
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

177

Manuscript received February 5, 2010
Manuscript revised February 20, 2010

Hierarchical Status Information Exchange Scheduling and Load
Balancing For Computational Grid Environments

 Malarvizhi Nandagopal1 and Rhymend V Uthariaraj2

1Research Scholar, Ramanujan Computing Centre, Anna University Chennai

2Professor & Director, Ramanujan Computing Centre, Anna University Chennai

Abstract
The computational grid is a new parallel and distributed
computing paradigm that provides resources for large scientific
computing applications. It typically consists of heterogeneous
resources such as clusters that may reside in different
administrative domains, be subject to different access policies
and be connected by networks with widely varying performance
characteristics. Many researchers have been proposed numerous
scheduling and load balancing techniques for locally distributed
multiprocessor systems. However, they suffer from significant
deficiencies when extended to a grid environment.
Computational grids have the potential for solving large-scale
scientific computing applications. The main techniques that are
most suitable to cope with the dynamic nature of the grid are the
effective utilization of grid resources and the distribution of
application load among multiple resources in a grid environment.
This paper addresses the problem of scheduling and load
balancing in a grid architecture where computational resources
are dispersed in different administrative domains or clusters
which are connected to the grid scheduler by means of
heterogeneous communication bandwidths is considered. The
proposed work addresses the problem of load balancing using
Min-Load and Min-Cost policies while scheduling jobs to the
resources in multi-cluster environment. Also, a heuristic taking
both the resource load and the network cost into consideration is
developed to evaluate the benefits of scheduling jobs to
resources in different clusters. In this paper three steps strategy
has been used to determine a resource for an arriving job. It also
determines the distribution of job to the remote clusters for
optimizing the performance. A set of simulations conducted on
the GridSim Toolkit showed that the proposed strategy provides
significant performance improvement over existing ones.

Keywords:
Grid Computing, Scheduling, Load Balancing, Response Time,
Communication Cost.

1. Introduction

Grid computing has emerged as the next-generation
parallel and distributed computing methodology that
aggregates dispersed heterogeneous resources for solving
various kinds of large-scale parallel applications in
science, engineering and commerce [1]. In large-scale
grid environments, the underlying network connecting
them is heterogeneous and bandwidth across resources
varies from link to link. Grid environment is extremely

unpredictable: processor capacities are different and
usually unknown, computers may connect and disconnect
at any time, and their speeds may change over time
[2].Although load-balancing problem in conventional
distributed systems has been intensively studied, new
challenges in grid computing still make it an interesting
topic and many research projects are under way. Load
Balancing algorithms in classical distributed systems,
which usually run on homogeneous and dedicated
resources, cannot work well in the grid architectures.
Grids have a lot of specific characteristics, like
heterogeneity, autonomy and dynamicity, which remain
obstacles for applications to harness conventional load
balancing algorithms directly. A computational grid is the
cooperation of distributed computer systems where user
jobs can be executed on either local or remote resources.
With its multitude of heterogeneous resources, a proper
scheduling and efficient load balancing across the grid is
required for improving the performance of the system.
While balancing the load, certain types of information
such as number of jobs waiting in queue, load (number of
jobs queued on the resource /speed of the resource), job
arrival rate, CPU processing rate etc. need to be
exchanged among computational resources. A load
balancing strategy is categorized as either centralized or
distributed [3]. In centralized scheme, all these
information need to be stored at one location where load
balancing decisions are made. Such centralized schemes
also require synchronization among resources. In contrast,
in distributed schemes, every node periodically
broadcasts its state information throughout the system and
executes balancing. However, it requires global
information and has the problem of communication
overheads incurred by frequent information exchange
between resources. Alternatively [4] proposed
partitioning nodes into different groups or domains. Each
partition has a central or master node to collect the
information of all its domain nodes. The information
exchanges are between central and its domain nodes only.
The proposed work belongs to this category. Load
balancing algorithms can be static [5][6] or dynamic [7].
In a static algorithm, the scheduling is carried out
according to a predetermined approach. On the other hand,
a dynamic algorithm adapts its decision to the current

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

178

state of the system. Thus, a dynamic approach can be
made adaptive to changes in system parameters such as
job arrival rate, CPU processing rate, load and
communication bandwidth between resources.
In [8], information exchange methods are classified into
three categories: periodic, on-demand, and event-driven.
In the periodic category, each domain node periodically
broadcasts its state information to its central node. In the
on-demand category, a node sends a request message to
the rest of the nodes when it needs the information. The
event-driven category is taking place when some specific
conditions are met (events).The proposed work belongs to
the periodic category. In [9] and [10], a node collects
status information about neighbouring nodes by
communicating with them at every load balancing
instance. However, for large-scale grid environments,
status exchange at each load balancing instance can lead
to large communication overhead. Alternatively,
estimation technique can be used based on system state
information received at sufficiently large interval of time.
In ELISA [11], load balancing is carried out based on
queue lengths. Whenever there is difference in queue
length, jobs will be migrated to lightly loaded processor
ignoring job migration cost. This cost becomes important
factor when communication latency could be very large
such as for grid environment.
Load balancing involves assigning job to a resource
proportional to its performance, thereby minimizing the
response time of a job. However, there are wide varieties
of issues that need to be considered for a heterogeneous
grid environment. For example, processing capacities of
the resources may differ and their usable capacities may
vary according to the load imposed upon them. Further, in
grid computing, as resources are distributed in multiple
domains in the Internet, not only the computational nodes
but also the underlying network connecting them are
heterogeneous. Therefore, in the grid environment it is
essential to consider the impact of various dynamic
characteristics on the design and analysis of scheduling
and load balancing algorithms. Due to uneven job arrival
patterns and unequal computing capacities, one resource
may be overloaded while others may be underutilized. It
is therefore desirable to dispatch jobs to idle or lightly
loaded resources to achieve better resource utilization and
reduce the mean job response time. The strategy proposed
here is to perform scheduling and balancing the
application load in the grid environment by taking
resource heterogeneity, communication delay and
network heterogeneity into consideration.

1.1. Literature Review

 Previous relevant work includes scheduling in distributed
systems [12], [13] and multi-site scheduling [14], where
meta-scheduler’s decisions are based on predicted load

values via time-series analysis. Reference [15] explains a
scheduling algorithm on computational grid environment
in which the grid Scheduler selects computational
resources based on job requirements, job characteristics
and information provided by the resources. The main aim
of these schedulers is to minimize the Total Time to
Release (TTR) for the individual application. TTR
includes processing time of the program, waiting time in
the queue, transfer of input and output data to and from
the resource. The papers [16] and [17] considered static
load balancing in a system with servers and computers
where servers balance load among all computers in a
round robin fashion. It requires each server to have
information on status of all computers as well as the load
allocated by all other servers. The hierarchical load
balancing in grid is referred in [18] where load balancing
algorithms are implemented at various levels of grid
resources to reduce average response time of the grid
application but does not consider the communication cost
between clusters.
Most application-level load balancing approaches are
based on application partitioning via graph algorithms
[20]. However, it does not address the issue of reducing
job migration cost, i.e., the cost due to load redistribution.
The load balancing algorithms in [19] and [20] proposes a
migration of job to balance the load when the nodes
become an overloading node but does not consider the
resource and network heterogeneity.
When compared with the existing work, the main
characteristics of the proposed strategy can be
summarized as follows:

• It privileges local load balancing to reduce
communication costs.

• Jobs are computation intensive.
• The resources have different processing

capabilities.
• Jobs are non pre-emptable which means that

their execution on a resource cannot be
suspended until completion.

• Jobs are independent which means that there
is no communication between them.

• The network bandwidth varies between
different cluster resources.

The rest of this paper is organized as follows: Section 2
describes the proposed load balancing model architecture.
Section 3 presents the load balancing algorithms at
different levels of hierarchy. Section 4 discusses the
experimental environment and simulation setup. Section 5
gives the simulation results and finally Section 6 presents
the concluding remarks and future work.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

179

2. System Model

A simulation model is used to study the performance of
scheduling and load balancing policies in the multi-
cluster environment such as grid. In the proposed model
job scheduling and load balancing is applied at two
levels: grid and local. At grid level, a grid scheduler
selects the appropriate cluster for job redistribution based
on the proposed Min_Cost policy. At local level local
schedulers allocate jobs to computational resources based
on the proposed Min_Load policy. In order to explain the
proposed model, the topological structure of grid
computing is defined.

2.1 Grid Topology

As topological point of view, grid G is considered as a
collection of C number of clusters. There is a Global
Scheduler (GS) who communicates with each one of the
distributed clusters. Each cluster consists of K number of
Processing Elements (PEs) and a Local Scheduler (LS).
LS acts as a Cluster Manager (CM) and GS act as a Grid
Manager (GM). There is a job arrival stream at the LS.
LS dispatches the submitted jobs to PE according to the
proposed policy. Every cluster is connected to the global
network or WAN by a switch. Resources within the
cluster are interconnected together by a LAN. An
example of such topology is shown in Figure1.

Fig. 1 General Grid Topology

2.2 System Architecture

Figure 2 shows the proposed computational grid
architecture. LS handles intra cluster communication and
GS handles inter cluster communication. PEs only
communicates with the LS in their cluster and do not
directly contact resources outside the local cluster for load
balancing purposes.

Fig. 2 Structure of System Architecture

The following is a bottom up view of the proposed
architecture:
PE Level (level 2): Any workstation called computing
unit, can join the grid system and offer its computing
resources (PEs) to the grid. When the computing unit
starts, it will report information about its computational
resources such as CPU speed, CPU load and Processing
Capacity to its associated LS.
LS Level (level 1): Every newly joining computing unit
registers itself within LS which is responsible for
managing a dynamic pool of PEs. The role of LS is to
maintain information about active PEs in the same cluster.
It also performs load balancing among PEs within its
control based on the proposed policy.
GS Level (level 0): The role of GS is to maintain
information about active clusters in the grid. In addition
to that workload information, GS also maintains the
heterogeneous bandwidth details between grid and cluster.
Using these informations, GS performs load redistribution
among clusters within its control based on the proposed
policy.
In the proposed model, jobs are submitted in the local
cluster to reduce communication cost induced by job
transfer. The submitted jobs are scheduled by LS. Based
on the current load of local cluster, LS either assigns job
to PEs within its control according to Min-Load policy or
transfer the job to GS (saturation case). After getting job
from LS, GS redistribute the job to remote cluster
resources according to Min-Cost policy. Based on the
computed decision the job starts execution. Once started
the job run to completion on the assigned resource and are
not rescheduled.

3. Scheduling and Load Balancing

The proposed model takes into account the processing
capacity, load and bandwidth of the resources in the grid.
The class of problem address here is: computation-

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

180

intensive and totally independent jobs with no
communication between them.

3.1 System Parameters

For each resource participating in the grid the following
parameters are defined which will be used later on the
load balancing operation.

1) Job Parameters : ID of job, number of
instructions per job, job size

2) PEs parameters: CPU speed, workload index
which can be calculated using the total number
of jobs queued on a given PE and its speed.

3) PE Processing Capacity (PEPC): Number of jobs
per second a PE can process. This can be
calculated using the CPU speed and an average
number of instructions per job.

4) CM Processing Capacity (CMPC): Number of
jobs per second the cluster can process. This can
be calculated as the sum of the PEPCs of all the
processing elements of that cluster.

5) GM Processing Capacity (GMPC): Number of
jobs per second that can be processed under the
responsibility of GM. This can be calculated as
the sum of all the CMPCs managed by the GM.

6) Network Parameter : Bandwidth size
7) Performance Parameters: The following

performance parameters are focused: job mean
response time, Slowdown, Load Information
Traffic and Resource utilization.

3.2 Multi-Level Load Balancing Description

The proposed load balancing model uses a distributed
multi-level strategy. The underlined strategy at each level
of grid architecture is described as follows:
A) Cluster Level Load Balancing: Consider one LS and
its pool of resources (PEs). In the proposed load
balancing model only the CPU resources, their processing
capacity (PEPC) and load are considered. The total
processing capacity of this cluster is given by CMPC. Let
NC as the number of jobs arrived at LS at steady-state,
the number of jobs to be allocated to each PE will be
proportional to the processing capacity of PE in order to
maximize the throughput and have a good utilization of
all the PEs in the pool. Define the PEShare of each PE in
the pool by:

PESharei = NC.
CMPC
PEPC (1)

It is also the responsibility of LS to check whether its
resources are overloaded by comparing workload index of
PE and its PEShare. If the workload index is higher than
its share, then LS triggers job transfer policy so that jobs
from overloaded PE are transferred to underloaded

neighboring PE. At this level of load balancing the job
transfer cost is neglected since PEs within the cluster are
interconnected by LAN with similar bandwidth.

B) Grid Level Load Balancing: Consider one GS which
is responsible for a group of LS. GS maintains
information about LS in terms of processing capacity,
workload and bandwidth. This is similar to the cluster
level load balancing with one additional parameter
considered which is job transfer cost. The total processing
capacity managed by GS is given by GMPC which is the
sum of all the CMPCs. If NG as the number of jobs
arrived at GS for redistribution, the number of jobs to be
allocated to each CM is also proportional to the total
processing capacity of CM. Define the share of each CM
is given by:

CMSharei= NG.
GMPC
CMPC (2)

It is also the responsibility of GS to check whether its
resources are overloaded by comparing workload index of
CM and its CMShare. If the load index is higher than its
share, then GS triggers job migration policy so that jobs
from overloaded clusters are migrated to underloaded
neighboring clusters. The chosen underloaded clusters are
one which needs minimal job transfer cost by adding a
network cost heuristic with load metric.
The main advantage of this model is to provide privilege
to local load balancing first (within cluster) and then on
the entire grid (between clusters). In the proposed design
if any resource joins or leaves the grid system its status
information is collected and maintained by its higher level
scheduler. All these resource status informations are used
for the load balancing operation.

3.3 System Design

The proposed grid system consists of M heterogeneous
resources, (hereinafter the terms resource, CM and GM
are interchangeably used) R1, R2, ... RM, connected via
communication network. Each resource has an infinite
capacity buffer to store jobs waiting for execution. In
Computational Grid environment, as resources are
geographically distributed at different locations, the job
transfer time from one location to another is a very
significant factor for load balancing. Further, the
communication latency is very large for WAN through
which grid resources are normally connected. Moreover,
due to network heterogeneity, the network bandwidth
varies from one link to another. Due to these reasons, one
cannot ignore the job transfer cost when making a job
migration decision. Further, when resources are
heterogeneous, jobs are assigned to resources according
to its performance.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

181

Fig. 3 Resource Status Exchange Intervals

As shown in figure 3, at each periodic interval Ts, each
resource in the system calculates its status parameters
such as job arrival rate, service rate, and load on the
resource and exchanges its status information with its
associated manager. The instant at which this information
exchange takes place is called a status exchange instant.
In the above figure Tn-1 and Tn represent the resource
status exchange instant. As each resource balances the
load within the hierarchy, for every resource Ri, in the
hierarchy its associated manager calculates the load on
Ri’s neighboring resource Rk at every estimation instant.
In the above figure t1, t2, ….tm-1 represent resource load
estimation instants. Based on this calculated load, each
manager resource will make a decision of job migration if
load in one resource is greater than the load in another
resource. It will try to distribute the load based on the
load balancing strategy described in the next section.

3.4 Scheduling and Load Balancing Strategy

At any load balancing level the following three steps
strategies are used. As the description is in generic way,
the concept of group (G) and element (E) is used.
Depending on cases a group designs either a cluster or the
grid (level 1 or level 0) and an element is a group
component (PE of level 2 or cluster of level 1). The main
steps of the proposed strategy can be summarized as
follows:

Step 1: Workload Estimation
1. For every element Ei and at each status exchange
instant period T do
 Send its workload LODi to its associated scheduler.
End For
2. At each period T the group node does the following:
 a) Computes its speed and capacity
 b) Evaluates its current workload LODG
 c) Calculate element’s maximum share.
 d) Send element workload to its associated scheduler.
3. At each estimation instant t, group node calculates the
load of neighboring element for each element under its
control.

Step 2: Decision Making
For each element do the following

a) Compare the element load LODi with the
maximum amount of share of that element
ESharei. The value of ESharei depends on the
number of jobs arrived at G and the processing
capacity of Ei and Gi

b) If LODi is greater than ESharei then the element
is in overloaded state.

c) For an overloaded case, determine the
overloaded elements (source) and the
underloaded ones (destination) to transfer a job
from overloaded elements to underloaded ones.

Step 3: Job Transferring
In order to transfer jobs from overloaded elements to
underloaded ones the following heuristics are proposed:
Transfer criteria
 Switch
 G= Cluster:
 Perform Min-Load Policy; Return;
 G= Grid:
 Perform Min-Cost Policy; Return;
 End Switch

Min-Load Policy:
This policy is implemented in LS which determines a
method a PE is selected for a job submitted in the local
cluster. According to this policy, based on collected
resource status information LS monitors the load of each
PE and selects the PE with least load. In case there are
two PEs with identical load, any one is selected at random.
Min-Cost Policy:
This policy is implemented in GS which determines the
way a remote cluster is selected for a job migrated from
the local saturated cluster. GS calculates the minimum
communication cost of sending jobs to remote cluster
resources based on the information collected in the last
exchange interval. GS selects the cluster that provides
minimum overall cost.
Job Selection Criteria
FCFS: Transfer the first submitted job (oldest job). FCFS
scheduling policy is applied for jobs waiting in queues,
both at GS and LS. FCFS ensures certain kind of fairness,
does not require an advance information about job
execution time, do not require much computational effort,
and is easy to implement.

3.5 Communication Cost

Since resources within a cluster usually use the same file
system and there are dedicated file servers, program and
data file do not have to be transferred when a job is
scheduled to run on a resource in the same cluster (local
jobs). Hence the network cost of remote job execution can

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

182

be ignored in the single cluster environment. However, in
the multi-cluster environment the related files of a job
need to be transferred through much slower Internet links
if the job is scheduled to run in a remote cluster.
Therefore the cost of file transfers must be taken into
consideration in the scheduling and load balancing
strategy. Experimental results have shown that even
though the network cost may be small compared to the
job execution time, mean response time and utilization
can be substantially improved if network cost is taken
into consideration.
Consider the distribution of job J submitted in grid node
G from cluster E which is scheduled to run on a resource
in a cluster C. The completion time of job J is
approximated by the following formula:

 Runtime(J) .
)(

)(

CSpeed

CngthRunqueuele
 +

),(

)(

CGLinkspeed

JJobsize
 (3)

where the meanings of the variables are listed in Table 1.

Table 1: The Meaning of Variables in Formula (3)

Runtime(J)
Execution time of job J when it runs
by itself on a computer with relative

speed 1
Jobsize(J) Total size of job J

Linkspeed(G,C) Speed of communication link
between G and C in Mbps

Runqueuelength(C
) Current run queue length of cluster C

Speed(C) Speed of cluster C

The term Runtime(J) .
)(

)(

CSpeed

CngthRunqueuele
in (3) estimates

the elapsed time of job J on cluster C and the term

),(

)(

CGLinkspeed

JJobsize
in (3) estimates the job transfer time.

The job should be scheduled to the cluster with the
minimum expected completion time. Unfortunately, the
run time of a job is usually not known when the job
arrives. Even if the job size is known, it does not help
much in making the scheduling decision without
knowledge of the job run time. Notice that Runtime(J)
does not depend on the speed of the cluster (see Table 1
for definition). Therefore, formula (3) can be divided by
Runtime(J) without affecting the scheduling decision:

)(

)(

CSpeed

CngthRunqueuele
 +

)(

)(

JRuntime

JJobsize
.

),(

1

CGLinkspeed
 (4)

 The value computed by the above formula is referred

to as the relative completion time of the job.
)(

)(

JRuntime

JJobsize

is the only unknown term in (4) and use a constant CT to
replace it. Thus, formula (4) becomes:

)(

)(

CSpeed

CngthRunqueuele
 + CT.

),(

1

CGLinkspeed
 (5)

 This is a heuristic load metric that takes link speed
into consideration. It can be used to evaluate the benefits
of sending jobs to cluster resources. The cluster that
provides the smallest value according to formula (5)
should be selected. The constant CT is selected such that
CT.

),(

1

CGLinkspeed
 is much smaller

than
)(

)(

CSpeed

CngthRunqueuele
. This is because, by adding the

network cost term CT.
),(

1

CGLinkspeed
in the load metric,

a job has higher probability to be scheduled to clusters
that introduce less (or no) network costs. Therefore, for
short jobs where network cost is comparable to run time,
the completion time using this load metric would decrease
significantly. On the other hand, for long jobs where
network cost is negligible compared to run time, the
completion time would not be affected very much. As a
result, the overall system performance, especially mean
response time is improved.
Notice that since no network costs are incurred if a job is
submitted to run in the local cluster, the second item in
formula (4) or (5) (i.e., the file transfer costs) is set to 0
for local schedulers.

3.6 Performance Metrics

The following metrics were selected to evaluate the
performance of the proposed model:

1. Mean Response Time: Response time rj of job
j is the time period from the job arrival to the
completion time of the job. i.e., the time spent in
the resource queue plus the job service (execution)
time. The mean response time RT:

 RT=
N
1 ∑

=

N

j
jr

1

 (6)

where N is the total number of processed jobs.
2. Slowdown: Slowdown Sj of a job j is the job’s
response time divided by the job’s execution time.
If ej is the execution time of a job j, then the
slowdown is defined as follows:

 Sj =
j

j

e
r

 (7)

 The average slowdown SLD is

 SLD =
N
1 ∑

=

N

j
jS

1

 (8)

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

183

where N is the total number of processed jobs.
3. Load Information Traffic (LIT): It is a metric for
estimating the extent of traffic from clusters to GS
due to load information. Let w be the message weight
from each cluster and e be the number of load
information exchange events occurred until the end
of simulation. LIT is defined as follows:

 LIT= ∑
e

wC
1

).((9)

where C is the number of clusters.

4. Experimental Environment

4.1 GridSim Simulation ToolKit

The simulation was carried out on the excellent grid
simulation toolkit GridSim ToolKit 4.0 [21] which allows
modeling and simulation of entities in grid computing
systems-users, applications, resources, and resource load
balancers for design and evaluation of load balancing
algorithms. A heterogeneous grid environment by using
various resource specifications was built. It proposes the
method of creating a user job and different types of
heterogeneous resources. The resources differ in their
operating system type, CPU speed, RAM memory, MIPS
rating. In GridSim, application jobs are modeled as
Gridlet objects that contains all information related to the
job and the execution management. Details of the
available Grid resources are obtained from Grid
Information Service (GIS) entity that keeps track of the
resources available in the grid environment. The
experimental environment consisting of hierarchy of
resources used for the evaluation of proposed algorithm is
shown in figure 4. A grid resource (GS) maintains
information about machines (LS) and each machine
contains PEs running at different speeds.

Fig. 4 GridSim Resource Hierarchy

4.2 Simulation Setup

All simulations are performed on a PC (Core 2
Processor, 3.20GHz, 1GB RAM) and all of the time in
this paper is the simulation time. The bandwidth speed
of low capacity link (within machine) is 10Mbps and
the high capacity link (between machines) varies from
0.5Mbps to 100Mbps. All time units are in seconds so
the performance metrics are also measured in seconds.

5. Simulation Results and Analysis

The simulation results presented describe the performance
of the proposed policies. The proposed policies are
compared with Random_GS and Random_LS Policies
described in [22]. According to these random policies a
resource for job execution is selected randomly without
considering its load and cost needed to transfer a job to
that resource. However, in the proposed policy the
resource for job execution is selected by considering load
metric along with network cost which improves mean
response time significantly. After 500 jobs, Min_Load
and Min_Cost policies took the time 39.8% less than the
Random_LS and Random_GS policies did. From Fig 5
and Table 2 it is observed that the proposed policies can
increase performance by reducing the mean response time
as compared to no load balancing and random polices
case.

Fig. 5 RT versus number of jobs

Table 2: RT Analysis

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

184

Figure 6 illustrates the relative decrease in SLD (DSLD)
when the proposed Min-Cost and Min-Load policies are
employed instead of Random_GS and Random_LS. The
proposed policies yield the highest DSLD for all jobs.

 Fig. 6 Performance analysis of DSLD %

The policies described in Section 3 are characterized by
the resource status interval (Ts) parameter. The value of
this parameter significantly affects LIT and RT. A high Ts
value increases the number of jobs waiting in scheduler’s
queue and their delay due to scheduling deferment and
thereby RT increases. On the other hand, a small Ts value
eliminates this problem but increases the overhead as
resource load information is required more frequently and
therefore increases LIT. Figure 7 shows how RT and LIT
is affected with regard to Ts.

Fig. 7 Variation of Ts

6. Conclusion and Future Work

This paper addressed the problem of scheduling and load
balancing for computational grid environment. Load
balancing strategies in the multi-cluster environment is
proposed where clusters are located in different local area
networks which are physically wide apart from one
another. The proposed load balancing model takes into
account the heterogeneity of the computational and

network resources. i.e., the resources are with different
processing capacity and network bandwidth. The load
balancing policies at various levels of hierarchy are
proposed to optimize various performance metrics. In
addition, a heuristic that considers both machine load and
network speed is suggested to estimate the completion
time of executing jobs in remote clusters. Performance
results have indicated that the proposed approach
improves system performance in terms of mean response
time and average slowdown.
Now we discuss some of the limitations of this work and
present some possible directions for future research. In
this work, we assume that there is no precedence
constraint among different jobs or different tasks of a job.
Usually, the jobs are independent of each other in the grid,
but different tasks of a job may have some precedence
constraints. Hence, it is an interesting direction for future
research. Such dependencies will not only make the
problem extremely difficult to solve, but would also
require estimating a very large number of parameters. In
future we should also consider some fault tolerant
measures to increase the reliability of our algorithm.

References
[1] Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a

Future Computing Infrastructure, 2nd Edition. Morgan
Kaufmann, San Mateo (2004).

[2] Dobber, M., Koole, G., Mei, R.: Dynamic load balancing
experiments in a Grid. In: Proceedings of IEEE
International Symposium on Cluster Computing and the
Grid, Cardiff, 2005.

[3] Kai Lu, Riky Subrata and Albert Y. Zomaya, “An Efficient
Load Balancing Algorithm for Heterogeneous Grid
Systems Considering Desirability of Grid Sites”, IEEE
International Performance, Computing, and
Communications Conference, 2006. IPCCC 2006. Vol
25Page(s):9 pp. – 320.

[4] Kimura, K., Ichiyosi, N.: Probabilistic analysis of the
optimal efficiency of the multi-level dynamic load
balancing schemes. In: Proceedings of the 6th Distributed
Memory Computing Conference, Portland, (1991)

[5] Kameda, H., Li, J., Kim, C., Zhang, Y.: Optimal Load
Balancing in Distributed Computer Systems. Springer,
London (1997).

[6] H. Attiya, “Two Phase Algorithm for Load Balancing in
Heterogeneous Distributed Systems,” Proc. 12th Euromicro
Conf.Parallel, Distributed and Network-Based Processing
(PDP ’04), p. 434,2004.

[7] HAN Xiangchun, PAN Xun. Distributed scheduling pattern
for dynamic load balance in computing grid [J]. Computer
engineering and Design,2007,28(12):2845-2847.

[8] Shah, R., Veeravalli, B., Misra, M.: On the design of
adaptive and de-centralized load balancing algorithms with
load estimation for computational Grid environments.
IEEE Trans. Parallel Distrib. Syst. 18, 1675–1686 (2007).

[9] Oliker, L., Biswas, R., Shan, H., Smith, W.: Job
Scheduling in Heterogeneous Grid Environment. LBNL-
54906. Lawrence Berkeley National Laboratory,Berkeley
(2004)

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

185

[10] Shan, H., Oliker, L., Biswas, R.: Job superscheduler
architecture and performance in omputational Grid
environments. In: Proceedings of IEEE/ACM Conference
on Supercomputing, Phoenix, (2003).

[11] Anand, L., Ghose, D., Mani, V.: ELISA: an estimated load
information scheduling algorithm for distributed computing
systems. Int. J. Comput. Math. Appl. 37(8), 57–85 (1999)

[12] H.D. Karatza, “Performance of Gang Scheduling Policies
in the Presence of Critical Sporadic Jobs in Distributed
Systems”, Proceedings of the International Symposium on
Performance Evaluation of Computer and
Telecommunication Systems-SPECTS 2007, San Diego,
CA, 2007, pp. 547-554.

[13] H.D. Karatza, “Scheduling Gangs in a Distributed System”,
International Journal of Simulation: Systems, Science
Technology, UK Simulation Society, Vol. 7, no. 1,
(January): 15-22, 2006.

[14] M. Ioannidou, H. Karatza, “Multi-site Scheduling with
Multiple Job Reservations and Forecasting Methods”, In
Proceedings of International Symposium on Parallel and
Distributed Processing and Applications, volume 4330 of
Lecture Notes in Computer Science, Springer, 2006, pp.
894-903.

[15] N.Malarvizhi,V.Rhymend Uthariaraj , “A New Mechanism
for Job Scheduling in Computational Grid Network
Environments “ in proceedings of 5th International
Conference on Active Media Technology ,Volume 5820 of
Lecture Notes in Computer Science, Springer, 2009,pp.
490-500.

[16] Grosu, D., Chronopoulos, A.T.: Noncooperative load
balancing in distributed systems. J. Parallel Distrib.
Comput. 65(9), 1022–1034 (2005)

[17] Penmatsa, S., Chronopoulos, A.T.: Job allocation schemes
in computational Grids based on cost optimization. In:
Proceedings of 19th IEEE International Parallel and
Distributed Processing Symposium, Denver, (2005).

[18] N.Malarvizhi,V.Rhymend Uthariaraj, ” Hierarchical Load
Balancing Scheme for Computational Intensive Jobs in
Grid Computing Environment” in Proc. Int. Conf on
Advanced Computing, India, Dec 2009, pp. 97-104.

[19] H. Johansson and J. Steensland, “A performance
characterization of load balancing algorithms for parallel
SAMR applications,” Uppsala University, Department of
Information Technology, Tech. Rep. 2006- 047, 2006.

[20] Y. Hu, R. Blake, and D. Emerson, “An optimal migration
algorithm for dynamic load balancing,” Concurrency:
Practice and Experience, vol. 10, pp. 467–483, 1998.

[21] Buyya R, “A Grid simulation toolkit for resource modeling
and application scheduling for parallel and distributed
computing”. www.buyya.com/gridsim/.

[22] Zikos, S., Karatza, H.D., 2008. Resource allocation
strategies in a 2-level hierarchical grid system. In:
Proceedings of the 41st Annual Simulation Symposium
(ANSS), April 13–16, 2008. IEEE Computer Society Press,
SCS, pp. 157–164.

Malarvizhi Nandagopal received her
BE and ME degree in computer science
and Engineering from Madurai Kamaraj
University . She is currently a Research
Scholar in Ramanujan Computing Centre
and is pursuing her PhD Degree in Anna
University Chennai.Her research interest
includes Parallel and Distributed
Computing, Cloud Computing and Grid

Computing. She is a member of IEEE and WIE.

V.Rhymend Uthaiaraj received his
PhD degree in computer science and
Engineering from Anna University
Chennai. He is currently working as a
Professor and Director in the
Department of Ramanujan Computing
Centre, Anna University Chennai. His
area of interest includes Computer
Networks, Network Security, Computer

Algorithms and Modeling, Mathematical Programming.

