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Abstract 

A new algorithm for clustering high-dimensional categorical data 

is proposed and implemented by us. Our algorithm is parameter-

free, fully-automatic and is based on a two-phase iterative 

procedure. In the first phase, cluster assignments are given, and a 

new cluster is added to the partition by identifying and splitting a 

low-quality cluster. Second phase attempts to optimize clusters. 

This algorithm is parametric to cluster quality in terms of 

homogeneity. We show how a suitable notion of cluster 

homogeneity can be defined in the context of high-dimensional 

categorical data, from which an effective instance of the 

proposed clustering scheme immediately follows. Our 

experiments carried out on real data shows that the devised 

algorithm achieves optimal results in terms of compactness and 

separation. 

Index Terms 
Clustering, high-dimensional categorical data, information 

search and retrieval. 

I. INTRODUCTION 

Clustering is an unsupervised classification technique. A 

set of unlabeled objects are grouped into meaningful 

clusters [1] [2], such that the groups formed are 

homogeneous and neatly separated. Challenges for 

clustering categorical data are: 1) Lack of ordering of the 

domains of the individual attributes. 2) Scalability to high 

dimensional data in terms of effectiveness and efficiency. 

High-dimensional categorical data such as market-basket 

has records containing large number of attributes. 3) 

Dependency on parameters. Setting of many input 

parameters is required for many of the clustering 

techniques which lead to many critical aspects. 

Parameters are useful in many ways. Parameters support 

requirements such as efficiency, scalability, and flexibility. 

For proper tuning of parameters a lot of effort is required. 

As number of parameters increases, the problem of 

parameter tuning also increases. Algorithm should have as 

less parameters as possible. If the algorithm is automatic it 

helps to find accurate clusters. An automatic approach 

technique searches huge amounts of high-dimensional 

data such that it is effective and rapid which is not 

possible for human expert. A parameter free approach is 

based on decision tree learning, which is implemented by 

top-down divide-and-conquer strategies. The above 

mentioned problems have been tackled separately, and 

specific approaches are proposed in the literature, which 

does not fit the whole framework. The main objective of 

this paper is to face the three issues in a unified 

framework. We look forward to an algorithmic technique 

that is capable of automatically detecting the underlying 

interesting structure (when available) on high-dimensional 

categorical data.  

We present Efficient Parameter Free (EPF), a new 

approach to clustering high-dimensional categorical data 

that scales to processing large volumes of such data in 

terms of both effectiveness and efficiency. Given an initial 

data set, it searches for a partition, which improves the 

overall purity. The algorithm is not dependent on any 

data-specific parameter (such as the number of clusters or 

occurrence thresholds for frequent attribute values). It is 

intentionally left parametric to the notion of purity, which 

allows for adopting the quality criterion that best meets 

the goal of clustering. Section 2 reviews some of the 

related work carried out on transactional data, high 

dimensional data and high dimensional categorical data. 

Section 3 provides background information on the 

clustering of high dimensional categorical data (EPF 

algorithm). Section 4 describes implementation results of 

EPF algorithm. Section 5 concludes the paper and draws 

direction to future work. 

II. RELATED WORK 

In current literature, many approaches are given for 

clustering categorical data. Most of these techniques suffer 

from two main limitations, 1) their dependency on a set of 

parameters whose proper tuning is required and 2) their 

lack of scalability to high dimensional data. Most of the 

approaches are unable to deal with the above features and 

in giving a good strategy for tuning the parameters. 

Many distance-based clustering algorithms [2], [3] are 

proposed for transactional data. But traditional clustering 

techniques have the curse of dimensionality and the 
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sparseness issue when dealing with very high-dimensional 

data such as market-basket data or Web sessions. For 

example, the K-Means algorithm has been adopted by 

replacing the cluster mean with the more robust notion of 

cluster medoid [3] (that is, the object within the cluster 

with the minimal distance from the other points) or the 

attribute mode [4]. However, the proposed extensions are 

inadequate for large values of m: Gozzi et al. [5] describe 

such inadequacies in detail and propose further extensions 

to the K-Means scheme, which fit transactional data. 

Unfortunately, this approach reveals to be parameter laden. 

When the number of dimensions is high, distance-based 

algorithms do not perform well. Indeed, several irrelevant 

attributes might distort the dissimilarity between tuples. 

Although standard dimension reduction techniques [6] can 

be used for detecting the relevant dimensions, these can be 

different for different clusters, thus invalidating such a 

preprocessing task. Several clustering techniques have 

been proposed, which identify clusters in subspaces of 

maximum dimensionality (see [7] for a survey). Though 

most of these approaches were defined for numerical data, 

some recent works [8], [9] also consider subspace 

clustering for categorical data. 

 A different point of view about (dis)similarity is provided 

by the ROCK algorithm [27]. The core of the approach is 

an agglomerative hierarchical clustering procedure based 

on the concepts of neighbors and links. For a given tuple x, 

a tuple y is a neighbor of x if the Jaccard similarity J(x, y) 

between them exceeds a prespecified threshold Ө. The 

algorithm starts by assigning each tuple to a singleton 

cluster and merges clusters on the basis of the number of 

neighbors (links) that they share until the desired number 

of clusters is reached. ROCK is robust to high-

dimensional data. However, the dependency of the 

algorithm to the parameter Ө makes proper tuning difficult.  

 Categorical data clusters are considered as dense regions 

within the data set. The density is related to the frequency 

of particular groups of attribute values. The higher the 

frequency of such groups the stronger the clustering. 

Preprocessing the data set is carried by extracting relevant 

features (frequent patterns) and discovering clusters on the 

basis of these features. There are several approaches 

accounting for frequencies. As an example, Yang et al. 

[10] propose an approach based on histograms: The 

goodness of a cluster is higher if the average frequency of 

an item is high, as compared to the number of items 

appearing within a transaction. The algorithm is 

particularly suitable for large high-dimensional databases, 

but it is sensitive to a user defined parameter (the 

repulsion factor), which weights the importance of the 

compactness/sparseness of a cluster. Other approaches 

[11], [12], [13], [9] extend the computation of frequencies 

to frequent patterns in the underlying data set. In particular, 

in [11], [12], each transaction is seen as a relation over 

some sets of items, and a hyper-graph model is used for 

representing these relations. Hyper-graph partitioning 

algorithms can hence be used for obtaining 

item/transaction clusters. 

The CLICKS algorithm proposed in [9] encodes a data set 

into a weighted graph structure G(N, E), where the 

individual attribute values correspond to weighted vertices 

in N, and two nodes are connected by an edge if there is a 

tuple where the corresponding attribute values co-occur. 

The algorithm starts from the observation that clusters 

correspond to dense (that is, with frequency higher than a 

user-specified threshold) maximal k-partite cliques and 

proceeds by enumerating all maximal k-partite cliques and 

checking their frequency. A crucial step is the 

computation of strongly connected components, that is, 

pairs of attribute values whose co-occurrence is above the 

specified threshold. For large values of m (or, more 

generally, when the number of dimensions or the 

cardinality of each dimension is high), this is an expensive 

task, which invalidates the efficiency of the approaches. In 

addition, technique depends upon a set of parameters, 

whose tuning can be problematic in practical cases. 

Categorical clustering can be tackled by using 

information-theoretic principles and the notion of entropy 

to measure closeness between objects. The basic intuition 

is that groups of similar objects have lower entropy than 

those of dissimilar ones. The COOLCAT algorithm [14] 

proposes a scheme where data objects are processed 

incrementally, and a suitable cluster is chosen for each 

tuple such that at each step, the entropy of the resulting 

clustering is minimized. The scaLable InforMation 

BOttleneck (LIMBO) algorithm [15] also exploits a notion 

of entropy to catch the similarity between objects and 

defines a clustering procedure that minimizes the 

information loss. The algorithm builds a Distributional 

Cluster Features (DCF) tree to summarize the data in k 

clusters, where each node contains statistics on a subset of 

tuples. Then, given a set of k clusters and their 

corresponding DCFs, a scan over the data set is performed 

to assign each tuple to the cluster exhibiting the closest 

DCF. The generation of the DCF tree is parametric to a 

user-defined branching factor and an upper bound on the 

distance between a leaf and a tuple. 

Li and Ma [16] propose an iterative procedure that is 

aimed at finding the optimal data partition that minimizes 

an entropy-based criterion. Initially, all tuples reside 

within a single cluster. Then, a Monte Carlo process is 

exploited to randomly pick a tuple and assign it to another 

cluster as a trial step aimed at decreasing the entropy 

criterion. Updates are retained whenever entropy 

diminishes. The overall process is iterated until there are 

no more changes in cluster assignments. Interestingly, the 

entropy-based criterion proposed here can be derived in 

the formal framework of probabilistic clustering models. 

Indeed, appropriate probabilistic models, namely, 

multinomial [17] and multivariate Bernoulli [18], have 
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been proposed and shown to be effective. The classical 

Expectation-Maximization framework [19], equipped with 

any of these models, reveals to be particularly suitable for 

dealing with transactional data [20], [21], being scalable 

both in n and in m. The correct estimation of an 

appropriate number of mixtures, as well as a proper 

initialization of all the model parameters, is problematic 

here. 

The problem of estimating the proper number of clusters 

in the data has been widely studied in the literature. Many 

existing methods focus on the computation of costly 

statistics based on the within-cluster dispersion [22] or on 

cross-validation procedures for selecting the best model 

[23], [24]. The latter requires an extra computational cost 

due to a repeated estimation and evaluation of a 

predefined number of models. More efficient schemes 

have been devised in [25], [26]. Starting from an initial 

partition containing a single cluster, the approaches 

iteratively apply the K-Means algorithm (with k = 2) to 

each cluster so far discovered. The decision on whether to 

switch the original cluster with the newly generated sub-

clusters is based on a quality criterion, for example, the 

Bayesian Information Criterion [25], which mediates 

between the likelihood of the data and the model 

complexity, or the improvement in the rate of distortion 

(the variance in the data) of the sub-clusters with respect 

to the original cluster [26]. The exploitation of the K-

Means scheme makes the algorithm specific to low-

dimensional numerical data, and proper tuning to high-

dimensional categorical data is problematic. 

 Automatic approaches that adopt the top-down induction 

of decision trees are proposed in [28], [29], [30]. The 

approaches differ in the quality criterion adopted, for 

example reduction in entropy [28], [29] or distance among 

the prototypes of the resulting clusters [29]. All of these 

approaches have some of the drawbacks. The scalability 

on high-dimensional data is poor. Some of the literature 

that focused on high dimensional categorical data is 

available in [31], [32]. 

III. The EPF Algorithm 

The key idea of Efficient Parameter Free (EPF) algorithm 

is to develop a clustering procedure, which has the general 

sketch of a top-down decision tree learning algorithm. 

First, start from an initial partition which contains single 

cluster (the whole data set) and then continuously try to 

split a cluster within the partition into two sub-clusters. If 

the sub-clusters have a higher homogeneity in the partition 

than the original cluster, the original is removed. The sub-

clusters obtained by splitting are added to the partition. 

Split the clusters on the basis of their homogeneity. A 

function Quality(C) measures the degree of homogeneity 

of a cluster C. Clusters with high intra-homogeneity 

exhibit high values of Quality. 

Let M be set of Boolean attributes such that M = {a1,......, 

am} and a data set D = {x1, x2,....., xn} of tuples which is 

defined on M. a  M is denoted as an item, and a tuple x  

D as a transaction x. Data sets containing transactions are 

denoted as transactional data, which is a special case of 

high-dimensional categorical data. A cluster is a set S 

which is a subset of D. The size of S is denoted by nS, and 

the size of MS = {a|a Є x, x Є S} is denoted by mS. A 

partitioning problem is to divide the original collection of 

data D into a set P = {C1,…..,Ck} where each clusters Cj 

are nonempty. Each cluster contains a group of 

homogeneous transactions. Clusters where transactions 

have several items have higher homogeneity than other 

subsets where transactions have few items. A cluster of 

transactional data is a set of tuples where few items occur 

with higher frequency than somewhere else. 

Our approach to clustering starts from the analysis of the 

analogies between a clustering problem and a 

classification problem. In both cases, a model is evaluated 

on a given data set, and the evaluation is positive when the 

application of the model locates fragments of the data 

exhibiting high homogeneity. A simple rather intuitive and 

parameter-free approach to classification is based on 

decision tree learning, which is often implemented 

through top-down divide and conquers strategies. Here, 

starting from an initial root node (representing the whole 

data set), iteratively, each data set within a node is split 

into two or more subsets, which define new sub-nodes of 

the original node. The criterion upon which a data set is 

split (and, consequently, a node is expanded) is based on a 

quality criterion: choosing the best “discriminating” 

attribute (that is, the attribute producing partitions with the 

highest homogeneity) and partitioning the data set on the 

basis of such attribute. The concept of homogeneity has 

found several different explanations (for example, in terms 

of entropy or variance) and, in general, is related to the 

different frequencies of the possible labels of a target class. 

The general schema of the EPF algorithm is specified in 

Fig. 1. The algorithm starts with a partition having a single 

cluster i.e whole data set (line 1). The central part of the 

algorithm is the body of the loop between lines 2 and 15. 

Within the loop, an effort is made to generate a new 

cluster by 1) choosing a candidate node to split (line 4), 2) 

splitting the candidate cluster into two sub-clusters (line 5), 

and (line 3) calculating whether the splitting allows a new 

partition with better quality than the original partition 

(lines 6–13). If this is true, the loop can be stopped (line 

10), and the partition is updated by replacing the original 

cluster with the new sub-clusters (line 8). Otherwise, the 

sub-clusters are discarded, and a new cluster is taken for 

splitting. 
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Figure 1: Generate Clusters 

The generation of a new cluster calls STABILIZE-

CLUSTERS in line 9, improves the overall quality by 

trying relocations among the clusters. Clusters at line 4 are 

taken in increasing order of quality. 

 

a. Splitting a Cluster 

A splitting procedure gives a major improvement in the 

quality of the partition. Choose the attribute that gives the 

highest improvement in the quality of the partition. 

PARTITION-CLUSTER 

The PARTITION-CLUSTER algorithm is given in Fig.2. 

The algorithm continuously evaluates, for each element x 

 C1U C2, to check whether a reassignment increases the 

homogeneity of the two clusters. 

 

 
Figure 2: Partition Cluster 

Lines P8 and P9 compute the involvement of x to the local 

quality in two cases: either x remains in its original cluster 

(Cu) or x is moved to the other cluster (Cv). If moving x 

gives an improvement in the local quality, then the 

swapping is done (lines P10–P13). Lines P2–P14 in the 

algorithm is nested into a main loop: elements are 

continuously checked for swapping until a convergence is 

met. The splitting process can be sensitive to the order 

upon which elements are considered: In the first stage, it 

could be not convenient to reassign the generic xi from C1 

to C2, whereas a convenience in performing the swap can 

be found after the relocation of some other element xj. The 

main loop partly smoothes this effect by repeatedly 

relocating objects until convergence is met. Better 

PARTITION-CLUSTER can be made strongly insensitive 

to the order with which cluster elements are considered. 

The basic idea is discussed next. The elements that mostly 

influence the locality effect are either outlier transactions 

(that is, those containing mainly items, whose frequency 

within the cluster is rather low) or common transactions 

(which, dually, contain very frequent items). In the first 

case, C2 is unable to attract further transactions, whereas 

in the second case, C2 is likely to attract most of the 

transactions (and, consequently, C1 will contain outliers). 

The key idea is to rank and sort the cluster elements before 

line P1, which is on the basis of their splitting 

effectiveness. To this purpose, each transaction x 

belonging to cluster C can be associated with a weight 

w(x), which indicates its splitting effectiveness. x is 

eligible for splitting C if its items allow us to divide C into 

two homogeneous sub-clusters. In this respect, the Gini 

index is a natural way to quantify the splitting 

effectiveness G(a) of the individual attribute value a  x. 

Precisely, G(a) = 1 – Pr(a|C)
2 
–              (1 - Pr(a|C))

2
,  

where Pr(a|C) denotes the probability of a within C. G(a) 

is close to its maximum whenever a is present in about 

half of the transactions of C and reaches its minimum 

whenever a is unfrequent or common within C. The 

overall splitting effectiveness of x can be defined by 

averaging the splitting effectiveness of its constituting 

items                      w(x) = avg a  x (G(a)). Once ranked, the 

elements x  C can be considered in descending order of 

their splitting effectiveness at line P2. This guarantees that 

C2 is initialized with elements, which do not represent 

outliers and still are likely to be removed from C1. This 

removes the dependency on the initial input order of the 

data. With decision tree learning, EPF exhibits a 

preference bias, which is encoded within the notion of 

homogeneity and can be viewed as the preference for 

compact clustering trees. Indeed, due to the splitting 

effectiveness heuristic, homogeneity is enforced by the 

effects of the Gini index. At each split, this tends to isolate 

clusters of transactions with mostly frequent attribute 

values, from which the compactness of the overall 

clustering tree follows. 

PARTITION-CLUSTER(C1,C2) 

P1. repeat 

P2.        for all x  C1 U C2 do 

P3.              if cluster(x) = C1 then 

P4.                     Cu   C1; Cv   C2; 

P5.              else 

P6.                     Cu   C2; Cv   C1;  

P7.              end if 

P8.               Qi    Quality(Cu) + Quality(Cv); 

P9.               Qs    Quality(Cu – {x}) + Quality(Cv U {x});                      

P10.               if Qs > Qi  then 

P11.                  Cu.Remove(x); 

P12.                  Cv.Insert(x); 

P13.              end if 

P14.    end for 

P15.     until C1 and C2 are stable 

GENERATE-CLUSTERS(D) 
 Input: A set D ={x1,…,xN} of transactions; 
 Output: A partition P = {C1,…,Ck} of clusters; 

1. Let initially P = {D}; 

2. repeat 

3.       Generate a new cluster C initially empty; 
4. for each  cluster Ci P do 

5.           PARTITION-CLUSTERS(Ci,C); 
6.           P’      P U {C}; 
7.           if Quality(P) < Quality(P’) then 
8.               P    P’; 

9.               STABILIZE-CLUSTERS(P); 
10.                   break 

11.               else 

12.                   Restore all xj   C into Ci; 

13.           end if 

14.        end for 

15. until no further cluster C can be 
generated 
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Figure 3: Stabilize Clusters 

 

b. STABILIZE-CLUSTERS 

PARTITION-CLUSTER improves the local quality of a 

cluster. And STABILIZE-CLUSTERS try to increase 

partition quality. It is carried out by finding the most 

suitable clusters for each element among the ones which 

are there in the partition. Fig. 3 shows the pseudo code of 

the procedure. The central part of the algorithm is a main 

loop which (lines S2–S17) examines all the available 

elements. For each element x, a pivot cluster is identified, 

which is the cluster containing x. Then, the available 

clusters are continuously evaluated. The insertion of x in 

the current cluster is done (lines S5–S6), and the updated 

quality is compared with the original quality. If an 

improvement is obtained, then the swap is accepted (line 

S11). The new pivot cluster is the one now containing x, 

and if the removal of x makes the old pivot cluster empty, 

then the old pivot cluster is removed from the partition P. 

If there is no improvement in quality, x is restored into its 

pivot cluster, and a new cluster is examined. The main 

loop is iterated until a stability condition for clusters is 

achieved. 

 

c. Cluster and Partition Qualities 

AT-DC gives two different quality measures, 1) local 

homogeneity within a cluster and 2) global homogeneity 

of the partition. As shown in Fig. 1, it is noticed that 

partition quality is used for checking whether the insertion 

of a new cluster is really suitable: it is for maintaining 

compactness. Cluster quality in procedure 

PARTITIONCLUSTER is done for good separation.. 

Cluster quality is known when there is a high degree of 

intracluster homogeneity and intercluster homogeneity. As 

given in [35], there is strong relation between intracluster 

homogeneity and the probability Pr(ai|Ck) that item ai 

appears in a transaction containing in Ck. There is a strong 

relationship between intercluster separation and Pr(x Ck, 

ai x). Cluster homogeneity and separation is computed 

by relating it to the unity of items within the transactions 

that it contains. Cluster quality is equal to the combination 

of the above probability, 

. The last term is 

used for weighting the importance of item a in the 

summation: Essentially, high values from low-frequency 

items are less relevant than those from high-frequency 

values. By the Bayes theorem, the above formula is 

expressed as  [33]. Terms 

 (relative strength of a within C) and Pr(C) 

(relative strength of C) work in contraposition. It is easy to 

compute the gain in strength for each item with respect to 

the whole data set, that is  

 

     Quality (Ck) = Pr(Ck)  

                                ……. 

(1) 

Where, 

• Ck – cluster 

• Pr(Ck) – relative strength of Ck 

• a Є MCk – an item 

• M = {a1,……., am} is set of Boolean attributes 

• Pr(a| Ck) - relative strength of a within Ck 

• Pr(a|D) - relative strength of a within D 

• D = {x1,……., xn} is data set of tuples defined on 

M   

 

          Quality (Ck) =      

…..…… (2) 

 

where na and Na represent the frequencies of a in C and D, 

respectively. The value of Quality (Ck) is updated as soon 

as a new transaction is added to C. 

IV. RESULTS AND ANALYSIS 

Two real-life data sets were evaluated. A description of 

each data set employed for testing is provided next, 

together with an evaluation of the EPF performances. 

 

UCI DATASETS [34] 

 
Soybean: The Soybean data set contains 47 records and 

35 attributes. Each record contains a class as D1/ D2/ D3 

STABILIZE-CLUSTERS(P) 

S1.   repeat  

S2.        for all x  D do 

S3.           Cpivot   cluster(x); Q   Quality(P); 

S4.  for all C  P do 

S5.                 Cpivot.REMOVE(x); 

S6.                 C.INSERT(x); 

S7.              if Quality(P) > Q then 

S8.                if Cpivot = Ø then 

S9.                    P.REMOVE(Cpivot); 

S10.               end if 

S11.                   Cpivot   C; Q  Quality(P); 

S12.  else 

S13.  Cpivot.INSERT(x); 

S14.  C.REMOVE(x); 

S15.    end if 

S16.    end for 

S17.  end for 

S18.  until P is stable             
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or D4. All 35 attributes are categorical. A detailed result is 

given in the confusion matrix in table 1. As it is seen, AT-

DC found two clusters. It is observed that there is high 

homogeneity in cluster 1 and 2. 

 

Congressional Votes: The Congressional Votes data set 

contains a set of US Congressional Voting Records. Each 

record is one Congressman’s votes on 16 issues (for 

example, education spending, crime, and immigration). 

All attributes are Boolean (“Yes” or “No” vote), and some 

contains missing values. A label of “Republican” or 

“Democrat” is given to each data record. The data set 

contains 435 records: 168 “Republican” and 267 

“Democrat.” Table 2 show the results obtained by EPF on 

the Congressional Votes data set. It is seen that all the 

three clusters are having high homogeneity.  

 
Table 1: Confusion matrix for soybean 

Cluster No. 

Classes 

D1 D2 D3 D4 

1 0 0 10 17 

2 10 10 0 0 

 
Table 2: Confusion matrix for congressional votes 

Cluster No. No. of Democrats No. of Republicans 

1 143 0 

2 0 168 

3 124 0 

Table 3: Comparison amongst categorical clustering methods 

(C = Optimal number of clusters) 

Dataset 

EPF LIMBO CLICK ROCK 

Timin

g 
C 

Timin

g 
C 

Timin

g 
C 

Timin

g 
C 

Soybea

n 
0.07 2 0.62 3 0.94 5 102 2 

Cong. 

Votes 
0.18 3 0.81 4 1.06 6 117 3 

 

a. Comparative Analysis 

We evaluated EPF versus three main algorithms from the 

current literature, namely, LIMBO, CLICK and ROCK. 

CLICK [9] was shown to outperform other approaches 

adopting a similar hyper-graph partitioning strategy [36], 

[37] and was chosen for comparison, since this claimed to 

be capable of dealing with high-dimensional categorical 

data. ROCK [27] is particularly suitable for market-basket 

data. LIMBO [15], despite its time complexity, was shown 

to be quite effective.  

Table 3 summarizes the results of the comparison. The 

results for the LIMBO, ROCK and CLICK algorithms 

were obtained by performing an accurate tuning of the 

input parameters: For each data set, different runs were 

executed for different values of the parameters, and the 

best results were chosen. The results shown only refer to 

the run with the best combination of parameters. EPF 

outperforms LIMBO, ROCK and CLICK in terms of 

efficiency (i.e. timing). With respect to optimal number of 

clusters, EPF outperforms LIMBO and CLICK while EPF 

is comparable to ROCK. 

V. CONCLUDING REMARK 

The algorithm implemented by us is fully-automatic, 

parameter-free approach to cluster high-dimensional 

categorical data. The main advantage of our approach is 

its capability of avoiding explicit prejudices, expectations, 

and presumptions on the problem at hand, thus allowing 

the data itself to speak. This is useful with the problem at 

hand, where the data is described by several relevant 

attributes. 

A limitation of the our proposed approach is that the 

underlying notion of cluster quality is not meant for 

catching conceptual similarities, that is, when distinct 

values of an attribute are used for denoting the same 

concept. Probabilities are provided to evaluate cluster 

homogeneity only in terms of the frequency of items 

across the underlying transactions. Hence, the resulting 

notion of quality suffers from the typical limitations of the 

approaches, which use exact-match similarity measures to 

assess cluster homogeneity. To this purpose, conceptual 

cluster homogeneity for categorical data can be easily 

added to the framework of the EPF algorithm. 

Another limitation of our approach is that it cannot deal 

with outliers. These are transactions whose structure 

strongly differs from that of the other transactions being 

characterized by low-frequency items. A cluster 

containing such transaction exhibits low quality. Worst, 

outliers could negatively affect the PARTITION-

CLUSTER procedure by preventing the split to be 

accepted (because of an arbitrary assignment of such 

outliers, which would lower the quality of the partitions). 

Hence, a significant improvement of EPF can be obtained 

by defining an outlier detection procedure that is capable 

of detecting and removing outlier transactions before 

partitioning the clusters. Accordingly the research work is 

being focused further to improve the quality of clusters 

which are created after EPF. 
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