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Summary 
The attractive high data rate communication systems 
over Power line channels are usually suffering from 
many kinds of interferences, among which the impulsive 
noise is the most critical. This article presents an 
improved HomePlug 1.0 FEC (Forward Error Correction) 
stage, by keeping the same hardware architecture, but 
adding an extra processing in the two decoding blocs. In 
order to compensate impulsive noise effect on 
communication quality, especially burst errors presence, 
we propose to use the SOVA algorithm in the inner 
decoder and an erasure RS as an outer one. SOVA 
algorithm provides a reliability measure for each 
decoded bit, which helps to mark and locate erasures, 
useful for the next stage. A statistical study allows 
verifying the validity of the used hypothesis in Erasure 
detection. Simulation results of the complete PLC system 
illustrate good improvement in BER and correction 
ability performances whatever are noise pulses types 
and durations. 
Key words: 
PLC, HomePlug 1.0, impulsive noise, FEC, SOVA, reliability, 
erasures.  

1. Introduction 

A lot of research works done in last 50 years were 
interested in local broadband communication using 
in-house power lines as physical medium, while leading at 
the same time to many questions [1]. 
In fact, Power Line Communication (PLC) suffers from 
various disturbances. First, channel impedance variations 
and strong frequency dependency of PLC channel transfer 
function cause multipath propagation, high attenuation and 
fading [1-2]. Then, signal transmission over power line is 
disturbed by various noise sources, usually classified as 
background noise, narrow band noise and impulsive noise 
[3-5].  
The first two types of noise are stationary, they could be 

overcome by using various transmission schemes, such as 
OFDM (Orthogonal Frequency Division Multiplexing), 
DMT (Dual Modulation Tone) and spread spectrum 
techniques [6-7]. Nevertheless, the impulsive noise is 
considered as the most difficult one to overcome because 
of its high Power Spectral Density (PSD) and random 
characteristics [4]. 
Several studies investigated measurements and statistics of 
this kind of noise in order to fix suitable noise model [2], 
[4-5] and consequently, optimise PLC transmission 
systems. According to achieved impulsive noise 
measurements it was deduced that impulses are divided 
into two kinds: single pulses and bursts. 
While single pulses are easy to overcome, bursts present 
more difficulties as their duration increase [4]. 
In order to compensate burst effect on communication 
quality, works have focused on either noise cancellation 
methods, or channel coding techniques.  
As conventional coding techniques are optimized for 
AWGN channels and could not be suitable for impulsive 
environment, it is interesting to apply appropriate channel 
coding methods with high efficiency in PLC systems. For 
example, turbo codes, whose BER are close to Shannon 
limit, are often employed, such as in [8-10], serial 
concatenated codes are also used in some PLC systems 
such as HomePlug 1.0 specifications [11]. 
This paper deals with an improvement of the serial 
concatenation coding technique proposed in HomePlug 1.0 
standards where the inner decoder is using soft Viterbi 
algorithm and the outer one is an erasure RS decoder. 
The paper describes the way of marking erasures for the 
outer decoder and examines the validity of the used 
hypothesis. In section II, a brief description of the 
HomePlug 1.0 specifications and the employed impulsive 
noise model. Then, the proposed decoding technique is 
detailed in section III. Soft Viterbi algorithm is presented 
in order to show how decided symbols reliability values 
are computed. The erasure decoding is also discussed. 
Section IV provides simulation results to validate the study 
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hypothesis and to verify BER improvement in comparison 
with conventional FEC bloc of the HomePlug 1.0 
standard. 
 
 

2. Communication system structure 
recommended in HomePlug 1.0 

In this section we start with a detailed description of the 
used impulsive noise model. Then a brief review of the 
PLC standard HomePlug 1.0 is presented, we focus on the 
FEC stage, given that the paper contribution deals with the 
corresponding decoding process. 

2.1 Impulsive noise model 

Several models are currently used for impulsive noise, 
notably the Markov chains, the Middleton class A 
impulsive noise model and stochastic model [2], [4-5].  
 
In this work, we use the stochastic model because of its 
simplicity and good fitting to measures. The noise is 
considered as a set of single pulses or bursts of very short 
elementary pulses. The main parameters of each pulse np(t) 
given by (1) are: peak value A, pseudo-frequency f0, 
damping factor τ and pulse duration Td.  
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The inter-arrival time of successive pluses is also an 
important parameter TIT. 
The different parameters are approximated by well-known 
probability distributions, as summarized in Table 1 [4].  

Table 1: Distribution functions of impulsive noise parameters 
Parameter Distribution 
Amplitude (A) Normal 
Pseudo-frequency 
(f0) 

Weibull 

Duration (Td) Weibull 
 Damping factor (τ) Weibull 
Inter arrival (TIT) Exponential  

 
In addition, a burst nb(t) is defined as a succession of 
elementary pulses of same characteristics and a number 
that follows the burst duration: 
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where Np is the elementary pulses number inside the burst, 
and rect(.) is the rectangular function defined as: 
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To study the impact of noise pulses, we use the Signal to 
Impulsive Noise Ratio (SINR) as defined in (3). 
 

              signal

impulse

P
SINR

P
= ,                 (3) 

 

2.2 HomePlug 1.0 FEC specifications  

Fig. 1 shows the bloc diagram of OFDM transceiver as 
described in HomePlug 1.0 [7]. 
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Fig. 1  PLC transceiver 
 
The OFDM frequency bandwidth used is approximately 
from 4.49 MHz to 20.7 MHz, the bandwidth from 0 to 25 
MHz is divided into N1=128 evenly spaced carriers , of 
which N=84 fall within the used bandwidth. The adopted 
modulation scheme is BPSK and the transmitted signal 
PSD (Power Spectral Density) is about -50 dBm/Hz  [11]. 
In Fig. 1, ng(t) denotes Additive White Gaussian Noise 
(AWGN) with zero mean and variance fixed in order to 
have an adequate SNR (Signal to Noise Ratio) equal to 60 
dB. This value is chosen as the worst case concluded from 
PSD measurement of stationary noise in power line 
channel [4]. ni(t) is the additive impulsive noise, to be 
described in next subsection. 
The FEC stage as defined in the HomePlug 1.0 standard is 
detailed in fig. 2. 
 

 
 

Fig. 2  FEC block structure 
 
It is composed of serially concatenated codes: an outer 
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shortened RS (Reed Solomon) block encoder and an inner 
convolutional encoder followed by a bit interleaver block. 
The used convolutional encoder has a constraint length 7 
and a rate of ½. The outer code is derived from a basic RS 
encoder of length 255 that is shortened in order to have 
several coding rates varying from 23/39 to 239/255 [11]. 
In this work, the chosen one is RS (n=254, k=238). 

3. Proposed decoding schema description and 
analysis 

3.1 Proposed technique description 

Conventionally, the decoding process of serially 
concatenated codes is performed by means of a Viterbi 
algorithm that provides hard decision symbols to the RS 
decoder. Following this decoding process, the RS 
correction capability is t=(n-k)/2 [12]. 
In addition, it is well known that decoding convolutional 
codes by Viterbi algorithm is an optimal solution when the 
input is soft. No further improvement can be done. But, the 
RS decoding with erasure technique can improve its 
correction capability to 2t if erasure positions are known 
[12]. Thus, we propose to use the SOVA (Soft Output 
Viterbi Algorithm) to localize the erasures. In fact, the 
SOVA algorithm performs a hard decision and provides a 
reliability measure that indicates the most/least confident 
decoded bits. According to this reliability, we can locate 
the most likely erroneous bits and consequently the 
erasures [13].  
Fig. 3 shows a flowchart that summarizes the proposed 
decoding technique. 

 
Fig. 3  Decoding process flowchart 

 
The RS decoding is successful if all computed syndromes 
are null. 
The correction efficiency is tightly related to the reliability 
measure. Hence, it is important to carry out a thorough 
analysis of the reliability measure provided by the SOVA. 

 

3.2 Analysis of the SOVA reliability measure  

SOVA is a modified Viterbi algorithm with additional 
output values associated with the original decoded bit 
sequence. It was first used in serial concatenated coding 
scheme and then widely used in turbo-decoding. Our 
interest for SOVA is limited to the soft output value which 
gives us a good measure of the decoded bit reliability 
[13-14]. For this reason, we need only to compute the 
log-likelihood ratio of each decoded bit. 
The used convolutional code is C(n=2, k=1) one. 
We assume that i(L,k) is the ith survival path of L 
transitions in the code trellis associated with the kth 
observation window used to decide on the information bit 
uk. We consider the corresponding: 
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where for the elementary transition j, the output of the 
systematic convolutional code C(2,1) is 
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The received sequence y is (yk, yk+1, …, yk+L-1), where 
yj=(yj,1, yj,2), for j=k,…,k+L-1, corresponds to the 
elementary received sequence at time j. 
It was proved in [13-15] that for an Additive White 
Gaussian Noise (AWGN), we can take as a branch metric 
for the jth transition the quantity defined the expression (4). 
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where Lc is the reliability of the channel and L(uj) is the a 
priori information of bit uj. Since we are not leading an 
iterative decoding, L(uj) will be set to zero and the branch 
metric will be normalized by Lc/2. Thus, equation (4) 
becomes: 
 

2,2,1, jjjjj xyuym +=          (5) 
 

and will be suitable for any memoryless channel. 
The cumulated metric of a path leading to the state Sj at 
time j is then equal to: 
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where '

1jS − is the immediately antecedent state of Sj. 
Thus, The difference metric between the survival path (i) 
and the concurrent one (i)θ, at the relative time θ is: 
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Since there is L concurrent paths in the observation 
window, the log liklyhood ratio is approximated by (8) 
[13-15]. 
 

θ
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Then, The needed reliabity mesure of the information bit 
uk is given by the expression (9). 
 

 θ

θ
α kLk Δ=
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3.3 Erasure decoding algorithm  

The most likely erroneous bits are those with the smallest 
reliability values. One symbol is considered as erroneous 
when at least one of its bits is erroneous. So, we suggest 
defining the symbol reliability as equal to the minimum 
reliability of its bits. 
The erasures, to be marked and used by the RS decoder, 
are the 8 symbols with minimum reliability. 
Several alternatives are given in the literature to decode 
using erasure information. In the present work, we adopt 
Forney procedure which is efficient for simultaneous 
errors-and-erasures decoding [12]. 
This procedure is summarized according to the following 
steps [12]: 
• Compute the erasure-locator polynomial using the 

erasure information provided by the receiver. 

• Replace the erased coordinate with zeros and compute 
syndromes. 

• Introduce a linear transformation on syndromes to 
compute “modified syndromes”. 

• Apply the Berlekamp algorithm using “modified 
syndromes” to find the error-locator polynomial. 

• Find roots of the error-locator polynomial and 
consequently the error locations. 

• Determine the magnitudes of errors and erasures using 
modified Forney algorithm.  

 

4. Simulation results analysis  

In order to validate the hypothesis about erasure bits and to 
evaluate performances of the proposed decoding technique, 
we have carried out simulations of the OFDM 
communication system described in the subsection II.2, 
with the presence of the modelled impulsive noise, as 
defined in equation (2).   
Three cases are considered:  
• Bursts with 81µs duration which corresponds to the 

mean value of measured burst durations.  
• Bursts with 200 µs duration that represent a more 

hostile environment. 
• Bursts following the global impulsive noise model as 

described in the subsection II.1. 
In the two first cases, the impulsive noise amplitude (A) is 
fixed following the desired SINR and the 
pseudo-frequency is chosen randomly following its 
approximated probability distribution. 
System Performances are obtained by averaging over 1000 
tests done such as one noise burst occurs in every 2.51 ms 
(measured mean inter arrival time). 
This section will first deal with the erasure hypothesis 
validity for both bit and symbol reliabilities. Then, we will 
analyse the proposed technique performances in terms of 
erroneous bytes number per codeword and BER (Bit Error 
Rate). 

4.1 Validity tests of the erasure hypothesis   

The objective is to verify that the less reliable bits (and 
bytes) correspond to the most likely erroneous decisions. 
For that, we consider the SOVA algorithm reliability 
output in parallel with the decoded bits. This provides for a 
given reliability value whether the decision is correct or 
erroneous. 
Simulations are carried out using the global impulsive 
noise model. They showed that reliability values have a 
large dynamic. Thus, we proceeded to their normalization 
following equation (10) 
  

,
minmax

min

αα
αα

α
−

−
=norm           (10) 

 
where minα  and maxα denote the minimum and the 
maximum computed reliability values, respectively. 
We illustrate in fig. 4 the percentage of correct and 
erroneous bits as functions of normalized reliability. 
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Fig. 4  Percentage of normalized bits reliability values per erroneous 

codeword – Comparison between correct and erroneous decision. 
 
Fig. 4 shows approximately two separated normalized 
reliability intervals: [0, 0.4] and [0.8, 1] corresponding to 
most likely erroneous and correct decisions, respectively.  
We proceeded in the same way in order to validate the 
hypothesis about the byte reliability. Results are shown in 
fig. 5. 
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Fig. 5  Percentage of normalized bytes reliability values per erroneous 

codeword – Comparison between correct and erroneous decision. 
 

Same results as the bit reliability study are obtained. We 
remark that intervals are clearly separated. 

4.2 Performances analysis   

First, we analyze the proposed technique performances in 
terms of erroneous bytes number per codeword in 
comparison with the HomePlug 1.0 conventional decoding 
schema.  Simulation results are shown in fig. 6. 
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Fig. 6 Comparison of BER performances of proposed FEC and 

HomePlug 1.0 basic FEC. 
 
We deduce that whatever is the burst length, the proposed 
technique gives better performances than the conventional 
one.  
Next evaluation concerns the global noise model. Results 
are given in terms of cumulative distributions of BER. It 
must be mentioned that each point of these distributions is 
a result of a simulation with a length input sequence of 
24.77 ms, corresponding to 100 codewords. 
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Fig. 7  Cumulative distribution of BER performances of proposed FEC 
and HomePlug 1.0 basic FEC 

 
Curves of fig. 7 show that the serial concatenated codes 
with reliability computation and erasure RS decoding 
allows smallest BER values. In fact, the probability to 
have a BER below 10-4 is about 50 % when the proposed 
technique is applied, but it is reduced to only 20 % if we 
use the basic FEC stage of HomePlug 1.0 specifications. 

5. Conclusion 

An improvement of the HomePlug 1.0 serial coding 
technique was presented in broad-band OFDM-PLC 
system. The corresponding decoder provides the 
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cancellation of burst errors due to impulsive noise 
presence.  
Starting with a brief description of the of the serial 
concatenation technique used in the basic FEC bloc of the 
HomePlug 1.0 standard, we proposed to keep the same 
structure and to add an extra processing that allows a 
reliability computation of decided symbols in the Viterbi 
Algorithm output and an RS outer decoding with erasures. 
The SOVA algorithm details were exposed and adapted to 
our impulsive noise channel in order to give a good 
reliability measure of decoded bits at the output of the 
inner stage.  
Then, a statistical study was done to prove that weak 
reliability values correspond really to erroneous decisions, 
which validates the basic hypothesis of the proposed 
technique and  enable marking erasures for the next 
stage. 
The new processing is investigated and we showed BER 
improvement in comparison with basic FEC bloc of 
HomePlug 1.0 standard. 
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