
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

168

Manuscript received February 5, 2010

Manuscript revised February 20, 2010

FPGA Design and Implementation of Matrix Multiplier
Architectures for Image and Signal Processing Applications

Syed M. Qasim, Ahmed A. Telba and Abdulhameed Y. AlMazroo

King Saud University, College of Engineering, Department of Electrical Engineering, Riyadh 11421, Saudi Arabia

Summary
Matrix multiplication is the kernel operation used in many image
and signal processing applications. In this paper, we present the
design and Field Programmable Gate Array (FPGA)
implementation of matrix multiplier architectures for use in
image and signal processing applications. The designs are
optimized for speed which is the main requirement in these
applications. First design involves computation of dense matrix-
vector multiplication which is used in image processing
application. The design has been implemented on Virtex-4 FPGA
and the performance is evaluated by computing the execution
time on FPGA. Implementation results demonstrate that it can
provide a throughput of 16970 frames per second which is quite
adequate for most image processing applications. The second
design involves multiplication of tri-matrix (three matrices)
which is used in signal processing application. The proposed
design for the multiplication of three matrices has been
implemented on Spartan-3 and Virtex-II Pro platform FPGAs
respectively. Implementation results are presented which
demonstrate the suitability of FPGAs for such applications.
Key words:
FPGA, Matrix Multiplier, Systolic Array, VLSI.

1. Introduction

Computation intensive algorithms used in image and
signal processing, multimedia, telecommunications,
cryptography, networking and computation domains in
general were first realized using software running on
Digital Signal Processors (DSPs) or General Purpose
Processors (GPPs). Significant speed-up in computation
time can be achieved by assigning complex computation
intensive tasks to hardware and by exploiting the
parallelism in algorithms [1].
Recently, Field Programmable Gate Arrays (FPGAs) have
become a platform of choice for hardware realization of
computation-intensive applications [1-13]. Especially,
when the design at hand requires very high performance,
designers can benefit from high density and high
performance FPGAs instead of costly multicore Digital
Signal Processing (DSP) systems [1]. FPGAs enable a
high degree of parallelism and can achieve orders of
magnitude speedup over GPPs [7]. This is as a result of
the increasing embedded resources on FPGA.

FPGA have the benefits of the hardware speed and the
software flexibility; also they have a price/performance
ratio much more favorable than Application Specific
Integrated Circuits (ASICs). Since the major resources for
implementing computation-intensive algorithms are
embedded on FPGA, latency associated with device
communication has been eliminated. However, these
embedded resources are limited hence it is important to
use these resources optimally.
The last decade has seen ever increasing application areas
for FPGAs. Modern FPGAs currently accommodate more
than ten million gates with clock rates approaching 550
MHz [13]. Example application areas include single chip
replacements for old multichip technology designs, DSP,
image processing, multimedia applications, high-speed
communications and networking equipment such as
routers and switches, the implementation of bus protocols
such as Peripheral Component Interconnect (PCI),
microprocessor glue logic, coprocessors and controllers.
Most of the computation intensive algorithms such as
those used in signal, image and video processing,
numerical analysis, computer graphics and vision involve
matrix operation as the kernel operation. In this paper,
different architectures of matrix multiplication for use in
image and signal processing applications are considered
for hardware realization using FPGA.
The paper is organized as follows. Section 2 presents a
brief overview of FPGA technology and its comparison
with other technologies is presented in section 3. The
design methodology adopted in this work is presented in
section 4. A brief literature review on the use of FPGAs
for hardware implementation of matrix multiplication is
presented in section 5. Section 6 and 7 presents FPGA
design and implementation of different matrix multiplier
architectures. Finally, concluding remarks are discussed in
section 8.

2. FPGA Overview

Programmable devices, such as programmable logic arrays
(PLAs), have been available since 1970s. However, for a
number of years, their use was quite limited, mainly due to

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

169

technological reasons. In the early 1980s, programmable
array logic (PALs) devices started to be used as glue-logic
parts but suffered from power consumption problems. The
extension of the gate array technique to post
manufacturing customization, based on the idea of using
arrays of custom logic blocks (LBs) that are surrounded by
a perimeter of input/output (I/O) blocks, all of which
could be assembled arbitrarily [14-15], gave rise to the
FPGA concept, which was introduced by Xilinx’
cofounder Ross Freeman in 1985.
FPGAs are digital integrated circuits (ICs) that belong to a
family of programmable logic devices (PLDs). An FPGA
chip includes I/O blocks and the core programmable fabric.
The I/O blocks are located around the periphery of the
chip, providing programmable I/O connections and
support for various I/O standards. The core programmable
fabric consists of programmable logic blocks also called
configurable logic blocks (CLBs) and programmable
routing architectures. By using the appropriate
configuration, FPGAs can, in principle, implement any
digital circuit as long as their available resources are
adequate. Fig. 1 illustrates a general FPGA fabric [16],
which represents a popular architecture that many
commercial FPGAs are based on, and is also a widely
accepted architecture model used by FPGA researchers.

Fig. 1 General FPGA fabric.

FPGAs can be programmed after it is manufactured rather
being limited to a predetermined, unchangeable hardware
function. The term “field programmable” refers to the fact
that its programming takes place “in the field” as opposed
to devices whose internal functionality is hardwired by the
manufacturer [17-18]. Many different architecture and
programming technologies have evolved to provide better
designs that make FPGAs economically viable and an
attractive alternative to ASICs. Modern FPGAs have
superior logic density, low chip cost and performance

specifications comparable to low end microprocessor.
With multimillion programmable gates per chip, current
FPGAs can be used to implement digital systems capable
of operating at frequencies up to 550 MHz. In many cases,
it is possible to implement an entire system using a single
FPGA. This is very economical for specialized
applications that do not require the performance of custom
hardware.
Significant technological advancements have led to
architectures that combine FPGA’s logic blocks and
interconnect matrices, with one or more microprocessors,
embedded Intellectual Property (IP) cores, memory blocks,
DSP blocks integrated on a single chip to facilitate the
implementation of Programmable System-on-a-Chip
(PSoC) designs [19-20].
Examples of PSoC are the Xilinx Virtex-II Pro, Virtex-4
and Virtex-5 FPGA families, which include one or more
hard-core PowerPC processors embedded along with the
FPGA’s logic fabric [21-23]. Alternatively, soft processor
cores that are implemented using part of the FPGA logic
fabric are also available. Many soft processor cores are
now available such as: Xilinx 32-bit MicroBlaze [24] and
PicoBlaze, and the Altera Nios and the 32-bit Nios II
processor [14].

3. Comparison of FPGAs with ASICs, GPPs
and DSPs

An ASIC is highly optimized for one specific application
or product. ASICs can provide the best performance and
lowest power consumption. For large volume applications,
ASICs can also provide the lowest chip cost and system
cost. Despite the advantages of ASICs, they are often
infeasible or uneconomical for many embedded systems
because of high nonrecurring engineering (NRE) cost and
longer design time [13-14, 25]. As compared to ASICs,
FPGAs offer many advantages such as reduced NRE cost
and shorter time to market. However, relatively high size
and power consumption shown by FPGA devices has been
the most important drawback of that technology.
GPPs on the other hand are microprocessors that are
designed to perform a wide range of computing tasks. As
mentioned earlier, FPGAs are most often contrasted with
ASICs. However, before deciding on the implementation
technology, it is very important to study the application
carefully and then determine if it is possible to meet
performance requirements with existing programmable
processors-GPPs or DSPs. Development of code for such
processors require much less effort as compared to that
required for FPGAs or ASICs, because developing
software with sequential languages such as C or C++ is
much less challenging than writing parallel code with
Hardware Description Languages (HDLs).

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

170

GPPs are also generally cheaper than FPGAs. Hence, if a
GPP can meet application requirements (performance,
power, etc.), it is almost always the best choice. In general,
FPGAs are well suited to applications that demand
extremely high performance and reprogrammability.
DSPs are also microprocessors that are specifically
optimized for the efficient execution of common signal
processing tasks. DSPs are not as specialized as ASICs, so
they are usually not as efficient in terms of speed, power
consumption and price. DSPs are characterized by their
flexibility and ease of programming relative to the FPGA.
In a DSP system, the programmer does not need to
understand the hardware architecture [26]; the hardware
implementation is hidden from the user. The DSP
programmer uses either C or assembly language.
With respect to the performance criterion, the speed is
limited by the clock speed of the DSPs, given that the
DSPs operate in a sequential manner and accordingly
cannot be fully parallelized. FPGAs, on the other hand,
can work very fast if an appropriate parallelized
architecture is designed. Reconfigurability in DSPs can be
achieved by changing the memory content of its program.
This is in contrast to FPGAs where reconfigurability can
be performed by downloading reconfiguration data to the
RAM.
Power consumption in a DSP depends on the number of
memory elements used regardless of the size of the
executable program. For FPGA, the power consumption
depends on the circuit design. FPGAs are important when
there is a need to implement a parallel algorithm, that is,
when different components operate in parallel to
implement the system functionality. Thus the speed of
execution is independent of the number of modules. This
is in contrast to DSP systems where the execution speed is
inversely proportional to the number of functionalities.
FPGAs deliver an order of magnitude higher performance
than DSPs [27].

4. Design Methodology

Design methodology for the hardware realization of
computation intensive algorithm is a combined effort of
Electronic Design Automation (EDA) tools, methods and
FPGA technology that enables to produce the optimized
circuit for the end applications. A right combination of
FPGA hardware, designed IP core and EDA tools will
definitely enhance the efficiency of the design
methodology.
By design methodology, we imply the step-by-step
process of FPGA design. The FPGA design methodology
is used as a guideline for the hardware realization of
algorithms. A number of design flows are used by
different FPGA vendors but all are basically similar in
sequence of tasks performed. These steps are common in

all FPGA EDA tools and are essential in today’s FPGA
design process. The EDA tools like Xilinx Integrated
Software Environment (ISE), Altera’s Quartus II and
Mentor Graphics’ FPGA Advantage plays a very
important role in obtaining an optimized digital circuit
using FPGA [13-14]. A typical FPGA design flow
followed in this work is shown in fig. 2.
In this flow, design Entry is used to describe the
algorithm/circuit that has to be implemented onto the
FPGA device. There are two standard approaches to
specify the FPGA designs: HDL-based and Schematic-
based depending upon the complexity of FPGA design.
However, for complex and computationally intensive
algorithms HDL-based (VHDL or Verilog) design entry is
the dominant method used by FPGA designers. After
specifying the design using HDLs or Schematic, the
designer needs to validate the logical correctness of the
design. This is performed using functional or behavioral
simulation.

Fig. 2 FPGA design flow.

Designers usually go through this step right after they
finish the design entry and logic synthesis. Logic synthesis
converts HDL or schematic-based design entry into a
netlist of actual gates/blocks specified in FPGA devices.
This is the most important step of the whole design
process. Technology mapping is a step in the middle of
typical FPGA design flow. In this step, the EDA tool
transforms a netlist of technology independent logic gates
into one comprised of logic cells and IOBs in the target
FPGA architectures [28]. Mapping plays a significant role
on the quality of the implemented circuits [29].
Placement follows technology mapping in an FPGA
design flow and selects the optimal position for each block

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

171

in a circuit. A good placement is extremely important for
FPGA designs. It directly affects the routability and the
performance of a design on FPGA [30]. FPGA placement
algorithms can be broadly classified as routability-driven
and timing-driven [31]. The next step in the FPGA design
flow is routing [32-34]. It is the last step in the design flow
prior to generating the bit-stream to program the FPGA.
FPGA routing is a tedious process because it has to use
only the prefabricated routing resources such as wire
segments, programmable switches and multiplexers [33].
Analysis is essential for today’s designs that have complex
algorithms and huge amount of gates. The analysis tools
(ModelSim, ISE simulator, Quartus II) are linked with the
initial step and when an error occurs, the whole design has
to go back to previous steps or in certain situations to the
very beginning depending on the severity of the problem.
Timing simulation validates the logical correctness of the
design taking into account the delays of the FPGA device.
Bit stream generation and downloading the generated bit
file in the FPGA is the final step of the FPGA design flow.

5. Literature Review

Matrix multiplication is a computationally intensive
problem, especially the design and efficient
implementation on an FPGA where resources are very
limited, has been more demanding. FPGA based designs
are usually evaluated using three performance metrics:
speed (latency), area, and power (energy). Fixed point
implementations in FPGA are fast and have minimal
power consumption. Additionally, a fixed point matrix
multiplier unit often requires less silicon real estate in an
FPGA or ASIC than its floating-point counterpart. The
limitation of fixed point number is that very large and very
small numbers cannot be represented and the range is
limited to bit-width of the number. There has been
extensive previous work in the area of designing an FPGA
based system for the computation of fixed point matrix
multiplier.
In [35], a design methodology for synthesizing a family of
very compact systolic arrays on FPGA based essentially
upon manual mapping at CLB level coupled with VHDL
structural-level is discussed. The authors of [36] used
matrix multiplication as the benchmark to compare the
performance of FPGAs, DSPs and embedded processors.
The results show that the FPGAs can multiply two
matrices with both lower latency and lower energy
consumption than the other two types of devices. This
makes FPGA ideal choice for matrix multiplication in
signal processing applications.
Amira et al. presented a novel architecture based on
systolic architecture for a matrix multiplication [37]. A
serial-parallel matrix multiplier based on the Baugh-
Wooley algorithm has been used. The design based on the

systolic architecture has been implemented using a Xilinx
XCV1000E of Virtex-E FPGA family.
Amira et al. designed a parameterizable system for 8-bit
fixed point matrix multiplication using FPGA [38]. Their
design used both systolic architecture and distributed
arithmetic design methodology for the implementation of
matrix multiplication. The architecture proposed in this
paper was targeted to Xilinx XCV2000E of Virtex-E
FPGA family. The results presented in this paper showed
better performance than the architecture presented in [37]
in terms of area and speed. For n=4, distributed arithmetic
based design used 57 Slices as compared to 72 slices used
in [37] and operated at a maximum frequency of 166.47
MHz as compared to 58.302 MHz used in [37].
Distributed Arithmetic based design provides better
performance in terms of speed and area as compared to
systolic array based design. The I/O bandwidth required
by the design is directly proportional to the problem size.
The designs presented in [37-38] were restricted to small
matrix size. For multiplying large matrices (n=128, 256
and 512), Bensaali et al. designed an FPGA based
coprocessor [39]. The designed coprocessor first partitions
the input matrices into smaller sub-matrices and then
calculates the product.
In [40], Mencer et al. implemented the matrix
multiplication on Xilinx XC4000E FPGA device. Their
design employs bit serial multipliers using Booth encoding.
They focused on tradeoffs between area and maximum
running frequency with parameterized circuit generators.
Their design was improved by Amira et al. in [41-42]
using modified booth encoder multiplication along with
Wallace tree addition. For n=4, 296 CLBs were used to
achieve a maximum operating frequency of 60 MHz using
Xilinx XCV1000E FPGA.
Jang et al. improved the design in [40-42] in terms of area,
speed [43] and energy [44] by taking advantage of data
reuse. They reduced the latency for computing matrix
product by employing internal storage registers in the
processing element (PE). The algorithms need n
multipliers, n adders, and total storage of size n2 words.
For 4 × 4 matrix multiplication, the latency of the design
in [40] is 0.57μs, while the design in [43-44] uses 0.15μs
utilizing 18 % less area as compared to [40].
Belkacemi et al. [45] presented the design and
implementation of a high performance, fully parallel
matrix multiplication core. The core was parameterized
and scalable in terms of the matrix dimensions (i.e.,
number of rows and columns) and the input data word
length. Fully floor planned FPGA configurations were
generated automatically, from high-level descriptions of
the matrix multiplication operation, in the form of
Electronic Design Interchange Format (EDIF) netlist in
less than one second. These are specifically optimized for
Xilinx Virtex FPGA chips. By exploiting the abundance of

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

172

logic resources in Xilinx Virtex FPGAs (LUTs, fast carry
logic, shift registers, flip flops etc.), a fully parallel
implementation of the matrix multiplier core is achieved;
with a full matrix result being generated every clock cycle.
A 3 × 3 matrix multiplier instance consumes 2,448 Virtex
slices and can run at 175 MHz on an XCV1000E-6 Virtex-
E chip.
Traditionally, the performance metrics for FPGA based
designs have been latency and area. However, with the
proliferation of portable, mobile devices, it has become
increasingly important that the systems are also energy
efficient and consume low power. In FPGA devices, major
chunk of power is consumed by the programmable
interconnects, while the remaining power is consumed by
the clocking, logic and I/O blocks. Another source of
power dissipation in FPGAs is resource utilization and
switching activity [46]. Research efforts towards the
design of energy efficient matrix multiplier have been
reported in [44], [47-49].
Most of the previous work in fixed point matrix
multiplication focused only on reducing the latency and
the area. Choi et al. developed new designs and
architectures for FPGAs which minimize the power
consumption along with latency and area [47-48]. They
used linear systolic architecture to develop energy
efficient designs. For linear array architecture, the amount
of storage per processing element affects the system wide
energy. Thus, they used maximum amount of storage per
processing element and minimum number of multipliers to
obtain energy-efficient matrix multiplier.
Partially reconfigurability feature was exploited for the
first time for the computation of matrix multiplication by
Jianwen et al. in [50]. Partially reconfigurable devices
offer the possibility of changing the design
implementation without stopping the whole execution
process. The matrix multiplier was implemented in Xilinx
Virtex-II device, which supports partial reconfiguration.
The design was evaluated in terms of latency and area and
it was found that area is reduced by 72%-81% for matrix
sizes between 3 × 3 and 48 × 48 as compared to [43] and
the performance further improves for larger matrices.

6. Matrix-Vector Multiplication: Design and
Implementation

In this section, we present the design and discuss the
results of implementing matrix-vector multiplication
which is computationally very intensive. It requires
several multiply and add units. In DSPs, the overall
performance is limited by the number of multiplications
and additions that could be done in parallel. DSPs take
several clock cycles to perform all the necessary multiply-
add operations. However, modern FPGAs on the other

hand has large number of hardware resources embedded in
the FPGA fabric itself such as DSP48 blocks, multipliers,
Block RAMs, etc. It can provide higher and more efficient
processing rates required by such applications if the
algorithm is coded in a way to utilize these embedded
resources efficiently. The objective of this paper is to
realize a large matrix-vector multiplier for image
processing applications [51]. To achieve this, FPGA is
used for faster and efficient realization.

6.1 Mathematical Formulation

We represent the vector C as (C1, C2...Cm)T and vector G
which represents the image data. According to the
application, we want to multiply matrix S with vector C
represented by the following equation

 C=SG (1)

where, S is a Jacobian matrix. In the discrete form, it is
required to find the unknown vector G from the known
vector C, while S is treated as a constant matrix for
simplicity. We can represent G by the following
relationship

 G=STC (2)

where, ST is the transpose of S. Replacing ST by A,
mathematically; the above equation is approximated by the
following relationship

 G=AC (3)

The key idea here is to calculate G using (3). The
dimension of the given matrices depends on the
application, which, in this case is summarized in table 1.

Table 1: Matrix Dimensions

Matrix Symbol Matrix Dimension

A 1024×28

C 28×1

G 1024×1

6.2 Hardware Architecture

This section presents the technique to design hardware
architecture for implementing matrix-vector multiplication
algorithm on FPGA. As can be seen from (3), matrix-
vector multiplication is the kernel operation. For efficient
implementation and maximum speed-up, integer
arithmetic is used. Since the floating-point arithmetic unit
consumes more silicon real estate of FPGA and are slower
as compared to integer arithmetic, we used integer
arithmetic for our designs.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

173

The design involves the computation of G = AC, where A
is a matrix, C and G are vectors as summarized in table 1.
We need to calculate vector G. Broadcast algorithm is
adopted for the matrix-vector multiplication. The matrix–
vector multiplication is performed by broadcasting rows of
matrix A and multiplying the corresponding column
elements of vector C. Following operations are involved:

• Reading individual row elements of matrix A and
individual column elements of vector C

• Storing them in internal buffers row and column
wise respectively

• Multiplying row and column elements
• Accumulating the multiplier output and writing

back the results to the output buffers.
The input and output buffers are implemented on the
FPGA. The matrix-vector multiplications involve multiply
and accumulate operations. The multiply-accumulate unit
consists of a multiplier and adder. The row and the column
elements are supplied as the two inputs to the multiplier.
The output of the multiplier is directly given to the adder
as one of the inputs. The previous output of the adder is
fed back as the second input to the adder.
The multiply-accumulate unit takes each element of the
matrix A in row major format and each element of vector
C, multiplies them and adds the result to the running total.
This process is repeated till the last element of row A and
column C. The values are fed in a sequential manner. If
the reset signal is asserted high, the contents of registers A
and C are cleared. After a delay, as determined by the
implementation results, the first element of vector G is
available at the serial output and this output is stored in
on-chip memory. This operation is repeated and the
process continues until all the rows of matrix A are
processed. Finally, the output vector G is available with all
the elements stored in the memory locations. A simplified
block diagram of matrix-vector multiplication is shown in
fig. 3.

X

+ DFF

R
E
G

a28 ..…………………… a2 a1

1

2

3

.

.

.

.

.

1024

c1 ……………………… c27 c28

 CLK RST

A C

G

RAM

Fig. 3 Block diagram of matrix-vector multiplication

6.3 Implementation

In order to evaluate the performance of our FPGA-based
implementation, the algorithm was coded in VHDL and
implemented on Xilinx Virtex-4 (XC4VLX200FF1513,
speed grade: -11) family using Xilinx ISE 9.2i tool. The
design was synthesized into Virtex-4 FPGA optimized for
speed. The hardware resource utilization is summarized in
table 2.

Table 2: FPGA Resource Utilization

Resource Used/Available Utilization

Slices 1,3010 out of 89,088 14%

4-input LUTs 9,612 out of 178,176 5%

DSP48s 55 out of 96 57%

Max. Frequency 17.376 (MHz) -

As shown in table 2, roughly 14% of the slices and 57%
DSP48s are utilized leaving a plenty of room to implement
more parallel processors on the same FPGA chip. The
results listed in table 2 were obtained using Xilinx ISE
9.2i tool configured to optimize for speed. The total
processing time using Virtex-4 FPGA is found to be 58.93
µs; this is equivalent to a throughput of 16970 frames per
second. The results indicate the feasibility of using FPGA
for real time high speed image processing applications
using this matrix-vector multiplication.

7. Tri-Matrix Multiplication: Design and
Implementation

In this section we will present the design of tri-matrix
multiplier which is commonly used in DSP applications
[52]. Matrix T can be written as

T = XYZ (4)

where, X and Z are rectangular matrices given by (5) and
(6) respectively. Y is a diagonal square matrix, where n =
0, 1, …, N-1.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+

−
−

−
−−

=

0)2()12()1()(

0)2()1(
)1()1()0(
)2()0(0

)()1()0(0
)1()0(000

1111

11

111

11

111

11

LL

MMMMMMM

LLLL

LLLL

LLLL

MMMMMMM

LLL

LL

kxkxkxkx

xx
Nxxx
Nxx

kNxxx
kNxx

X

 (5)

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

174

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

−
=

00)1()()1(

)2()1(
)2()1()0(

)12()0(0

)()1()0(00

222

22

222

22

222

LL

MMMMMMM

MLLLL

LLLL

LLLL

MMMMMMM

LL

NxkNxkNx

xx
kxxx

kxx

kxxx

Z

 (6)

7.1 Hardware Architecture

The system for the above given mathematical formulation
translates into two blocks, in which the first block
multiplies matrix X by diagonal matrix Y and then serves
the output from this block to another block, which
multiplies the product XY by Z. We used the two-
dimensional systolic array based architecture as shown in
fig. 4 and fig. 5 for the matrix multiplication.

Fig. 4 Architecture of first block

Fig. 5 Architecture of second block

Systolic arrays accelerate medium sized matrix
multiplication by exploiting the inherent data parallelism
in matrix multiplication. Multiplying the matrix X by the
diagonal square matrix Y is equivalent to multiplying the
first diagonal element by the entries of first row of X, the
second diagonal element by the entries of the second row
of X and so on.
Fig. 4 and fig. 5 shows the systolic architecture for both
the modules for N1=3 and N2=3 respectively. Both the
matrix multiplier blocks consist of nine identical
processing elements, PE1 and PE2, respectively. PE1
consists of multiplier whereas PE2 consists of MAC unit
where each MAC unit consists of a multiplier and adder.
The function of each PE1 in the first array is to multiply
the diagonal elements of Y by one element of matrix X
during each clock period. First column PE1 are responsible
for producing first column of the product XY referred to
as W in the fig. 4, second column generates the second
column and so on. The entries are stored in an internal
buffer to be used later by the next array. Similarly, the
second array as shown in fig. 5 performs the multiplication
of (XY) with Z.

7.2 Implementation

FPGA-based systolic array parallel architecture for the tri-
matrix multiplication was evaluated for different matrix
sizes ranging from 3×3 to 7×7 tri-matrix multiplications.
The same architecture is extended for 7×7 tri-matrix
multiplier. For 7×7 tri-matrix multiplier, the FPGA utilizes
more resources as compared to 3×3 tri-matrix multiplier. It
requires more hardware resources which is obvious from
the computational complexity of 7×7 multiplier. The
implementation results are summarized and compared in
table 3. Since the 7×7 design could not be fit into Spartan-
3 (XC3S2000FG900-4) device, we used a more advanced
Virtex-II Pro (XC2VP100FF1704-6) platform FPGA for
implementation.

Table 3: FPGA Resource Utilization Comparison

 T=[]7×7 T=[]3×3

FPGA Resources (Virtex-II Pro) (Spartan-3)

LUTs 2,353 270
CLB Slices 1,177 144
Eq. Gate Count 1,151,761 148,215
Max. Frequency 102 MHz 87 MHz
Embedded Multipliers 280 36

8. Conclusions

Most of the algorithms which are used in DSP, image and
video processing, computer graphics and vision and high

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

175

performance supercomputing applications have matrix
multiplication as the kernel operation. In this paper, we
considered two different examples of matrix multiplier
architecture where speed is the main constraint. The first
design involving computation of dense matrix-vector
multiplication is implemented on Xilinx Virtex-4 FPGA
and the performance is evaluated by computing its
execution time on FPGA. Hardware implementation
results demonstrate that it can provide a throughput of
16970 frames per second which is sufficient for many
image and video processing applications. The second
design for the multiplication of three matrices is based on
systolic array and implemented on Spartan-3 and Virtex-II
Pro platform FPGAs respectively. Implementation results
demonstrate the suitability of FPGAs in such applications.
Finally, we conclude that for multiplication of large
matrices, memory based architecture is quite efficient
whereas, for small and medium sized matrix multiplication,
systolic array techniques prove to be quite efficient as
demonstrated by the implementation results.

Acknowledgment

The authors gratefully acknowledge the financial support
provided by the Research Center in the College of
Engineering, King Saud University under research grant
no. 11/430.

References

[1] S. Ogrenci, A. K. Katsaggelos, and M. Sarrafzadeh,

“Analysis and FPGA Implementation of Image restoration
under resource constraint,” IEEE Trans. on Computers, Vol.
52, No. 3, pp. 390-399, 2003.

[2] C. Ebeling, C. Fisher, G. Xing, M. Shen, and H. Liu,
“Implementing an OFDM Receiver on the RaPiD
Reconfigurable Architecture,” IEEE Trans. on Computers,
Vol. 53, No. 11, pp. 1436-1448, 2004.

[3] G. R. Goslin, “A Guide to Using Field Programmable Gate
Arrays for Application-Specific Digital Signal Processing
Performance,” Microelectronics Journal, Vol. 28, Issue 4,
pp. 24-35, 1997.

[4] J. Isoaho, J. Pasanen, O. Vainio, and H. Tenhunen, “DSP
System Integration and Prototyping with FPGAs,” Journal
of VLSI Signal Processing, Vol. 6, pp. 155-172, 1993.

[5] A. G. Ye and D. M. Lewis, “Procedural Texture Mapping
on FPGAs,” in Proc. of ACM/SIGDA 7th Intl. Symp. on
Field Programmable Gate Arrays, pp. 112-120, 1999.

[6] S. Knapp, “Using Programmable Logic to Accelerate DSP
Functions,” http://www.xilinx.com/appnotes/dspintro.pdf.

[7] J. Ma, “Signal and Image processing via Reconfigurable
Computing,” in Proc. of the First Workshop on Information
and Systems Technology, 2003.

[8] F. Otto and Z. Pavel, “Hardware Accelerated Imaging
Algorithms,” in Proc. of AUTOS’2002 Automatizace
systému, pp. 165-171, 2002.

[9] L. Batina, S. B. Ors, B. Preneel, and J. Vandewalle,
“Hardware architectures for public key cryptography,”
Integration, the VLSI Journal, Vol. 34, pp. 1-64, 2003.

[10] D. Johnson, K. Gribbon, D. Bailey, and S. Demidenko,
“Implementing Digital Signal Processing Algorithm’s in
FPGA’s: Digital Spectral Warping,” in Proc. of 9th
Electronics New Zealand Conf., pp. 72-77, 2002.

[11] K. Compton and S. Hauck, “Reconfigurable Computing: A
Survey of Systems and Software,” ACM Computing
Surveys, Vol. 34, No. 2, pp.171-210, 2002.

[12] R. Tessier and W. Burleson, “Reconfigurable Computing
for Digital Signal Processing: A survey,” Journal of VLSI
Signal Processing, Vol. 28, No. 3, pp.7-27, 2001.

[13] T. J. Todman, G. A. Constantinides, S. J. E. Wilton, O.
Mencer, W. Luk, and P. Y. K. Cheung, “Reconfigurable
Computing: architectures and design methods,” IEE Proc. of
Computer Digital Techniques, Vol. 152, No. 2, pp. 193-207,
2005.

[14] J. J. Rodriguez-Andina, M. J. Moure, and M. D. Valdes,
“Features, Design Tools and Application Domains of
FPGAs,” IEEE Trans. on Industrial Electronics, Vol. 54, No.
4, pp. 1810-1823, 2007.

[15] Xilinx Staff, “Celebrating 20 years of innovation,” Xcell
Journal, No. 48, Spring 2004.

[16] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD
for Deep-Submicron FPGAs, Kluwer Academic Publishers,
USA, 1999.

[17] D. Pellerin and S. Thibault, Practical FPGA programming in
C, Prentice Hall, New York, USA, First Edition, 2005.

[18] C. M. Maxfield, The Design Warrior’s Guide to FPGAs,
Elsevier Publishers, New York, USA, First Edition, 2004.

[19] G. Stitt and F. Vahid, “Energy advantages of
microprocessor platforms with on-chip configurable logic,”
IEEE Design and Test of Computers, Vol. 19, No. 6, pp. 36-
43, 2002.

[20] A. Ansari, P. Ryser, and D. Isaacs, “Accelerated System
Performance with APU-enhanced processing,” Xcell
Journal, First quarter 2005.

[21] Xilinx Inc, Virtex-II platform FPGA Data Sheet, 2005.
[22] Xilinx Inc, Virtex-4 multiplatform FPGA, 2005.
[23] Xilinx Inc, Virtex-5 multiplatform FPGA, May 2006.
[24] Xilinx Inc, MicroBlaze Soft Processor Core, 2005.
[25] I. Kuon and J. Rose, “Measuring the Gap between FPGAs

and ASICs,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 26, No. 2, pp. 203-
215, 2007.

[26] M. Cummings and S. Haruyama, “FPGA in the Software
Radio,” IEEE Communication Magazine, Vol. 37, pp. 108-
112, 1999.

[27] B. Tithecott, “Why FPGAs are quickly moving into
embedded signal processing systems,” 2004.
www.dsp-fpga.com/pdfs/SBS.Sum04.pdf

[28] V. Manohararajah, S. D. Brown, and Z. G. Vranesic,
“Heuristics for area minimization in LUT-based FPGA
technology mapping,” IEEE Trans. on Computer Aided
Design of Integrated Circuits and Systems, Vol. 25, No. 11,
pp. 2331-2340, 2006.

[29] A. Mishchenko, S. Chatterjee, and R. K. Brayton,
“Improvements to Technology Mapping for LUT-Based
FPGAs,” IEEE Trans. on Computer Aided Design of

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

176

Integrated Circuits and Systems , Vol. 26, No. 2, pp. 240-
253, 2007.

[30] W. K. Mak and L. Hao, “Placement for modern FPGAs,” in
Proc. of Emerging Information Technology Conference, pp.
1-4, 2005.

[31] A. Marquardt, V. Betz, and J. Rose, “Timing-driven
placement for FPGAs,” in Proc. of the ACM/SIGDA Intl.
Symp. on Field Programmable Gate Arrays, pp. 203-213,
2000.

[32] M. J. Alexander and G. Robins, “New-performance driven
FPGA routing algorithms,” IEEE Trans. on Computer
Aided Design of Integrated Circuits and Systems, Vol. 15,
No. 12, pp. 1505-1517, 1996.

[33] G. J. Nam, F. Aloul, K. A. Sakallah, and R. A. Rutenbar, “A
Comparative study of two boolean formulations of FPGA
detailed routing constraints,” IEEE Trans. on Computers,
Vol. 53, No. 6, pp. 688-696, 2004.

[34] http://www.tutorial-reports.com/computer-
science/fpga/routing.php

[35] A. Oudjida, S. Titri, and M. Hamerlain, “Synthesizing Full-
Systolic Arrays for Matrix Product on Xilinx’s XC4000 (E,
EX) FPGAs,” in Proc. of the ACM/SIGDA Intl. Symp. on
Field Programmable Gate Arrays, pp.222-222, 2000.

[36] R. Scrofano, S. Choi, and V. K. Prasanna, “Energy
Efficiency of FPGAs and Programmable Processors for
Matrix Multiplication,” in Proc. of IEEE Intl. Conf. on Field
Programmable Technology, pp. 422-425, 2002.

[37] A. Amira, A. Bouridane, P. Milligan, and P. Sage, “A High
Throughput FPGA Implementation of a Bit-Level Matrix
Product,” in Proc. of IEEE Workshop on Signal Processing
Systems, pp. 356-364, 2000.

[38] A. Amira and F. Bensaali, “An FPGA based
parameterizable system for matrix product implementation,”
in Proc. of IEEE Workshop on Signal Processing Systems,
pp. 75-79, 2002.

[39] F. Bensaali, A. Amira, and A. Bouridane, “An FPGA based
coprocessor for large matrix product implementation,” in
Proc. of IEEE Intl. Conf. on Field Programmable
Technology, pp. 292-295, 2003.

[40] O. Mencer, M. Morf, and M. J. Flynn, “PAM-Blox: High
performance FPGA design for adaptive computing,” in Proc.
of IEEE Symp. on FPGAs for Custom Computing Machines,
pp. 167-174, 1998.

[41] A. Amira, A. Bouridane, and P. Milligan, “Accelerating
Matrix Product on Reconfigurable Hardware for Signal
Processing,” in Proc. of 11th Intl. Conf. on Field
Programmable Logic and Applications, pp. 101-111, 2001.

[42] F. Bensaali, A. Amira, and A. Bouridane, “Accelerating
matrix product on reconfigurable hardware for image
processing applications,” IEE Proc. of Circuits, Devices and
Systems, Vol. 152, No. 3, pp. 236-246, 2005.

[43] J. Jang, S. Choi, and V. K. Prasanna, “Area and Time
Efficient Implementations of Matrix Multiplication on
FPGAs,” in Proc. of IEEE Intl. Conf. on Field
Programmable Technology, pp. 93-100, 2002.

[44] J. Jang, S. Choi, and V. K. Prasanna, “Energy and Time
Efficient Matrix Multiplication on FPGAs,” IEEE Trans. on
Very Large Scale Integration (VLSI) Systems, Vol. 13, No.
11, pp. 1305-1319, 2005.

[45] S. Belkacemi, K. Benkrid, D. Crookes, and A. Benkrid,
“Design and implementation of a high performance matrix
multiplier core for Xilinx Virtex FPGA,” in Proc. of IEEE
Intl. Workshop on Computer Architectures for Machine
Perception, pp. 156-159, 2003.

[46] L. Shang, A. Kaviani, and K. Bathala, “Dynamic power
consumption in Virtex-II FPGA family,” in Proc. of
ACM/SIGDA 10th Intl. Symp. on Field Programmable Gate
Arrays, pp. 157-164, 2002.

[47] J. Jang, S. Choi, and V. K. Prasanna, “Energy efficient
matrix multiplication on FPGAs,” in Proc. of 12th Intl. Conf.
on Field Programmable Logic and Applications, pp. 534-
544, 2002.

[48] S. Choi, V. K. Prasanna, and J. Jang, “Minimizing energy
dissipation of matrix multiplication kernel on Virtex-II,” in
Proc. of SPIE, Vol. 4867, pp. 98-106, 2002.

[49] S. Choi, R. Scrofano, V. K. Prasanna, and J. Jang, “Energy
efficient signal processing using FPGAs,” in Proc. of
ACM/SIGDA 11th Intl. Symp. on Field Programmable Gate
Arrays, pp. 225-234, 2003.

[50] L. Jianwen and J. C. Chuen, “Partially Reconfigurable
Matrix Multiplication for Area and Time Efficiency on
FPGAs,” in Proc. of Euromicro Symp. on Digital System
Design , pp. 244-248, 2004.

[51] B. Almashary, S. M. Qasim, S. A. Alshebeili, and W.
Almasry, “Realization of Linear Back-Projection Algorithm
for Capacitance Tomography Using FPGA”, in Proc. of 4th
World Congress on Industrial Process Tomography, pp. 87-
93, 2005.

[52] S. A. Alshebeili, “Computation of higher-order cross
moments based on matrix multiplication”, Journal of the
Franklin Institute, 338, pp. 811-816, 2001.

Syed M. Qasim received the B.Tech and M.Tech Degrees in
Electronics Engineering from Z. H. College of Engineering and
Technology, Aligarh Muslim University, India in 2000 and 2002
respectively. He is now working as a researcher in the
Electronics Group, Department of Electrical Engineering, King
Saud University, Saudi Arabia. He is the author or coauthor of
more than 30 papers in international journals and refereed
conferences. He is a member of the Institution of Electronics and
Telecommunication Engineers (IETE), India and International
Association of Engineers (IAENG), Hong Kong.

Ahmed A. Telba received the Ph.D degree in Electronics and
Communication Engineering from University of Bradford, UK in
2007. He is now working as a Post Doctoral Researcher in the
Electronics Group, Department of Electrical Engineering, King
Saud University, Saudi Arabia. He is a member of IEEE, USA.

Abdulhameed Y. AlMazroo received the B.S. and M.S. degrees
in Electrical Engineering from Riyadh University, Saudi Arabia
and University of Michigan, Ann Arbor, USA in 1980 and 1984,
respectively. He received the Ph.D degree in Electrical
Engineering from Virginia Polytechnic, Virginia, USA in 1988.
He is an Assistant Professor in the Department of Electrical
Engineering at King Saud University. He is a member of IEEE,
USA

