominant method used by FPGA designers. After 
specifying the design using HDLs or Schematic, the 
designer needs to validate the logical correctness of the 
design. This is performed using functional or behavioral 
simulation. 
 

 

Fig. 2  FPGA design flow. 

Designers usually go through this step right after they 
finish the design entry and logic synthesis. Logic synthesis 
converts HDL or schematic-based design entry into a 
netlist of actual gates/blocks specified in FPGA devices. 
This is the most important step of the whole design 
process. Technology mapping is a step in the middle of 
typical FPGA design flow. In this step, the EDA tool 
transforms a netlist of technology independent logic gates 
into one comprised of logic cells and IOBs in the target 
FPGA architectures [28]. Mapping plays a significant role 
on the quality of the implemented circuits [29]. 
Placement follows technology mapping in an FPGA 
design flow and selects the optimal position for each block 
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in a circuit. A good placement is extremely important for 
FPGA designs. It directly affects the routability and the 
performance of a design on FPGA [30]. FPGA placement 
algorithms can be broadly classified as routability-driven 
and timing-driven [31]. The next step in the FPGA design 
flow is routing [32-34]. It is the last step in the design flow 
prior to generating the bit-stream to program the FPGA. 
FPGA routing is a tedious process because it has to use 
only the prefabricated routing resources such as wire 
segments, programmable switches and multiplexers [33].  
Analysis is essential for today’s designs that have complex 
algorithms and huge amount of gates. The analysis tools 
(ModelSim, ISE simulator, Quartus II) are linked with the 
initial step and when an error occurs, the whole design has 
to go back to previous steps or in certain situations to the 
very beginning depending on the severity of the problem. 
Timing simulation validates the logical correctness of the 
design taking into account the delays of the FPGA device. 
Bit stream generation and downloading the generated bit 
file in the FPGA is the final step of the FPGA design flow.  

5. Literature Review  

Matrix multiplication is a computationally intensive 
problem, especially the design and efficient 
implementation on an FPGA where resources are very 
limited, has been more demanding. FPGA based designs 
are usually evaluated using three performance metrics: 
speed (latency), area, and power (energy). Fixed point 
implementations in FPGA are fast and have minimal 
power consumption. Additionally, a fixed point matrix 
multiplier unit often requires less silicon real estate in an 
FPGA or ASIC than its floating-point counterpart. The 
limitation of fixed point number is that very large and very 
small numbers cannot be represented and the range is 
limited to bit-width of the number. There has been 
extensive previous work in the area of designing an FPGA 
based system for the computation of fixed point matrix 
multiplier. 
In [35], a design methodology for synthesizing a family of 
very compact systolic arrays on FPGA based essentially 
upon manual mapping at CLB level coupled with VHDL 
structural-level is discussed. The authors of [36] used 
matrix multiplication as the benchmark to compare the 
performance of FPGAs, DSPs and embedded processors. 
The results show that the FPGAs can multiply two 
matrices with both lower latency and lower energy 
consumption than the other two types of devices. This 
makes FPGA ideal choice for matrix multiplication in 
signal processing applications. 
Amira et al. presented a novel architecture based on 
systolic architecture for a matrix multiplication [37]. A 
serial-parallel matrix multiplier based on the Baugh-
Wooley algorithm has been used. The design based on the 

systolic architecture has been implemented using a Xilinx 
XCV1000E of Virtex-E FPGA family.  
Amira et al. designed a parameterizable system for 8-bit 
fixed point matrix multiplication using FPGA [38]. Their 
design used both systolic architecture and distributed 
arithmetic design methodology for the implementation of 
matrix multiplication. The architecture proposed in this 
paper was targeted to Xilinx XCV2000E of Virtex-E 
FPGA family. The results presented in this paper showed 
better performance than the architecture presented in [37] 
in terms of area and speed. For n=4, distributed arithmetic 
based design used 57 Slices as compared to 72 slices used 
in [37] and operated at a maximum frequency of 166.47 
MHz as compared to 58.302 MHz used in [37]. 
Distributed Arithmetic based design provides better 
performance in terms of speed and area as compared to 
systolic array based design. The I/O bandwidth required 
by the design is directly proportional to the problem size. 
The designs presented in [37-38] were restricted to small 
matrix size. For multiplying large matrices (n=128, 256 
and 512), Bensaali et al. designed an FPGA based 
coprocessor [39]. The designed coprocessor first partitions 
the input matrices into smaller sub-matrices and then 
calculates the product. 
In [40], Mencer et al. implemented the matrix 
multiplication on Xilinx XC4000E FPGA device. Their 
design employs bit serial multipliers using Booth encoding. 
They focused on tradeoffs between area and maximum 
running frequency with parameterized circuit generators. 
Their design was improved by Amira et al. in [41-42] 
using modified booth encoder multiplication along with 
Wallace tree addition.  For n=4, 296 CLBs were used to 
achieve a maximum operating frequency of 60 MHz using 
Xilinx XCV1000E FPGA. 
Jang et al. improved the design in [40-42] in terms of area, 
speed [43] and energy [44] by taking advantage of data 
reuse. They reduced the latency for computing matrix 
product by employing internal storage registers in the 
processing element (PE). The algorithms need n 
multipliers, n adders, and total storage of size n2 words. 
For 4 × 4 matrix multiplication, the latency of the design 
in [40] is 0.57μs, while the design in [43-44] uses 0.15μs 
utilizing 18 % less area as compared to [40]. 
Belkacemi et al. [45] presented the design and 
implementation of a high performance, fully parallel 
matrix multiplication core. The core was parameterized 
and scalable in terms of the matrix dimensions (i.e., 
number of rows and columns) and the input data word 
length. Fully floor planned FPGA configurations were 
generated automatically, from high-level descriptions of 
the matrix multiplication operation, in the form of 
Electronic Design Interchange Format (EDIF) netlist in 
less than one second. These are specifically optimized for 
Xilinx Virtex FPGA chips. By exploiting the abundance of 
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logic resources in Xilinx Virtex FPGAs (LUTs, fast carry 
logic, shift registers, flip flops etc.), a fully parallel 
implementation of the matrix multiplier core is achieved; 
with a full matrix result being generated every clock cycle. 
A 3 × 3 matrix multiplier instance consumes 2,448 Virtex 
slices and can run at 175 MHz on an XCV1000E-6 Virtex-
E chip. 
Traditionally, the performance metrics for FPGA based 
designs have been latency and area. However, with the 
proliferation of portable, mobile devices, it has become 
increasingly important that the systems are also energy 
efficient and consume low power. In FPGA devices, major 
chunk of power is consumed by the programmable 
interconnects, while the remaining power is consumed by 
the clocking, logic and I/O blocks. Another source of 
power dissipation in FPGAs is resource utilization and 
switching activity [46]. Research efforts towards the 
design of energy efficient matrix multiplier have been 
reported in [44], [47-49]. 
Most of the previous work in fixed point matrix 
multiplication focused only on reducing the latency and 
the area. Choi et al. developed new designs and 
architectures for FPGAs which minimize the power 
consumption along with latency and area [47-48]. They 
used linear systolic architecture to develop energy 
efficient designs. For linear array architecture, the amount 
of storage per processing element affects the system wide 
energy. Thus, they used maximum amount of storage per 
processing element and minimum number of multipliers to 
obtain energy-efficient matrix multiplier. 
Partially reconfigurability feature was exploited for the 
first time for the computation of matrix multiplication by 
Jianwen et al. in [50]. Partially reconfigurable devices 
offer the possibility of changing the design 
implementation without stopping the whole execution 
process. The matrix multiplier was implemented in Xilinx 
Virtex-II device, which supports partial reconfiguration. 
The design was evaluated in terms of latency and area and 
it was found that area is reduced by 72%-81% for matrix 
sizes between 3 × 3 and 48 × 48 as compared to [43] and 
the performance further improves for larger matrices. 

6. Matrix-Vector Multiplication: Design and 
Implementation 

In this section, we present the design and discuss the 
results of implementing matrix-vector multiplication 
which is computationally very intensive. It requires 
several multiply and add units. In DSPs, the overall 
performance is limited by the number of multiplications 
and additions that could be done in parallel. DSPs take 
several clock cycles to perform all the necessary multiply-
add operations. However, modern FPGAs on the other 

hand has large number of hardware resources embedded in 
the FPGA fabric itself such as DSP48 blocks, multipliers, 
Block RAMs, etc. It can provide higher and more efficient 
processing rates required by such applications if the 
algorithm is coded in a way to utilize these embedded 
resources efficiently. The objective of this paper is to 
realize a large matrix-vector multiplier for image 
processing applications [51]. To achieve this, FPGA is 
used for faster and efficient realization.  

6.1 Mathematical Formulation 

We represent the vector C as (C1, C2...Cm)T and vector G 
which represents the image data. According to the 
application, we want to multiply matrix S with vector C 
represented by the following equation 

                                    C=SG                                           (1) 

where, S is a Jacobian matrix. In the discrete form, it is 
required to find the unknown vector G from the known 
vector C, while S is treated as a constant matrix for 
simplicity. We can represent G by the following 
relationship 

                                     G=STC                                        (2) 

where, ST is the transpose of S. Replacing ST by A, 
mathematically; the above equation is approximated by the 
following relationship 

                                     G=AC                                         (3) 

The key idea here is to calculate G using (3). The 
dimension of the given matrices depends on the 
application, which, in this case is summarized in table 1. 

Table 1: Matrix Dimensions 

Matrix Symbol  Matrix Dimension 

A 1024×28 

C 28×1 

G 1024×1 

6.2 Hardware Architecture 

This section presents the technique to design hardware 
architecture for implementing matrix-vector multiplication 
algorithm on FPGA. As can be seen from (3), matrix-
vector multiplication is the kernel operation. For efficient 
implementation and maximum speed-up, integer 
arithmetic is used. Since the floating-point arithmetic unit 
consumes more silicon real estate of FPGA and are slower 
as compared to integer arithmetic, we used integer 
arithmetic for our designs.   
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The design involves the computation of G = AC, where A 
is a matrix, C and G are vectors as summarized in table 1. 
We need to calculate vector G. Broadcast algorithm is 
adopted for the matrix-vector multiplication. The matrix–
vector multiplication is performed by broadcasting rows of 
matrix A and multiplying the corresponding column 
elements of vector C. Following operations are involved: 

• Reading individual row elements of matrix A and 
individual column elements of vector C 

• Storing them in internal buffers row and column 
wise respectively 

• Multiplying row and column elements  
• Accumulating the multiplier output and writing 

back the results to the output buffers. 
The input and output buffers are implemented on the 
FPGA. The matrix-vector multiplications involve multiply 
and accumulate operations. The multiply-accumulate unit 
consists of a multiplier and adder. The row and the column 
elements are supplied as the two inputs to the multiplier. 
The output of the multiplier is directly given to the adder 
as one of the inputs. The previous output of the adder is 
fed back as the second input to the adder. 
The multiply-accumulate unit takes each element of the 
matrix A in row major format and each element of vector 
C, multiplies them and adds the result to the running total. 
This process is repeated till the last element of row A and 
column C. The values are fed in a sequential manner. If 
the reset signal is asserted high, the contents of registers A 
and C are cleared. After a delay, as determined by the 
implementation results, the first element of vector G is 
available at the serial output and this output is stored in 
on-chip memory. This operation is repeated and the 
process continues until all the rows of matrix A are 
processed. Finally, the output vector G is available with all 
the elements stored in the memory locations. A simplified 
block diagram of matrix-vector multiplication is shown in 
fig. 3.  
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Fig. 3  Block diagram of matrix-vector multiplication 

6.3 Implementation 

In order to evaluate the performance of our FPGA-based 
implementation, the algorithm was coded in VHDL and 
implemented on Xilinx Virtex-4 (XC4VLX200FF1513, 
speed grade: -11) family using Xilinx ISE 9.2i tool. The 
design was synthesized into Virtex-4 FPGA optimized for 
speed. The hardware resource utilization is summarized in 
table 2. 

Table 2: FPGA Resource Utilization 

Resource Used/Available Utilization

Slices 1,3010 out of  89,088 14% 

4-input  LUTs         9,612 out of 178,176    5% 

DSP48s 55 out of 96 57% 

Max. Frequency  17.376 (MHz) - 

 
As shown in table 2, roughly 14% of the slices and 57% 
DSP48s are utilized leaving a plenty of room to implement 
more parallel processors on the same FPGA chip. The 
results listed in table 2 were obtained using Xilinx ISE 
9.2i tool configured to optimize for speed. The total 
processing time using Virtex-4 FPGA is found to be 58.93 
µs; this is equivalent to a throughput of 16970 frames per 
second. The results indicate the feasibility of using FPGA 
for real time high speed image processing applications 
using this matrix-vector multiplication. 

7. Tri-Matrix Multiplication: Design and 
Implementation 

In this section we will present the design of tri-matrix 
multiplier which is commonly used in DSP applications 
[52]. Matrix T can be written as 

T = XYZ     (4) 

where, X and Z are rectangular matrices given by (5) and 
(6) respectively. Y is a diagonal square matrix, where n = 
0, 1, …, N-1. 
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7.1 Hardware Architecture 

The system for the above given mathematical formulation 
translates into two blocks, in which the first block 
multiplies matrix X by diagonal matrix Y and then serves 
the output from this block to another block, which 
multiplies the product XY by Z. We used the two-
dimensional systolic array based architecture as shown in 
fig. 4 and fig. 5 for the matrix multiplication.  
 

 

Fig. 4  Architecture of first block  

 

Fig. 5  Architecture of second block 

Systolic arrays accelerate medium sized matrix 
multiplication by exploiting the inherent data parallelism 
in matrix multiplication. Multiplying the matrix X by the 
diagonal square matrix Y is equivalent to multiplying the 
first diagonal element by the entries of first row of X, the 
second diagonal element by the entries of the second row 
of X and so on.  
Fig. 4 and fig. 5 shows the systolic architecture for both 
the modules for N1=3 and N2=3 respectively. Both the 
matrix multiplier blocks consist of nine identical 
processing elements, PE1 and PE2, respectively. PE1 
consists of multiplier whereas PE2 consists of MAC unit 
where each MAC unit consists of a multiplier and adder. 
The function of each PE1 in the first array is to multiply 
the diagonal elements of Y by one element of matrix X 
during each clock period. First column PE1 are responsible 
for producing first column of the product XY referred to 
as W in the fig. 4, second column generates the second 
column and so on. The entries are stored in an internal 
buffer to be used later by the next array. Similarly, the 
second array as shown in fig. 5 performs the multiplication 
of (XY) with Z. 

7.2 Implementation 

FPGA-based systolic array parallel architecture for the tri-
matrix multiplication was evaluated for different matrix 
sizes ranging from 3×3 to 7×7 tri-matrix multiplications. 
The same architecture is extended for 7×7 tri-matrix 
multiplier. For 7×7 tri-matrix multiplier, the FPGA utilizes 
more resources as compared to 3×3 tri-matrix multiplier. It 
requires more hardware resources which is obvious from 
the computational complexity of 7×7 multiplier. The 
implementation results are summarized and compared in 
table 3. Since the 7×7 design could not be fit into Spartan-
3 (XC3S2000FG900-4) device, we used a more advanced 
Virtex-II Pro (XC2VP100FF1704-6) platform FPGA for 
implementation. 

Table 3: FPGA Resource Utilization Comparison 

 T=[ ]7×7 T=[ ]3×3 

FPGA Resources (Virtex-II Pro)  (Spartan-3) 

LUTs 2,353  270  
CLB Slices 1,177  144  
Eq. Gate Count 1,151,761 148,215 
Max. Frequency 102 MHz 87 MHz 
Embedded Multipliers 280  36 

8. Conclusions 

Most of the algorithms which are used in DSP, image and 
video processing, computer graphics and vision and high 
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performance supercomputing applications have matrix 
multiplication as the kernel operation. In this paper, we 
considered two different examples of matrix multiplier 
architecture where speed is the main constraint. The first 
design involving computation of dense matrix-vector 
multiplication is implemented on Xilinx Virtex-4 FPGA 
and the performance is evaluated by computing its 
execution time on FPGA. Hardware implementation 
results demonstrate that it can provide a throughput of 
16970 frames per second which is sufficient for many 
image and video processing applications. The second 
design for the multiplication of three matrices is based on 
systolic array and implemented on Spartan-3 and Virtex-II 
Pro platform FPGAs respectively. Implementation results 
demonstrate the suitability of FPGAs in such applications. 
Finally, we conclude that for multiplication of large 
matrices, memory based architecture is quite efficient 
whereas, for small and medium sized matrix multiplication, 
systolic array techniques prove to be quite efficient as 
demonstrated by the implementation results. 
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