
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

48

Manuscript received March 5, 2010

Manuscript revised March 20, 2010

Using Physical Modelling Synthesis For Implementing PC

Based Softsynth

Jagruti Sanghavi†, Dr.N.G.Bawane†† and Akansha Pilley†††

†
Student of G.H.Raisoni college of Engineering, Nagpur University, Nagpur, India

††
Faculty of G.H.Raisoni college of Engineering, Nagpur University, Nagpur, India

†††
 Student of G.H.Raisoni college of Engineering, Nagpur University, Nagpur, India

Summary
A software synthesizer, also known as a softsynth or virtual

instrument is a computer program for digital audio generation.

Softsynths can be cheaper and more portable than dedicated

hardware. In this paper we proposed a scheme in which a

dedicated hardware musical keyboard is developed which sends

only MIDI notes. A keyboard is interfaced to PC through USB.A

synthesizing of musical notes is done by PC to produced sound.

Synthesis is done by comparing different physical modeling

technique. This is the low cost solution towards dedicated

hardware synthesizers. The paper aims towards using existing use

of processing power of PC with existing memory system to

process MIDI notes to play different instruments through general

purpose PC. Also it makes easy for keyboard player to play music

with dedicated hardware keyboard. Associated with the

electronic music movement, a synthesizer is an electronic

instrument, sometimes accessed through a keyboard, that creates

and combines waveforms used stored acoustic instrumental

samples, called wavetable synthesis, or electronically, using FM

synthesis.Synthesis is done by comparing different physical

modeling technique. Proposed system aimed at developing a

synthesizer system using computer devices where all the

processing done by computer system. Main idea behind project is

to avoid using readymade synthesizer IC and utilization of

computer processing to get maximum computer power. The

physical model is usually formulated as a partial differential

equation resulting from a mechanical analysis. The resulting

synthesis algorithms consist of a parallel arrangement of second

order digital filters [2]. Their coefficients are obtained by analytic

expressions directly from the parameters of the physical model.

More elaborate computational models include nonlinearities and

excitation mechanisms. The resulting algorithmically models are

suitable for real-time implementation on modern desktop or laptop

computers and mobile devices. Low-delay algorithms permit

control from sequencer programs or haptic devices. A

VST-plug-in demonstrates the capabilities for real-time synthesis
and parametric control.

Key words: MIDI, Softsynth ,physical modeling.

1. Introduction

A music synthesizer makes sounds by using an electrical

circuit as an oscillator to create and vary the frequency of

sounds in order to produce different pitches. As long as the

pitch is within the range of frequency that can be heard by

a human ear, it's known as a “musical pitch". You can use a

keyboard to vary these pitches at discrete intervals that

correspond to the notes on the musical scale. If you put

several oscillators together, you can combine several

pitches to create a "chord". How do you vary the tone of a

particular pitch? That is done by playing a given pitch with

waveforms of different shapes (common waveforms

include sine, square, saw tooth, and triangle waveforms).

Since the harmonic structure of these waveforms differs,

our ears interpret them as different tones. The sound you

will hear can also be modified by voltage-controlled

amplifiers (VCA) and voltage-controlled filters (VCF).

Synthesizers are able to only mimic the sounds of

non-synthetic instruments, but also to create sounds that

absolutely cannot be played by anything but a music

synthesizer. That is because a music synthesizer is

well-suited to delicate manipulations of its oscillators.

Nevertheless, it's a lot easier for a synthesizer to create

entirely new sounds than to mimic the sounds of acoustic

instruments because the waveforms of acoustic

instruments are so complex. Interestingly, once complex

sound that synthesizers so far have been very bad at

reproducing is the human voice (although improvements

are being made in this technology). The entire electronic

music scene would be virtually impossible without the use

of synthesizers (no doubt some wish it were). Nevertheless,

the number of sounds that a musician has to work with has

been exponentially increasing in recent decades, and we

have only scratched the surface of the creative

possibilities.

Synthesizing using physical modeling in software. Many

sound synthesis methods like sampling, frequency

modulation (FM) synthesis, additive and subtractive

synthesis model sound. This is good for creating new

sounds, but has several disadvantages in reproducing

sounds of real acoustic instruments. The most important

disadvantage is that the musician does not have the

physical based variability he has with real musical

instruments. Therefore it is difficult to phrase a melody

with these methods. Because of these disadvantages there

are various methods for sound synthesis based on physical

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Digital_audio

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

49

models that do not model the sound but the sound

production mechanism. They all start from physical

models in form of partial differential equations (PDEs).

They can be obtained by applying the first principles of

physics. But due to the differential operators the resulting

PDEs cannot be solved analytically.

2. Theoritical Foundation

Below are various physical-model representations

 Ordinary Differential Equations (ODE)

 Partial Differential Equations (PDE)

 Difference Equations (DE)

 Finite Difference Schemes (FDS)

 Transfer Functions (between physical signals)

ODEs and PDEs are purely mathematical descriptions

(being differential equations), but they can be readily

``digitized'' to obtain computational physical models.

Difference equations are simply digitized differential

equations. That is, digitizing ODEs and PDEs produces

DEs. A DE may also be called a finite difference scheme.

A discrete-time state-space model is a special formulation

of a DE in which a vector of state variables is defined and

propagated in a systematic way (as a vector first-order

finite-difference scheme). A linear difference equation

with constant coefficients--the Linear, Time-Invariant

(LTI) case--can be reduced to a collection of transfer

functions, one for each pairing of input and output signals

(or a single transfer function matrix can relate a vector of

input signal z transforms to a vector of output signal z

transforms). An LTI state-space model can be diagonalized

to produce a so-called modal representation, yielding a

computational model consisting of a parallel bank of

second-order digital filters. Digital waveguide networks

can be viewed as highly efficient computational forms for

propagating solutions to PDEs allowing wave propagation.

They can also be used to compress the computation

associated with a sum of quasi harmonically tuned

second-order resonators.

A .ODEs (Ordinary Differential Equations)

Ordinary Differential Equations (ODEs) typically result

directly from Newton's laws of motion, restated here as

follows:

 (1)

The initial position x(0) and velocity v(0) of the mass

comprise the initial state of mass, and serve as the

boundary conditions for the ODE. The boundary conditions

must be known in order to determine the two constants of

integration needed when computing x(t) for t>0.

If the applied force f(t) is due to a spring with

spring-constant , then we may write the ODE as

 (2)

(Spring Force + Mass Inertial Force = 0)

This case is diagrammed in Fig.1.2.

 Fig 1 Mass –Spring Diagram

B. PDEs (A partial differential equation)

A partial differential equation (PDE) extends ODEs by

adding one or more independent variables (usually spatial

variables). For example, the wave equation for the ideal

vibrating string adds one spatial dimension (along the

axis of the string) and may be written as follows:

 (3)

 (Restoring Force = Inertial Force)

Where y(x, t)denotes the transverse displacement of the

string at position along the string and time , and

 (4)

denotes the partial derivative of y with respect to .

The physical parameters in this case are string tension k

and string mass-density .

C. Difference Equations (Finite Difference Schemes)

There are many methods for converting ODEs and PDEs to

difference equations. One method is to replace each

derivative with a finite difference:

http://en.wikipedia.org/wiki/Model_(physical)
http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/PartialDifferentialEquation.html
http://mathworld.wolfram.com/PartialDifferentialEquation.html
http://www.dsprelated.com/dspbooks/filters/Difference_Equation_I.html
http://www.dsprelated.com/dspbooks/pasp/Finite_Difference_Schemes.html
http://www.dsprelated.com/dspbooks/pasp/Finite_Difference_Schemes.html
http://www.dsprelated.com/dspbooks/filters/Transfer_Function_Analysis.html
http://www.dsprelated.com/dspbooks/filters/Definition_Signal.html
http://crca.ucsd.edu/~msp/software.html
http://mathworld.wolfram.com/DifferentialEquation.html
http://en.wikipedia.org/wiki/Boundary_condition
http://en.wikipedia.org/wiki/Boundary_condition
http://www.dsprelated.com/dspbooks/pasp/Finite_Difference_Schemes.html
http://www.dsprelated.com/dspbooks/filters/State_Space_Filters.html
http://www.dsprelated.com/dspbooks/filters/State_Space_Filters.html
http://ccrma.stanford.edu/realsimple/travelingwaves
http://www.dsprelated.com/dspbooks/filters/Linear_Time_Invariant_Digital_Filters.html
http://www.dsprelated.com/dspbooks/filters/Transfer_Function_State_Space.html
http://www.dsprelated.com/dspbooks/filters/Diagonalizing_State_Space_Model.html
http://www.dsprelated.com/dspbooks/filters/
http://ccrma.stanford.edu/~jos/cfdn/Digital_Waveguide_Networks.html
http://ccrma.stanford.edu/realsimple/travelingwaves
http://www.dsprelated.com/dspbooks/filters/Two_Pole.html
http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
http://en.wikipedia.org/wiki/Boundary_condition
http://en.wikipedia.org/wiki/Spring_%28device%29
http://scienceworld.wolfram.com/physics/InertialForce.html
https://ccrma.stanford.edu/~jos/pasp/ODEs.html#fig:massspringwall#fig:massspringwall
http://mathworld.wolfram.com/PartialDifferentialEquation.html
http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
http://www.dsprelated.com/dspbooks/pasp/String_Wave_Equation.html
http://www.dsprelated.com/dspbooks/pasp/Ideal_Vibrating_String.html
http://www.dsprelated.com/dspbooks/pasp/Ideal_Vibrating_String.html
http://scienceworld.wolfram.com/physics/Force.html
http://scienceworld.wolfram.com/physics/InertialForce.html
http://en.wikipedia.org/wiki/Transverse
http://ccrma.stanford.edu/~jos/Mohonk05/Ideal_Plucked_String_Displacement.html
http://hyperphysics.phy-astr.gsu.edu/hbase/mass.html#mas
http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/PartialDifferentialEquation.html
http://www.dsprelated.com/dspbooks/filters/Difference_Equation_I.html
http://www.dsprelated.com/dspbooks/pasp/Finite_Difference_Schemes.html

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

50

 (5)

Consider a mass driven along a frictionless surface by a

driving force f (t), as in Fig.1, and suppose we wish to know

the resulting velocity of the mass v (t), assuming it starts out

with position and velocity 0 at time 0. Then, from Newton's

 (6)

relation, the ODE is

 (7)

and the difference equation resulting from the

backward-difference substitution is

 (8)

Solving for v (nT) yields the following finite difference

scheme:

 (9)

Finite difference scheme in explicit form can be

implemented in real time as a causal digital filter. There are

also implicit finite-difference schemes which may

correspond to non-causal digital filters .

D. Transfer Functions

 A discrete-time transfer function is the z transform of the

impulse response of a linear, time-invariant (LTI) system.

In a physical modeling context, we must specify the input

and output signals we mean for each transfer function to be

associated with the LTI model. For example, if the system

is a simple mass sliding on a surface, the input signal could

be an external applied force, and the output could be the

velocity of the mass in the direction of the applied force. In

systems containing many masses and other elements, there

are many possible different input and output signals. It is

worth emphasizing that a system can be reduced to a set of

transfer functions only in the LTI case, or when the physical

system is at least nearly linear and only slowly time-varying

(compared with its impulse-response duration).

II. DIGITAL WAVEGUIDE MODELLING

ELEMENTS

The ideal wave equation comes directly from Newton's

laws of motion f=ma . For example, in the case of

vibrating strings, the wave equation is derived as

Where

 (1)

Defining c= sqrt (k/)

We obtain the usual form of the PDE known as the ideal 1D

wave equation.

 (2)

where y (t ,x) is the string displacement at time and

position . For example, y can be the transverse

displacement of an ideal stretched string or the

longitudinal displacement (or pressure, velocity, etc.) in an

air column. The independent variables are time and the

distance along the string or air-column axis. The

partial-derivative notation is more completely written out

as

 (3)

As has been known since d'Alembert , the 1D wave

equation is obeyed by arbitrary traveling waves at speed

 (4)

http://hyperphysics.phy-astr.gsu.edu/hbase/mass.html#mas
http://scienceworld.wolfram.com/physics/Force.html
https://ccrma.stanford.edu/~jos/pasp/ODEs.html#fig:forcemassintro
http://ccrma.stanford.edu/~jos/Mohonk05/Ideal_Struck_String_Velocity.html
http://www.dsprelated.com/dspbooks/pasp/Finite_Difference_Schemes.html
http://www.dsprelated.com/dspbooks/pasp/Finite_Difference_Schemes.html
http://www.dsprelated.com/dspbooks/filters/Causal_Recursive_Filters.html
http://www.dsprelated.com/dspbooks/filters/
http://www.dsprelated.com/dspbooks/filters/What_Filter.html
http://www.dsprelated.com/dspbooks/filters/Transfer_Function_Analysis.html
http://www.dsprelated.com/dspbooks/filters/Impulse_Response_Representation.html
http://www.dsprelated.com/dspbooks/filters/Linear_Time_Invariant_Digital_Filters.html
http://en.wikipedia.org/wiki/Model_(physical)
http://www.dsprelated.com/dspbooks/filters/Definition_Signal.html
http://hyperphysics.phy-astr.gsu.edu/hbase/mass.html#mas
http://scienceworld.wolfram.com/physics/Force.html
http://ccrma.stanford.edu/~jos/Mohonk05/Ideal_Struck_String_Velocity.html
http://www.dsprelated.com/dspbooks/filters/Impulse_Response_Representation.html
http://ccrma.stanford.edu/realsimple/WaveEquations/
http://www.dsprelated.com/dspbooks/pasp/Ideal_Vibrating_String.html
http://ccrma.stanford.edu/realsimple/WaveEquations/
http://www.dsprelated.com/dspbooks/pasp/String_Wave_Equation.html
http://www.dsprelated.com/dspbooks/pasp/String_Wave_Equation.html
http://ccrma.stanford.edu/~jos/Mohonk05/Ideal_Plucked_String_Displacement.html
http://en.wikipedia.org/wiki/Transverse
http://en.wikipedia.org/wiki/Pressure
http://ccrma.stanford.edu/~jos/Mohonk05/Ideal_Struck_String_Velocity.html
http://ccrma.stanford.edu/realsimple/WaveEquations/
http://ccrma.stanford.edu/realsimple/WaveEquations/
http://www.kettering.edu/~drussell/Demos/waves/wavemotion.html

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

51

In digital waveguide modeling, the traveling-waves are

sampled:

 (5)

where denotes the time sampling interval in seconds,

denotes the spatial sampling interval in meters,

and y+ and y
-
are defined for notational convenience. This

vibration of a string can be modeled simply using a digital

waveguide. This consists of two delay lines representing

two traveling waves moving in opposite directions. By

summing the values at a certain location along the delay

lines at every time step, we obtain a waveform. This

waveform is the sound heard with the pickup point placed at

that relative location. The delay elements are initialized

with a shape corresponding to the initial displacement of the

string. For simplicity a triangular wave is used even though

in reality the initial displacement of a plucked string will

not be shaped exactly like a triangle. Simply using two

delay lines in this fashion would require arbitrarily long

delay lines depending on the length of the desired output.

By feeding the delay lines into each other a system can be

created that can run for an arbitrary amount of time using

fixed size delay elements.

 Figure 2 : Digital waveguide of rigidly terminated string.

2. Reason for selection of project

Proposed system is a combination of computer system and

MIDI keyboard to generate synthesizer instrumental

frequency by synthesizing sound using physical modeling

using digital loop filter method. Whenever we install

device driver for sound card in computer system it will

install logical driver input device, output device and

synthesizer device that is MIDI device. Computer sound

card is capable of playing different instrumental frequency

using synthesizer device. By developing software

application we can utilize these synthesizer capabilities of

sound card. As we are developing software application we

can make it dynamic at any extend by proving power of

input and output device available in the system. Only

problem with such a software application if lack of

flexibility in playing piano like keys. It is not possible to

play music using computer keyboard and hence many

artist avoid such a software system. So to overcome this

problem proposed system is developed in such a manner

that it will provide power of computer processing and the

flexibility of piano keyboard. The project is further divided

in different module like processing unit, piano keyboard

interfacing with computer system and output devices. So

the main reason for developing this project is to provide

maximum PC power to synthesizer. Many synthesizer ICs

available in the market and will these are build for specific

task to generate different instrumental frequency on

speaker system. In many recording studio artist use PC

system for further processing.

3. Research methodology to be employed

3.1 API Technology

Windows APIs are dynamic link libraries (DLLs) that are

part of the Windows operating system. You use them to

perform tasks when it is difficult to write equivalent

procedures of your own. For example, Windows provides

a function named FlashWindowEx that lets you make the

title bar for an application alternate between light and dark

shades. The advantage of using Windows APIs in your

code is that they can save development time because they

contain dozens of useful functions that are already written

and waiting to be used. The disadvantage is that Windows

APIs can be difficult to work with and unforgiving when

things go wrong. Windows dynamic-link libraries (DLLs)

represent a special category of interoperability. Windows

APIs do not use managed code, do not have built-in type

libraries, and use data types that are different than those

used with Visual Studio .NET. Because of these

differences, and because Windows APIs are not COM

objects, interoperability with Windows APIs and the .NET

Platform is performed using platform invoke, or PInvoke.

Platform invoke is a service that enables managed code to

call unmanaged functions implemented in DLLs. For more

information, see Consuming Unmanaged DLL Functions.

You can use PInvoke in Visual Basic .NET by using either

the Declare statement or applying the DllImport attribute

to an empty procedure. Windows API calls were an

important part of Visual Basic programming in the past,

but are seldom necessary with Visual Basic .NET.

Whenever possible, you should use managed code from

the .NET Framework to perform tasks instead of Windows

API calls. This walkthrough provides information for

http://www.dsprelated.com/dspbooks/pasp/Digital_Waveguides.html
http://www.dsprelated.com/dspbooks/mdft/Sampling_Theorem.html
http://www.dsprelated.com/dspbooks/mdft/Sampling_Theory.html
http://scienceworld.wolfram.com/physics/Meter.html

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

52

those situations in which using Windows APIs is

unavoidable.

3.2 MIDI technology
The Musical Instrument Digital Interface (MIDI) protocol

has been widely accepted and utilized by musicians and

composers since its conception in 1983. MIDI data is a

very efficient method of representing musical performance

information, and this makes MIDI an attractive protocol

not only for composers or performers, but also for

computer applications which produce sound, such as

multimedia presentations or computer games. However,

the lack of standardization of synthesizer capabilities

hindered applications developers and presented new MIDI

users with a rather steep learning curve to overcome.

Fortunately, thanks to the publication of the General MIDI

System specification, wide acceptance of the most

common PC/MIDI interfaces, support for MIDI in

Microsoft WINDOWS and other operating systems, and

the evolution of low-cost music synthesizers, the MIDI

protocol is now seeing widespread use in a growing

number of applications. This document is an overview of

the standards, practices and terminology associated with

the generation of sound using the MIDI protocol.

3.3 MIDI vs. Digitized Audio

Originally developed to allow musicians to connect

synthesizers together, the MIDI protocol is now finding

widespread use as a delivery medium to replace or

supplement digitized audio in games and multimedia

applications. There are several advantages to generating

sound with a MIDI synthesizer rather than using sampled

audio from disk or CD-ROM. The first advantage is storage

space. Data files used to store digitally sampled audio in

PCM format (such as .WAV files) tend to be quite large.

This is especially true for lengthy musical pieces captured

in stereo using high sampling rates. MIDI data files, on the

other hand, are extremely small when compared with

sampled audio files. For instance, files containing high

quality stereo sampled audio require about 10 Mbytes of

data per minute of sound, while a typical MIDI sequence

might consume less than 10 Kbytes of data per minute of

sound. This is because the MIDI file does not contain the

sampled audio data, it contains only the instructions needed

by a synthesizer to play the sounds. These instructions are

in the form of MIDI messages, which instruct the

synthesizer which sounds to use, which notes to play, and

how loud to play each note. The actual sounds are then

generated by the synthesizer. For computers, the smaller

file size also means that less of the PCs bandwidth is

utilized in spooling this data out to the peripheral which is

generating sound. Other advantages of utilizing MIDI to

generate sounds include the ability to easily edit the music,

and the ability to change the playback speed and the pitch or

key of the sounds independently. This last point is

particularly important in synthesis applications such as

karaoke equipment, where the musical key and tempo of a

song may be selected by the user.

Figure 3. A PC-Based MIDI System

4. Conclusion

Proposed systems aims towards implementing low cost

synthesizers using existing PC power .The inputs are

provided by only buttons and processing is done at PC.

Many sound synthesis methods like sampling, frequency

modulation (FM) synthesis, additive and subtractive

synthesis model sound. This is good for creating new

sounds, but has several disadvantages in reproducing

sounds of real acoustic instruments. The most important

disadvantage is that the musician does not have the physical

based variability he has with real musical instruments.

Therefore it is difficult to phrase a melody with these

methods.

Because of these disadvantages there are various methods

for sound synthesis based on physical models that do not

model the sound but the sound production mechanism.

They all start from physical models in form mathematical

equations such as of partial differential equations (PDEs).

They can be obtained by applying the first principles of

physics. These mathematical equations are then realised

into equivalent circuits by digital wave guide method to get

real melody of instrument.

References
[1] C DVDs , March-April 2004 , Software - Powerful

dynamics and effects ,Computer Graphics Digital

Library ,Volume:24, Issue:2, pp111-111.

[2] Farshad Arvin, and Shyamala Doraisamy, (2009),”A

Real-Time Signal Processing Technique for MIDI

Generation”, WASET Journal, Volume 50, pp:593-597.

[3] Carla Scaletti (Winter 2002) “Computer Music Languages,

Kyma, and the Future” ACM-Portal Computer Music

Journal Volume 26 , Issue 4 , pp 69-82 .

[4] Braun, J.P.; Gosbell, V.J.; Perera, S (2004) “Power quality

waveform generator based on the CSound software sound

synthesizer”, 11th IEEE International Conference on Digital

Object Identifier Volume 12,Issue 15 Sept , pp.391 – 396

[5] Victor E. P. Lazzarini, (April 2000) “The SndObj Sound

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=28513

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

53

Object Library”Volume 5 , Issue 1 Pages: 35 – 49.

[6] Michael Droettboom,April, 2002 “Selected Research in

Computer Music “ Submitted in partial fulfillment of the

requirements for the degree of Master of Music in Computer

Music Research at The Peabody Conservatory of Music,

The Peabody Institute of the Johns Hopkins University.

[7] Victor Lazzarini (summer 2009) “Distortion Synthesis” A

tutorial with Csound examples Issue 11,July 15.

[8] Kapil Krishnamurthy, “GENERATION OF CONTROL

SIGNALS USING PITCH AND ONSET DETECTION

FOR AN UNPROCESSED GUITAR SIGNAL” Final paper

at Center for Computer Research in Music and Acoustics

Stanford University.

[9] Aaron Hechmer, Adam Tindale , George Tzanetakis

(October 28 – 31, 2006), “LogoRhythms: Introductory

Audio Programming for Computer Musicians in a

Functional Language Paradigm”, 36th ASEE/IEEE

Frontiers in Education Conference,pp-1-6.

[10] Ross Bencina (31st August 2001) “Implementing

Real-Time Granular Synthesis”

[11] Thomas Ciufo,”Design Concepts and Control Strategies for

Interactive Improvisational Music Systems” ,Special

Studies/Music Brown University,

[12] M. Helmuth July 1996 “Granular synthesis composition

with StochGran and Max “ A tutorial on science Direct

–Computers and Mathematics with applications ,volume

32,issue1,pp 57-74.

[13] Phil Burk, (1998)JSyn – “A Real-time Synthesis API for

Java”International computer music conference pp.1-4.

[14] Lazzarini, V., J. Timoney and T. Lysaght

2008,“Split-Sideband Synthesis”. Proceedings of the ICMC

2008, Belfast, UK.

[15] Lazzarini, V., J. Timoney and T. Lysaght 2007,“Adaptive

FM synthesis”. Proceedings of the 10th Intl. Conference on

Digital Audio Effects (DAFx07). Bordeaux: University of

Bordeaux: 21-26.

[16] Lazzarini, V., J. Timoney and T. Lysaght 2008,“The

Generation of Natural-Synthetic Spectra by Means of

Adaptive Frequency Modulation”. Computer Music Journal,

32 (2): 12-22.

[17] Lazzarini, V., J. Timoney and T. Lysaght 2008,“Asymmetric

Methods for Adaptive FM Synthesis”. Proceedings of the

International Conference on Digital Audio Effects, Helsinki,

Finland.

[18] Dave Phillips (Winter 2003) “ Computer Music and the

Linux Operating System A Report from the Front ”

Computer Music Journal, 27:4, pp. 27–42.

[19] Stephen Travis Pope, (1995)”Computer Music Workstations

I Have Known and Loved”Computer music journal, pp.1-7.

[20] Gareth loy,,Curtis Abott (June 1985)”Programming

languages for computer music synthesis, performance, and

composition “ ACM Computing Surveys (CSUR) Volume

17 , Issue 2 ,Pp: 235 - 265 .

[21] James McCartney Winter 2002 Rethinking the Computer

Music Language: SuperCollider, Computer Music Journal ,

MIT Press, Vol. 26, No. 4, Pages 61-68.

[22] Mikael Laurson Mika Kuuskankare Vesa Norilo, (Spring

2009) “An Overview of PWGL, a Visual Programming

Environment for Music”ProjectMuse-Computer Music

Journal - Volume 33, Number 1, pp. 19-31.

[23] Lazzarini, V., J. Timoney, 2008, "New Perspectives on

Distortion Synthesis for Virtual Analogue Oscillators".

Submitted to Computer Music Journal..

[24] Rodet, X. 1984. “Time Domain Formant-Wave-Function

Synthesis”. Computer Music Journal, 8 (3):9-14.

[25] Alexander Müller and Rudolf Rabenstein ,(September 1-4,

2009) “PHYSICAL MODELING FOR SPATIAL

SOUND SYNTHESIS “12th Int. Conference on Digital

Audio Effects Como, Italy, pp:1-8

[26] Karjalainen, M. (July 2008) “ Efficient Realization of Wave

Digital Components for Physical Modeling and Sound

Synthesis” IEEE Transactions on Audio, Speech, and

Language Processing,Volume: 16, Issue: 5 On page(s): 947 -

956 .

[27] Bilbao, S. (March 2007) “Robust Physical Modeling Sound

Synthesis for Nonlinear Systems “Signal Processing

Magazine, IEEE ,Volume: 24 Issue: 2

On page(s): 32 - 41

[28] Vesa Välimäki Henri Penttinen, Jonte Knif Mikael Laurson

Cumhur Erkut , (January 2004)”Sound synthesis

of the harpsichord using a computationally efficient

physical model” EURASIP Journal on

Applied Signal Processing, Volume 2004 , Pages: 934 –

948.

[29] Trautmann, L. Petrausch, S. Rabenstein, R,” Physical

modeling of drums by transfer function methods

“ Acoustics, Speech, and Signal Processing, 2001.

Volume: 5 ,pp: 3385 – 3388.

[30] Jens Ahrens, Rabenstein Rudolf, and Sascha Spors, “The

theory of wave field synthesis revisited,” in 124th AES

Convention. Audio Engineering Society, May 2008, Paper

number 7358.

[31] Alexandros Kontogeorgakopoulos and Claude Cadoz,

“Cordis Anima physical modeling and simulation system

analysis,” in Proc. SMC’07, 4th Sound and Music Computing

Conf., Lefkada, Greece, July 2007, pp. 275–281.

[32] Panagiotis Tzevelekos, Thanassis Perperis, Varvara Kyritsi,

and Georgios Kouroupetroglou, “A component-based

framework for the development of virtual musical

instruments based on physical modeling,” in Proc. SMC’07,

4th Sound and Music Computing Conf., Lefkada, Greece,

2007, pp. 30– 36.

[33] Stefan Petrausch, Rudolf Rabenstein, (September 8-11,

2003) ”SOUND SYNTHESIS BY PHYSICAL

MODELING USING THE FUNCTIONAL

TRANSFORMATION METHOD: EFFICIENT

IMPLEMENTATIONS WITH

POLYPHASE-FILTERBANKS” Proc. of the 6th Int.

Conference on Digital Audio Effects (DAFx-03), London,

UK,

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10376
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4544815
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=79
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=79
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4116828
http://portal.acm.org/author_page.cfm?id=81330500046&coll=GUIDE&dl=GUIDE&trk=0&CFID=76799045&CFTOKEN=66228594
http://portal.acm.org/author_page.cfm?id=81430603124&coll=GUIDE&dl=GUIDE&trk=0&CFID=76799045&CFTOKEN=66228594
http://portal.acm.org/author_page.cfm?id=81430630500&coll=GUIDE&dl=GUIDE&trk=0&CFID=76799045&CFTOKEN=66228594
http://portal.acm.org/author_page.cfm?id=81337490915&coll=GUIDE&dl=GUIDE&trk=0&CFID=76799045&CFTOKEN=66228594

