
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

246

Manuscript received February 5, 2010

Manuscript revised February 20, 2010

Design analysis and implementation of efficient parameter free Design analysis and implementation of efficient parameter free Design analysis and implementation of efficient parameter free Design analysis and implementation of efficient parameter free

algorithm for high qualitalgorithm for high qualitalgorithm for high qualitalgorithm for high quality homogeneous clusters in data my homogeneous clusters in data my homogeneous clusters in data my homogeneous clusters in data mining ining ining ining

applicationsapplicationsapplicationsapplications

Prasad S.Halgaonkar
†
, Vijay M.Wadhai

††
 and A.D.Potgantwar

†††

†
 M.Tech-II (Comp Science and Engg), WCE, Sangli INDIA
††
Prof. & Dean of Research, MITSOT, MAE, Pune INDIA

†††
Faculty of Computer Engineering, SITRC Nashik INDIA

Abstract

A new algorithm for clustering high-dimensional categorical data

is proposed and implemented by us. Our algorithm is parameter-

free, fully-automatic and is based on a two-phase iterative

procedure. In the first phase, cluster assignments are given, and a

new cluster is added to the partition by identifying and splitting a

low-quality cluster. Second phase attempts to optimize clusters.

This algorithm is parametric to cluster quality in terms of

homogeneity. We show how a suitable notion of cluster

homogeneity can be defined in the context of high-dimensional

categorical data, from which an effective instance of the

proposed clustering scheme immediately follows. Our

experiments carried out on real data shows that the devised

algorithm achieves optimal results in terms of compactness and

separation.

Index Terms
Clustering, high-dimensional categorical data, information

search and retrieval.

I. INTRODUCTION

Clustering is an unsupervised classification technique. A

set of unlabeled objects are grouped into meaningful

clusters [1] [2], such that the groups formed are

homogeneous and neatly separated. Challenges for

clustering categorical data are: 1) Lack of ordering of the

domains of the individual attributes. 2) Scalability to high

dimensional data in terms of effectiveness and efficiency.

High-dimensional categorical data such as market-basket

has records containing large number of attributes. 3)

Dependency on parameters. Setting of many input

parameters is required for many of the clustering

techniques which lead to many critical aspects.

Parameters are useful in many ways. Parameters support

requirements such as efficiency, scalability, and flexibility.

For proper tuning of parameters a lot of effort is required.

As number of parameters increases, the problem of

parameter tuning also increases. Algorithm should have as

less parameters as possible. If the algorithm is automatic it

helps to find accurate clusters. An automatic approach

technique searches huge amounts of high-dimensional

data such that it is effective and rapid which is not

possible for human expert. A parameter free approach is

based on decision tree learning, which is implemented by

top-down divide-and-conquer strategies. The above

mentioned problems have been tackled separately, and

specific approaches are proposed in the literature, which

does not fit the whole framework. The main objective of

this paper is to face the three issues in a unified

framework. We look forward to an algorithmic technique

that is capable of automatically detecting the underlying

interesting structure (when available) on high-dimensional

categorical data.

We present Efficient Parameter Free (EPF), a new

approach to clustering high-dimensional categorical data

that scales to processing large volumes of such data in

terms of both effectiveness and efficiency. Given an initial

data set, it searches for a partition, which improves the

overall purity. The algorithm is not dependent on any

data-specific parameter (such as the number of clusters or

occurrence thresholds for frequent attribute values). It is

intentionally left parametric to the notion of purity, which

allows for adopting the quality criterion that best meets

the goal of clustering. Section 2 reviews some of the

related work carried out on transactional data, high

dimensional data and high dimensional categorical data.

Section 3 provides background information on the

clustering of high dimensional categorical data (EPF

algorithm). Section 4 describes implementation results of

EPF algorithm. Section 5 concludes the paper and draws

direction to future work.

II. RELATED WORK

In current literature, many approaches are given for

clustering categorical data. Most of these techniques suffer

from two main limitations, 1) their dependency on a set of

parameters whose proper tuning is required and 2) their

lack of scalability to high dimensional data. Most of the

approaches are unable to deal with the above features and

in giving a good strategy for tuning the parameters.

Many distance-based clustering algorithms [2], [3] are

proposed for transactional data. But traditional clustering

techniques have the curse of dimensionality and the

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

247

sparseness issue when dealing with very high-dimensional

data such as market-basket data or Web sessions. For

example, the K-Means algorithm has been adopted by

replacing the cluster mean with the more robust notion of

cluster medoid [3] (that is, the object within the cluster

with the minimal distance from the other points) or the

attribute mode [4]. However, the proposed extensions are

inadequate for large values of m: Gozzi et al. [5] describe

such inadequacies in detail and propose further extensions

to the K-Means scheme, which fit transactional data.

Unfortunately, this approach reveals to be parameter laden.

When the number of dimensions is high, distance-based

algorithms do not perform well. Indeed, several irrelevant

attributes might distort the dissimilarity between tuples.

Although standard dimension reduction techniques [6] can

be used for detecting the relevant dimensions, these can be

different for different clusters, thus invalidating such a

preprocessing task. Several clustering techniques have

been proposed, which identify clusters in subspaces of

maximum dimensionality (see [7] for a survey). Though

most of these approaches were defined for numerical data,

some recent works [8], [9] also consider subspace

clustering for categorical data.

 A different point of view about (dis)similarity is provided

by the ROCK algorithm [27]. The core of the approach is

an agglomerative hierarchical clustering procedure based

on the concepts of neighbors and links. For a given tuple x,

a tuple y is a neighbor of x if the Jaccard similarity J(x, y)

between them exceeds a prespecified threshold Ө. The

algorithm starts by assigning each tuple to a singleton

cluster and merges clusters on the basis of the number of

neighbors (links) that they share until the desired number

of clusters is reached. ROCK is robust to high-

dimensional data. However, the dependency of the

algorithm to the parameter Ө makes proper tuning difficult.

 Categorical data clusters are considered as dense regions

within the data set. The density is related to the frequency

of particular groups of attribute values. The higher the

frequency of such groups the stronger the clustering.

Preprocessing the data set is carried by extracting relevant

features (frequent patterns) and discovering clusters on the

basis of these features. There are several approaches

accounting for frequencies. As an example, Yang et al.

[10] propose an approach based on histograms: The

goodness of a cluster is higher if the average frequency of

an item is high, as compared to the number of items

appearing within a transaction. The algorithm is

particularly suitable for large high-dimensional databases,

but it is sensitive to a user defined parameter (the

repulsion factor), which weights the importance of the

compactness/sparseness of a cluster. Other approaches

[11], [12], [13], [9] extend the computation of frequencies

to frequent patterns in the underlying data set. In particular,

in [11], [12], each transaction is seen as a relation over

some sets of items, and a hyper-graph model is used for

representing these relations. Hyper-graph partitioning

algorithms can hence be used for obtaining

item/transaction clusters.

The CLICKS algorithm proposed in [9] encodes a data set

into a weighted graph structure G(N, E), where the

individual attribute values correspond to weighted vertices

in N, and two nodes are connected by an edge if there is a

tuple where the corresponding attribute values co-occur.

The algorithm starts from the observation that clusters

correspond to dense (that is, with frequency higher than a

user-specified threshold) maximal k-partite cliques and

proceeds by enumerating all maximal k-partite cliques and

checking their frequency. A crucial step is the

computation of strongly connected components, that is,

pairs of attribute values whose co-occurrence is above the

specified threshold. For large values of m (or, more

generally, when the number of dimensions or the

cardinality of each dimension is high), this is an expensive

task, which invalidates the efficiency of the approaches. In

addition, technique depends upon a set of parameters,

whose tuning can be problematic in practical cases.

Categorical clustering can be tackled by using

information-theoretic principles and the notion of entropy

to measure closeness between objects. The basic intuition

is that groups of similar objects have lower entropy than

those of dissimilar ones. The COOLCAT algorithm [14]

proposes a scheme where data objects are processed

incrementally, and a suitable cluster is chosen for each

tuple such that at each step, the entropy of the resulting

clustering is minimized. The scaLable InforMation

BOttleneck (LIMBO) algorithm [15] also exploits a notion

of entropy to catch the similarity between objects and

defines a clustering procedure that minimizes the

information loss. The algorithm builds a Distributional

Cluster Features (DCF) tree to summarize the data in k

clusters, where each node contains statistics on a subset of

tuples. Then, given a set of k clusters and their

corresponding DCFs, a scan over the data set is performed

to assign each tuple to the cluster exhibiting the closest

DCF. The generation of the DCF tree is parametric to a

user-defined branching factor and an upper bound on the

distance between a leaf and a tuple.

Li and Ma [16] propose an iterative procedure that is

aimed at finding the optimal data partition that minimizes

an entropy-based criterion. Initially, all tuples reside

within a single cluster. Then, a Monte Carlo process is

exploited to randomly pick a tuple and assign it to another

cluster as a trial step aimed at decreasing the entropy

criterion. Updates are retained whenever entropy

diminishes. The overall process is iterated until there are

no more changes in cluster assignments. Interestingly, the

entropy-based criterion proposed here can be derived in

the formal framework of probabilistic clustering models.

Indeed, appropriate probabilistic models, namely,

multinomial [17] and multivariate Bernoulli [18], have

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

248

been proposed and shown to be effective. The classical

Expectation-Maximization framework [19], equipped with

any of these models, reveals to be particularly suitable for

dealing with transactional data [20], [21], being scalable

both in n and in m. The correct estimation of an

appropriate number of mixtures, as well as a proper

initialization of all the model parameters, is problematic

here.

The problem of estimating the proper number of clusters

in the data has been widely studied in the literature. Many

existing methods focus on the computation of costly

statistics based on the within-cluster dispersion [22] or on

cross-validation procedures for selecting the best model

[23], [24]. The latter requires an extra computational cost

due to a repeated estimation and evaluation of a

predefined number of models. More efficient schemes

have been devised in [25], [26]. Starting from an initial

partition containing a single cluster, the approaches

iteratively apply the K-Means algorithm (with k = 2) to

each cluster so far discovered. The decision on whether to

switch the original cluster with the newly generated sub-

clusters is based on a quality criterion, for example, the

Bayesian Information Criterion [25], which mediates

between the likelihood of the data and the model

complexity, or the improvement in the rate of distortion

(the variance in the data) of the sub-clusters with respect

to the original cluster [26]. The exploitation of the K-

Means scheme makes the algorithm specific to low-

dimensional numerical data, and proper tuning to high-

dimensional categorical data is problematic.

 Automatic approaches that adopt the top-down induction

of decision trees are proposed in [28], [29], [30]. The

approaches differ in the quality criterion adopted, for

example reduction in entropy [28], [29] or distance among

the prototypes of the resulting clusters [29]. All of these

approaches have some of the drawbacks. The scalability

on high-dimensional data is poor. Some of the literature

that focused on high dimensional categorical data is

available in [31], [32].

III. The EPF Algorithm

The key idea of Efficient Parameter Free (EPF) algorithm

is to develop a clustering procedure, which has the general

sketch of a top-down decision tree learning algorithm.

First, start from an initial partition which contains single

cluster (the whole data set) and then continuously try to

split a cluster within the partition into two sub-clusters. If

the sub-clusters have a higher homogeneity in the partition

than the original cluster, the original is removed. The sub-

clusters obtained by splitting are added to the partition.

Split the clusters on the basis of their homogeneity. A

function Quality(C) measures the degree of homogeneity

of a cluster C. Clusters with high intra-homogeneity

exhibit high values of Quality.

Let M be set of Boolean attributes such that M = {a1,......,

am} and a data set D = {x1, x2,....., xn} of tuples which is

defined on M. a M is denoted as an item, and a tuple x

D as a transaction x. Data sets containing transactions are

denoted as transactional data, which is a special case of

high-dimensional categorical data. A cluster is a set S

which is a subset of D. The size of S is denoted by nS, and

the size of MS = {a|a Є x, x Є S} is denoted by mS. A

partitioning problem is to divide the original collection of

data D into a set P = {C1,…..,Ck} where each clusters Cj

are nonempty. Each cluster contains a group of

homogeneous transactions. Clusters where transactions

have several items have higher homogeneity than other

subsets where transactions have few items. A cluster of

transactional data is a set of tuples where few items occur

with higher frequency than somewhere else.

Our approach to clustering starts from the analysis of the

analogies between a clustering problem and a

classification problem. In both cases, a model is evaluated

on a given data set, and the evaluation is positive when the

application of the model locates fragments of the data

exhibiting high homogeneity. A simple rather intuitive and

parameter-free approach to classification is based on

decision tree learning, which is often implemented

through top-down divide and conquers strategies. Here,

starting from an initial root node (representing the whole

data set), iteratively, each data set within a node is split

into two or more subsets, which define new sub-nodes of

the original node. The criterion upon which a data set is

split (and, consequently, a node is expanded) is based on a

quality criterion: choosing the best “discriminating”

attribute (that is, the attribute producing partitions with the

highest homogeneity) and partitioning the data set on the

basis of such attribute. The concept of homogeneity has

found several different explanations (for example, in terms

of entropy or variance) and, in general, is related to the

different frequencies of the possible labels of a target class.

The general schema of the EPF algorithm is specified in

Fig. 1. The algorithm starts with a partition having a single

cluster i.e whole data set (line 1). The central part of the

algorithm is the body of the loop between lines 2 and 15.

Within the loop, an effort is made to generate a new

cluster by 1) choosing a candidate node to split (line 4), 2)

splitting the candidate cluster into two sub-clusters (line 5),

and (line 3) calculating whether the splitting allows a new

partition with better quality than the original partition

(lines 6–13). If this is true, the loop can be stopped (line

10), and the partition is updated by replacing the original

cluster with the new sub-clusters (line 8). Otherwise, the

sub-clusters are discarded, and a new cluster is taken for

splitting.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

249

Figure 1: Generate Clusters

The generation of a new cluster calls STABILIZE-

CLUSTERS in line 9, improves the overall quality by

trying relocations among the clusters. Clusters at line 4 are

taken in increasing order of quality.

a. Splitting a Cluster

A splitting procedure gives a major improvement in the

quality of the partition. Choose the attribute that gives the

highest improvement in the quality of the partition.

PARTITION-CLUSTER

The PARTITION-CLUSTER algorithm is given in Fig.2.

The algorithm continuously evaluates, for each element x

 C1U C2, to check whether a reassignment increases the

homogeneity of the two clusters.

Figure 2: Partition Cluster

Lines P8 and P9 compute the involvement of x to the local

quality in two cases: either x remains in its original cluster

(Cu) or x is moved to the other cluster (Cv). If moving x

gives an improvement in the local quality, then the

swapping is done (lines P10–P13). Lines P2–P14 in the

algorithm is nested into a main loop: elements are

continuously checked for swapping until a convergence is

met. The splitting process can be sensitive to the order

upon which elements are considered: In the first stage, it

could be not convenient to reassign the generic xi from C1

to C2, whereas a convenience in performing the swap can

be found after the relocation of some other element xj. The

main loop partly smoothes this effect by repeatedly

relocating objects until convergence is met. Better

PARTITION-CLUSTER can be made strongly insensitive

to the order with which cluster elements are considered.

The basic idea is discussed next. The elements that mostly

influence the locality effect are either outlier transactions

(that is, those containing mainly items, whose frequency

within the cluster is rather low) or common transactions

(which, dually, contain very frequent items). In the first

case, C2 is unable to attract further transactions, whereas

in the second case, C2 is likely to attract most of the

transactions (and, consequently, C1 will contain outliers).

The key idea is to rank and sort the cluster elements before

line P1, which is on the basis of their splitting

effectiveness. To this purpose, each transaction x

belonging to cluster C can be associated with a weight

w(x), which indicates its splitting effectiveness. x is

eligible for splitting C if its items allow us to divide C into

two homogeneous sub-clusters. In this respect, the Gini

index is a natural way to quantify the splitting

effectiveness G(a) of the individual attribute value a x.

Precisely, G(a) = 1 – Pr(a|C)
2
– (1 - Pr(a|C))

2
,

where Pr(a|C) denotes the probability of a within C. G(a)

is close to its maximum whenever a is present in about

half of the transactions of C and reaches its minimum

whenever a is unfrequent or common within C. The

overall splitting effectiveness of x can be defined by

averaging the splitting effectiveness of its constituting

items w(x) = avg a x (G(a)). Once ranked, the

elements x C can be considered in descending order of

their splitting effectiveness at line P2. This guarantees that

C2 is initialized with elements, which do not represent

outliers and still are likely to be removed from C1. This

removes the dependency on the initial input order of the

data. With decision tree learning, EPF exhibits a

preference bias, which is encoded within the notion of

homogeneity and can be viewed as the preference for

compact clustering trees. Indeed, due to the splitting

effectiveness heuristic, homogeneity is enforced by the

effects of the Gini index. At each split, this tends to isolate

clusters of transactions with mostly frequent attribute

values, from which the compactness of the overall

clustering tree follows.

PARTITION-CLUSTER(C1,C2)

P1. repeat

P2. for all x C1 U C2 do

P3. if cluster(x) = C1 then

P4. Cu C1; Cv C2;

P5. else

P6. Cu C2; Cv C1;

P7. end if

P8. Qi Quality(Cu) + Quality(Cv);

P9. Qs Quality(Cu – {x}) + Quality(Cv U {x});

P10. if Qs > Qi then

P11. Cu.Remove(x);

P12. Cv.Insert(x);

P13. end if

P14. end for

P15. until C1 and C2 are stable

GENERATE-CLUSTERS(D)
 Input: A set D ={x1,…,xN} of transactions;
 Output: A partition P = {C1,…,Ck} of clusters;

1. Let initially P = {D};

2. repeat

3. Generate a new cluster C initially empty;
4. for each cluster Ci P do

5. PARTITION-CLUSTERS(Ci,C);
6. P’ P U {C};
7. if Quality(P) < Quality(P’) then
8. P P’;

9. STABILIZE-CLUSTERS(P);
10. break

11. else

12. Restore all xj C into Ci;

13. end if

14. end for

15. until no further cluster C can be
generated

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

250

Figure 3: Stabilize Clusters

b. STABILIZE-CLUSTERS

PARTITION-CLUSTER improves the local quality of a

cluster. And STABILIZE-CLUSTERS try to increase

partition quality. It is carried out by finding the most

suitable clusters for each element among the ones which

are there in the partition. Fig. 3 shows the pseudo code of

the procedure. The central part of the algorithm is a main

loop which (lines S2–S17) examines all the available

elements. For each element x, a pivot cluster is identified,

which is the cluster containing x. Then, the available

clusters are continuously evaluated. The insertion of x in

the current cluster is done (lines S5–S6), and the updated

quality is compared with the original quality. If an

improvement is obtained, then the swap is accepted (line

S11). The new pivot cluster is the one now containing x,

and if the removal of x makes the old pivot cluster empty,

then the old pivot cluster is removed from the partition P.

If there is no improvement in quality, x is restored into its

pivot cluster, and a new cluster is examined. The main

loop is iterated until a stability condition for clusters is

achieved.

c. Cluster and Partition Qualities

AT-DC gives two different quality measures, 1) local

homogeneity within a cluster and 2) global homogeneity

of the partition. As shown in Fig. 1, it is noticed that

partition quality is used for checking whether the insertion

of a new cluster is really suitable: it is for maintaining

compactness. Cluster quality in procedure

PARTITIONCLUSTER is done for good separation..

Cluster quality is known when there is a high degree of

intracluster homogeneity and intercluster homogeneity. As

given in [35], there is strong relation between intracluster

homogeneity and the probability Pr(ai|Ck) that item ai

appears in a transaction containing in Ck. There is a strong

relationship between intercluster separation and Pr(x Ck,

ai x). Cluster homogeneity and separation is computed

by relating it to the unity of items within the transactions

that it contains. Cluster quality is equal to the combination

of the above probability,

. The last term is

used for weighting the importance of item a in the

summation: Essentially, high values from low-frequency

items are less relevant than those from high-frequency

values. By the Bayes theorem, the above formula is

expressed as [33]. Terms

 (relative strength of a within C) and Pr(C)

(relative strength of C) work in contraposition. It is easy to

compute the gain in strength for each item with respect to

the whole data set, that is

 Quality (Ck) = Pr(Ck)

 …….

(1)

Where,

• Ck – cluster

• Pr(Ck) – relative strength of Ck

• a Є MCk – an item

• M = {a1,……., am} is set of Boolean attributes

• Pr(a| Ck) - relative strength of a within Ck

• Pr(a|D) - relative strength of a within D

• D = {x1,……., xn} is data set of tuples defined on

M

 Quality (Ck) =

…..…… (2)

where na and Na represent the frequencies of a in C and D,

respectively. The value of Quality (Ck) is updated as soon

as a new transaction is added to C.

IV. RESULTS AND ANALYSIS

Two real-life data sets were evaluated. A description of

each data set employed for testing is provided next,

together with an evaluation of the EPF performances.

UCI DATASETS [34]

Soybean: The Soybean data set contains 47 records and

35 attributes. Each record contains a class as D1/ D2/ D3

STABILIZE-CLUSTERS(P)

S1. repeat

S2. for all x D do

S3. Cpivot cluster(x); Q Quality(P);

S4. for all C P do

S5. Cpivot.REMOVE(x);

S6. C.INSERT(x);

S7. if Quality(P) > Q then

S8. if Cpivot = Ø then

S9. P.REMOVE(Cpivot);

S10. end if

S11. Cpivot C; Q Quality(P);

S12. else

S13. Cpivot.INSERT(x);

S14. C.REMOVE(x);

S15. end if

S16. end for

S17. end for

S18. until P is stable

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

251

or D4. All 35 attributes are categorical. A detailed result is

given in the confusion matrix in table 1. As it is seen, AT-

DC found two clusters. It is observed that there is high

homogeneity in cluster 1 and 2.

Congressional Votes: The Congressional Votes data set

contains a set of US Congressional Voting Records. Each

record is one Congressman’s votes on 16 issues (for

example, education spending, crime, and immigration).

All attributes are Boolean (“Yes” or “No” vote), and some

contains missing values. A label of “Republican” or

“Democrat” is given to each data record. The data set

contains 435 records: 168 “Republican” and 267

“Democrat.” Table 2 show the results obtained by EPF on

the Congressional Votes data set. It is seen that all the

three clusters are having high homogeneity.

Table 1: Confusion matrix for soybean

Cluster No.

Classes

D1 D2 D3 D4

1 0 0 10 17

2 10 10 0 0

Table 2: Confusion matrix for congressional votes

Cluster No. No. of Democrats No. of Republicans

1 143 0

2 0 168

3 124 0

Table 3: Comparison amongst categorical clustering methods

(C = Optimal number of clusters)

Dataset

EPF LIMBO CLICK ROCK

Timin

g
C

Timin

g
C

Timin

g
C

Timin

g
C

Soybea

n
0.07 2 0.62 3 0.94 5 102 2

Cong.

Votes
0.18 3 0.81 4 1.06 6 117 3

a. Comparative Analysis

We evaluated EPF versus three main algorithms from the

current literature, namely, LIMBO, CLICK and ROCK.

CLICK [9] was shown to outperform other approaches

adopting a similar hyper-graph partitioning strategy [36],

[37] and was chosen for comparison, since this claimed to

be capable of dealing with high-dimensional categorical

data. ROCK [27] is particularly suitable for market-basket

data. LIMBO [15], despite its time complexity, was shown

to be quite effective.

Table 3 summarizes the results of the comparison. The

results for the LIMBO, ROCK and CLICK algorithms

were obtained by performing an accurate tuning of the

input parameters: For each data set, different runs were

executed for different values of the parameters, and the

best results were chosen. The results shown only refer to

the run with the best combination of parameters. EPF

outperforms LIMBO, ROCK and CLICK in terms of

efficiency (i.e. timing). With respect to optimal number of

clusters, EPF outperforms LIMBO and CLICK while EPF

is comparable to ROCK.

V. CONCLUDING REMARK

The algorithm implemented by us is fully-automatic,

parameter-free approach to cluster high-dimensional

categorical data. The main advantage of our approach is

its capability of avoiding explicit prejudices, expectations,

and presumptions on the problem at hand, thus allowing

the data itself to speak. This is useful with the problem at

hand, where the data is described by several relevant

attributes.

A limitation of the our proposed approach is that the

underlying notion of cluster quality is not meant for

catching conceptual similarities, that is, when distinct

values of an attribute are used for denoting the same

concept. Probabilities are provided to evaluate cluster

homogeneity only in terms of the frequency of items

across the underlying transactions. Hence, the resulting

notion of quality suffers from the typical limitations of the

approaches, which use exact-match similarity measures to

assess cluster homogeneity. To this purpose, conceptual

cluster homogeneity for categorical data can be easily

added to the framework of the EPF algorithm.

Another limitation of our approach is that it cannot deal

with outliers. These are transactions whose structure

strongly differs from that of the other transactions being

characterized by low-frequency items. A cluster

containing such transaction exhibits low quality. Worst,

outliers could negatively affect the PARTITION-

CLUSTER procedure by preventing the split to be

accepted (because of an arbitrary assignment of such

outliers, which would lower the quality of the partitions).

Hence, a significant improvement of EPF can be obtained

by defining an outlier detection procedure that is capable

of detecting and removing outlier transactions before

partitioning the clusters. Accordingly the research work is

being focused further to improve the quality of clusters

which are created after EPF.

REFERENCES

[1] J. Grabmeier and A. Rudolph, “Techniques of Cluster

Algorithms in Data Mining,” Data Mining and

Knowledge Discovery, vol. 6, no. 4, pp. 303-360, 2002.

[2] A. Jain and R. Dubes, Algorithms for Clustering Data.

Prentice Hall, 1988.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

252

[3] R. Ng and J. Han, “CLARANS: A Method for Clustering

Objects for Spatial Data Mining,” IEEE Trans. Knowledge

and Data Eng., vol. 14, no. 5, pp. 1003-1016, Sept./Oct.

2002.

[4] Z. Huang, “Extensions to the K-Means Algorithm for

Clustering Large Data Sets with Categorical Values,” Data

Mining an Knowledge Discovery, vol. 2, no. 3, pp. 283-304,

1998.

[5] C. Gozzi, F. Giannotti, and G. Manco, “Clustering

Transactional Data,” Proc. Sixth European Conf. Principles

and Practice of Knowledge Discovery in Databases

(PKDD ’02), pp. 175-187, 2002.

[6] S. Deerwester et al., “Indexing by Latent Semantic

Analysis,” J. Am. Soc. Information Science, vol. 41, no. 6,

1990.

[7] L. Parsons, E. Haque, and H. Liu, “Subspace Clustering for

High-Dimensional Data: A Review,” SIGKDD

Explorations, vol. 6, no. 1, pp. 90-105, 2004.

[8] G. Gan and J. Wu, “Subspace Clustering for High

Dimensional Categorical Data,” SIGKDD Explorations, vol.

6, no. 2, pp. 87-94, 2004.

[9] M. Zaki and M. Peters, “CLICK: Mining Subspace Clusters

in categorical Data via k-Partite Maximal Cliques,” Proc.

21st Int’l Conf. Data Eng. (ICDE ’05), 2005.

[10] Y. Yang, X. Guan, and J. You, “CLOPE: A Fast and

Effective Clustering Algorithm for Transactional Data,”

Proc. Eighth ACM Conf. Knowledge Discovery and Data

Mining (KDD ’02), pp. 682-687, 2002.

[11] E. Han, G. Karypis, V. Kumar, and B. Mobasher,

“Clustering in a High Dimensional Space Using

Hypergraph Models,” Proc. ACM SIGMOD Workshops

Research Issues on Data Mining and Knowledge Discovery

(DMKD ’97), 1997.

[12] M. Ozdal and C. Aykanat, “Hypergraph Models and

Algorithms for Data-Pattern-Based Clustering,” Data

Mining and Knowledge Discovery, vol. 9, pp. 29-57, 2004.

[13] K. Wang, C. Xu, and B. Liu, “Clustering Transactions

Using Large Items,” Proc. Eighth Int’l Conf. Information

and Knowledge Management (CIKM ’99), pp. 483-490,

1999.

[14] D. Barbara´ , J. Couto, and Y. Li, “COOLCAT: An

Entropy-Based Algorithm for Categorical Clustering,” Proc.

11th ACM Conf. Information and Knowledge Management

(CIKM ’02), pp. 582-589, 2002.

[15] P. Andritsos, P. Tsaparas, R. Miller, and K. Sevcik,

“LIMBO: Scalable Clustering of Categorical Data,” Proc.

Ninth Int’l Conf. Extending Database Technology

(EDBT ’04), pp. 123-146, 2004.

[16] M.O.T. Li and S. Ma, “Entropy-Based Criterion in

Categorical Clustering,” Proc. 21st Int’l Conf. Machine

Learning (ICML ’04), pp. 68-75, 2004.

[17] I. Cadez, P. Smyth, and H. Mannila, “Probabilistic

Modeling of Transaction Data with Applications to

Profiling, Visualization, and Prediction,” Proc. Seventh

ACM SIGKDD Int’l Conf. Knowledge Discovery and Data

Mining (KDD ’01), pp. 37-46, 2001.

[18] M. Carreira-Perpinan and S. Renals, “Practical

Identifiability of Finite Mixture of Multivariate

Distributions,” Neural Computation, vol. 12, no. 1, pp. 141-

152, 2000.

[19] G. McLachlan and D. Peel, Finite Mixture Models. John

Wiley & Sons, 2000.

[20] M. Meila and D. Heckerman, “An Experimental

Comparison of Model-Based Clustering Methods,”

Machine Learning, vol. 42, no. 1/2, pp. 9-29, 2001.

[21] J.G.S. Zhong, “Generative Model-Based Document

Clustering: A Comparative Study,” Knowledge and

Information Systems, vol. 8, no. 3, pp. 374-384, 2005.

[22] A. Gordon, Classification. Chapman and Hall/CRC Press,

1999.

[23] C. Fraley and A. Raftery, “How Many Clusters? Which

Clustering Method? The Answer via Model-Based Cluster

Analysis,” The Computer J., vol. 41, no. 8, 1998.

[24] P. Smyth, “Model Selection for Probabilistic Clustering

Using Cross-Validated Likelihood,” Statistics and

Computing, vol. 10, no. 1, pp. 63-72, 2000.

[25] D. Pelleg and A. Moore, “X-Means: Extending K-Means

with Efficient Estimation of the Number of Clusters,” Proc.

17th Int’l Conf. Machine Learning (ICML ’00), pp. 727-734,

2000.

[26] M. Sultan et al., “Binary Tree-Structured Vector

Quantization Approach to Clustering and Visualizing

Microarray Data,” Bioinformatics, vol. 18, 2002.

[27] S. Guha, R. Rastogi, and K. Shim, “ROCK: A Robust

Clustering Algorithm for Categorical Attributes,”

Information Systems, vol. 25, no. 5, pp. 345-366, 2001.

[28] J. Basak and R. Krishnapuram, “Interpretable Hierarchical

Clustering by Constructing an Unsupervised Decision

Tree,” IEEE Trans. Knowledge and Data Eng., vol. 17, no.

1, Jan. 2005.

[29] H. Blockeel, L.D. Raedt, and J. Ramon, “Top-Down

Induction of Clustering Trees,” Proc. 15th Int’l Conf.

Machine Learning (ICML’98), pp. 55-63, 1998.

[30] B. Liu, Y. Xia, and P. Yu, “Clustering through Decision

Tree Construction,” Proc. Ninth Int’l Conf. Information and

Knowledge Management (CIKM ’00), pp. 20-29, 2000.

[31] Yi-Dong Shen, Zhi-Yong Shen and Shi-Ming

Zhang,“Cluster Cores – based Clustering for High –

Dimensional Data”.

[32] Alexander Hinneburg and Daniel A. Keim, Markus

Wawryniuk,“HD-Eye-Visual of High-Dimensional Data: A

Demonstration”.

[33] http://en.wikipedia.org/wiki/Bayes'_theorem

[34] UCI Machine Learning Repository

http://www.ics.uci.edu/~mlearn/

[35] D. Fisher, “Knowledge Acquisition via Incremental

Conceptual Clustering,” Machine Learning, vol. 2, pp. 139-

172, 1987.

[36] V. Ganti, J. Gehrke, and R. Ramakrishnan, “CACTUS:

Clustering Categorical Data Using Summaries,” Proc. Fifth

ACM Conf. Knowledge Discovery and Data Mining

(KDD ’99), pp. 73-83, 1999.

[37] D. Gibson, J. Kleinberg, and P. Raghavan, “Clustering

Categorical Data: An Approach Based on Dynamical

Systems,” VLDB J., vol. 8, pp. 222-236, 2000.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, February 2010

253

Prasad S.Halgaonkar received his

B.E. in Computer Science and Engg.

from Amravati University in 2006.

Currently, he is pursuing his M.Tech

(CSE) from Walchand College, Shivaji

University. His current research interest

includes Distributed Data Mining,

Cognitive Radio and Wireless

Communication.

Dr. Vijay M.Wadhai received his B.E.

from Nagpur University in 1986, M.E.

from Gulbarga University in 1995 and

Ph.D. degree from Amravati University

in 2007. He has experience of 24 years

which includes both academic (17 years)

and research (7 years). He has been

working as a Dean of Research,

MITSOT, MAE, Pune (from 2009) and

simultaneously handling the post of Director - Research and

Development, Intelligent Radio Frequency (IRF) Group, Pune

(from 2009). His research interest includes Deductive Databases,

Knowledge Discovery and Data Mining, Cognitive Radio and

Wireless Communication, Spectrum Management, Wireless

Sensor Network, ASIC Design - VLSI, Advance Network

Design. He is a member of LMISTE, MIETE, MIEEE, MIES

and GISFI (Member Convergence Group), India.

A.D.Potgantwar received B.E. (CSE)

degree from Amravati University in 2005,

M.Tech (CSE) from VJTI Mumbai,

Mumbai University in 2009. After

working as a lecturer (2005-07) in the

D.N.Patel College of Engineering

Shahada, North Maharashtra University,

he has been a lecturer at Pune Univ. since

2009 and simultaneously handling the

post of Director- Journal, Intelligent Radio Frequency (IRF)

Group, Pune. His research interest includes Knowledge

Discovery and Data Mining, Cognitive Radio and Wireless

Communication, Image Processing, VHDL.

