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Summary 
A software synthesizer, also known as a softsynth or virtual 

instrument is a computer program for digital audio generation. 

Softsynths can be cheaper and more portable than dedicated 

hardware. In this paper we proposed a scheme in which a 

dedicated hardware musical keyboard is developed which sends 

only MIDI notes. A keyboard is interfaced to PC through USB.A 

synthesizing of musical notes is done by PC to produced sound. 

Synthesis is done by comparing different physical modeling 

technique. This is the low cost solution towards dedicated 

hardware synthesizers. The paper aims towards using existing use 

of processing power of PC with existing memory system to 

process MIDI notes to play different instruments through general 

purpose PC. Also it makes easy for keyboard player to play music 

with dedicated hardware keyboard.  Associated with the 

electronic music movement, a synthesizer is an electronic 

instrument, sometimes accessed through a keyboard, that creates 

and combines waveforms used stored acoustic instrumental 

samples, called wavetable synthesis, or electronically, using FM 

synthesis.Synthesis is done by comparing different physical 

modeling technique. Proposed system aimed at developing a 

synthesizer system using computer devices where all the 

processing done by computer system. Main idea behind project is 

to avoid using readymade synthesizer IC and utilization of 

computer processing to get maximum computer power. The 

physical model is usually formulated as a partial differential 

equation resulting from a mechanical analysis. The resulting 

synthesis algorithms consist of a parallel arrangement of second 

order digital filters [2]. Their coefficients are obtained by analytic 

expressions directly from the parameters of the physical model. 

More elaborate computational models include nonlinearities and 

excitation mechanisms. The resulting algorithmically models are 

suitable for real-time implementation on modern desktop or laptop 

computers and mobile devices. Low-delay algorithms permit 

control from sequencer programs or haptic devices. A 

VST-plug-in demonstrates the capabilities for real-time synthesis 
and parametric control. 

Key words: MIDI, Softsynth ,physical modeling. 

1. Introduction 

A music synthesizer makes sounds by using an electrical 

circuit as an oscillator to create and vary the frequency of 

sounds in order to produce different pitches. As long as the 

pitch is within the range of frequency that can be heard by 

a human ear, it's known as a “musical pitch". You can use a 

keyboard to vary these pitches at discrete intervals that 

correspond to the notes on the musical scale. If you put 

several oscillators together, you can combine several 

pitches to create a "chord". How do you vary the tone of a 

particular pitch? That is done by playing a given pitch with 

waveforms of different shapes (common waveforms 

include sine, square, saw tooth, and triangle waveforms). 

Since the harmonic structure of these waveforms differs, 

our ears interpret them as different tones. The sound you 

will hear can also be modified by voltage-controlled 

amplifiers (VCA) and voltage-controlled filters (VCF). 

Synthesizers are able to only mimic the sounds of 

non-synthetic instruments, but also to create sounds that 

absolutely cannot be played by anything but a music 

synthesizer. That is because a music synthesizer is 

well-suited to delicate manipulations of its oscillators. 

Nevertheless, it's a lot easier for a synthesizer to create 

entirely new sounds than to mimic the sounds of acoustic 

instruments because the waveforms of acoustic 

instruments are so complex. Interestingly, once complex 

sound that synthesizers so far have been very bad at 

reproducing is the human voice (although improvements 

are being made in this technology). The entire electronic 

music scene would be virtually impossible without the use 

of synthesizers (no doubt some wish it were). Nevertheless, 

the number of sounds that a musician has to work with has 

been exponentially increasing in recent decades, and we 

have only scratched the surface of the creative 

possibilities.  

Synthesizing using physical modeling in software. Many 

sound synthesis methods like sampling, frequency 

modulation (FM) synthesis, additive and subtractive 

synthesis model sound. This is good for creating new 

sounds, but has several disadvantages in reproducing 

sounds of real acoustic instruments. The most important 

disadvantage is that the musician does not have the 

physical based variability he has with real musical 

instruments. Therefore it is difficult to phrase a melody 

with these methods. Because of these disadvantages there 

are various methods for sound synthesis based on physical 

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Digital_audio
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models that do not model the sound but the sound 

production mechanism. They all start from physical 

models in form of partial differential equations (PDEs). 

They can be obtained by applying the first principles of 

physics. But due to the differential operators the resulting  

PDEs  cannot be solved analytically.  

 

2. Theoritical Foundation 

Below are various physical-model representations 

 Ordinary Differential Equations (ODE)  

 Partial Differential Equations (PDE)  

 Difference Equations (DE)  

 Finite Difference Schemes (FDS)  

 Transfer Functions (between physical signals)  

ODEs and PDEs are purely mathematical descriptions 

(being differential equations), but they can be readily 

``digitized'' to obtain computational physical models. 

Difference equations are simply digitized differential 

equations. That is, digitizing ODEs and PDEs produces 

DEs. A DE may also be called a finite difference scheme. 

A discrete-time state-space model is a special formulation 

of a DE in which a vector of state variables is defined and 

propagated in a systematic way (as a vector first-order 

finite-difference scheme). A linear difference equation 

with constant coefficients--the Linear, Time-Invariant 

(LTI) case--can be reduced to a collection of transfer 

functions, one for each pairing of input and output signals 

(or a single transfer function matrix can relate a vector of 

input signal z transforms to a vector of output signal z 

transforms). An LTI state-space model can be diagonalized 

to produce a so-called modal representation, yielding a 

computational model consisting of a parallel bank of 

second-order digital filters. Digital waveguide networks 

can be viewed as highly efficient computational forms for 

propagating solutions to PDEs allowing wave propagation. 

They can also be used to  compress the computation 

associated with a sum of quasi harmonically tuned 

second-order resonators. 

A .ODEs (Ordinary Differential Equations) 

Ordinary Differential Equations (ODEs) typically result 

directly from Newton's laws of motion, restated here as 

follows:  

                                       (1) 

The initial position x(0) and velocity v(0) of the mass 

comprise the initial state of mass, and serve as the 

boundary conditions for the ODE. The boundary conditions 

must be known in order to determine the two constants of 

integration needed when computing  x(t) for  t>0. 

                                                                                    

If the applied force f(t) is due to a spring with 

spring-constant , then we may write the ODE as  

               (2) 

(Spring Force + Mass Inertial Force = 0)   

This case is diagrammed in Fig.1.2.  

 

 
 

 

         Fig 1  Mass –Spring  Diagram 

B. PDEs (A partial differential equation) 

A partial differential equation (PDE) extends ODEs by 

adding one or more independent variables (usually spatial 

variables). For example, the wave equation for the ideal 

vibrating string adds one spatial dimension (along the 

axis of the string) and may be written as follows:  

                        (3)              

     (Restoring Force = Inertial Force)  

Where  y(x, t )denotes the transverse displacement of the 

string at position along the string and time , and 

  

                       (4) 

denotes the partial derivative of   y with respect to . 

 

The physical parameters in this case are string tension k 

and string mass-density . 

 

C. Difference Equations (Finite Difference Schemes)  

There are many methods for converting ODEs and PDEs to 

difference equations. One method is to replace each 

derivative with a finite difference: 

         

http://en.wikipedia.org/wiki/Model_(physical)
http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/PartialDifferentialEquation.html
http://mathworld.wolfram.com/PartialDifferentialEquation.html
http://www.dsprelated.com/dspbooks/filters/Difference_Equation_I.html
http://www.dsprelated.com/dspbooks/pasp/Finite_Difference_Schemes.html
http://www.dsprelated.com/dspbooks/pasp/Finite_Difference_Schemes.html
http://www.dsprelated.com/dspbooks/filters/Transfer_Function_Analysis.html
http://www.dsprelated.com/dspbooks/filters/Definition_Signal.html
http://crca.ucsd.edu/~msp/software.html
http://mathworld.wolfram.com/DifferentialEquation.html
http://en.wikipedia.org/wiki/Boundary_condition
http://en.wikipedia.org/wiki/Boundary_condition
http://www.dsprelated.com/dspbooks/pasp/Finite_Difference_Schemes.html
http://www.dsprelated.com/dspbooks/filters/State_Space_Filters.html
http://www.dsprelated.com/dspbooks/filters/State_Space_Filters.html
http://ccrma.stanford.edu/realsimple/travelingwaves
http://www.dsprelated.com/dspbooks/filters/Linear_Time_Invariant_Digital_Filters.html
http://www.dsprelated.com/dspbooks/filters/Transfer_Function_State_Space.html
http://www.dsprelated.com/dspbooks/filters/Diagonalizing_State_Space_Model.html
http://www.dsprelated.com/dspbooks/filters/
http://ccrma.stanford.edu/~jos/cfdn/Digital_Waveguide_Networks.html
http://ccrma.stanford.edu/realsimple/travelingwaves
http://www.dsprelated.com/dspbooks/filters/Two_Pole.html
http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
http://en.wikipedia.org/wiki/Boundary_condition
http://en.wikipedia.org/wiki/Spring_%28device%29
http://scienceworld.wolfram.com/physics/InertialForce.html
https://ccrma.stanford.edu/~jos/pasp/ODEs.html#fig:massspringwall#fig:massspringwall
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http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
http://www.dsprelated.com/dspbooks/pasp/String_Wave_Equation.html
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                                                    (5) 

                                                                

Consider a mass driven along a frictionless surface by a 

driving force f (t), as in Fig.1, and suppose we wish to know 

the resulting velocity of the mass v (t), assuming it starts out 

with position and velocity 0 at time 0. Then, from Newton's     

                                         (6)                                 

relation, the ODE is  

                    
                                                                               

                                    (7)    

and the difference equation resulting from the 

backward-difference substitution is  

 

                                                 
                                         (8) 

 

Solving for v (nT) yields the following finite difference 

scheme:  

 

 
                                                  (9) 

Finite difference scheme in explicit form can be 

implemented in real time as a causal digital filter. There are 

also implicit finite-difference schemes which may 

correspond to non-causal digital filters . 

D.  Transfer Functions  

 A discrete-time transfer function is the z transform of the 

impulse response of a linear, time-invariant (LTI) system. 

In a physical modeling context, we must specify the input 

and output signals we mean for each transfer function to be 

associated with the LTI model. For example, if the system 

is a simple mass sliding on a surface, the input signal could 

be an external applied force, and the output could be the 

velocity of the mass in the direction of the applied force. In 

systems containing many masses and other elements, there 

are many possible different input and output signals. It is 

worth emphasizing that a system can be reduced to a set of 

transfer functions only in the LTI case, or when the physical 

system is at least nearly linear and only slowly time-varying 

(compared with its impulse-response duration).  

II. DIGITAL WAVEGUIDE MODELLING 

ELEMENTS  

The ideal wave equation comes directly from Newton's 

laws of motion   f=ma . For example, in the case of 

vibrating strings, the wave equation is derived as   

 
Where  

 
 

                                                                        

                              (1) 

Defining      c= sqrt (k/ )           

We obtain the usual form of the PDE known as the ideal 1D 

wave equation. 

                                                                       

                                                (2) 

where y (t ,x) is the string displacement at time and 

position . For example, y can be the transverse 

displacement of an ideal stretched string or the 

longitudinal displacement (or pressure, velocity, etc.) in an 

air column. The independent variables are time and the 

distance along the string or air-column axis. The 

partial-derivative notation is more completely written out 

as  

                                      
                                                                     

                              (3) 

As has been known since d'Alembert  , the 1D wave 

equation is obeyed by arbitrary traveling waves at speed  

 
                                                                    

                              (4) 
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http://ccrma.stanford.edu/~jos/Mohonk05/Ideal_Struck_String_Velocity.html
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In digital waveguide modeling, the traveling-waves are 

sampled:  

                                  
                                             (5) 

where denotes the time sampling interval in seconds, 

denotes the spatial sampling interval in meters, 

and y+ and  y 
-
are defined for notational convenience. This 

vibration of a string can be modeled simply using a digital 

waveguide. This consists of two delay lines representing 

two traveling waves moving in opposite directions. By 

summing the values at a certain location along the delay 

lines at every time step, we obtain a waveform. This 

waveform is the sound heard with the pickup point placed at 

that relative location. The delay elements are initialized 

with a shape corresponding to the initial displacement of the 

string. For simplicity a triangular wave is used even though 

in reality the initial displacement of a plucked string will 

not be shaped exactly like a triangle. Simply using two 

delay lines in this fashion would require arbitrarily long 

delay lines depending on the length of the desired output. 

By feeding the delay lines into each other a system can be 

created that can run for an arbitrary amount of time using 

fixed size delay elements.  

 

   Figure 2 : Digital waveguide of rigidly terminated string.  

2. Reason for selection of project 

Proposed system is a combination of computer system and 

MIDI keyboard to generate synthesizer instrumental 

frequency by synthesizing sound using physical modeling 

using digital loop filter method. Whenever we install 

device driver for sound card in computer system it will 

install logical driver input device, output device and 

synthesizer device that is MIDI device. Computer sound 

card is capable of playing different instrumental frequency 

using synthesizer device. By developing software 

application we can utilize these synthesizer capabilities of 

sound card. As we are developing software application we 

can make it dynamic at any extend by proving power of 

input and output device available in the system. Only 

problem with such a software application if lack of 

flexibility in playing piano like keys. It is not possible to 

play music using computer keyboard and hence many 

artist avoid such a software system. So to overcome this 

problem proposed system is developed in such a manner 

that it will provide power of computer processing and the 

flexibility of piano keyboard. The project is further divided 

in different module like processing unit, piano keyboard 

interfacing with computer system and output devices. So 

the main reason for developing this project is to provide 

maximum PC power to synthesizer. Many synthesizer ICs 

available in the market and will these are build for specific 

task to generate different instrumental frequency on 

speaker system. In many recording studio artist use PC 

system for further processing.                 

                                
3. Research methodology to be employed 
  
3.1 API Technology 

 
Windows APIs are dynamic link libraries (DLLs) that are 

part of the Windows operating system. You use them to 

perform tasks when it is difficult to write equivalent 

procedures of your own. For example, Windows provides 

a function named FlashWindowEx that lets you make the 

title bar for an application alternate between light and dark 

shades. The advantage of using Windows APIs in your 

code is that they can save development time because they 

contain dozens of useful functions that are already written 

and waiting to be used. The disadvantage is that Windows 

APIs can be difficult to work with and unforgiving when 

things go wrong. Windows dynamic-link libraries (DLLs) 

represent a special category of interoperability. Windows 

APIs do not use managed code, do not have built-in type 

libraries, and use data types that are different than those 

used with Visual Studio .NET. Because of these 

differences, and because Windows APIs are not COM 

objects, interoperability with Windows APIs and the .NET 

Platform is performed using platform invoke, or PInvoke. 

Platform invoke is a service that enables managed code to 

call unmanaged functions implemented in DLLs. For more 

information, see Consuming Unmanaged DLL Functions. 

You can use PInvoke in Visual Basic .NET by using either 

the Declare statement or applying the DllImport attribute 

to an empty procedure. Windows API calls were an 

important part of Visual Basic programming in the past, 

but are seldom necessary with Visual Basic .NET. 

Whenever possible, you should use managed code from 

the .NET Framework to perform tasks instead of Windows 

API calls. This walkthrough provides information for 

http://www.dsprelated.com/dspbooks/pasp/Digital_Waveguides.html
http://www.dsprelated.com/dspbooks/mdft/Sampling_Theorem.html
http://www.dsprelated.com/dspbooks/mdft/Sampling_Theory.html
http://scienceworld.wolfram.com/physics/Meter.html
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those situations in which using Windows APIs is 

unavoidable. 

 

3.2 MIDI technology 
The Musical Instrument Digital Interface (MIDI) protocol 

has been widely accepted and utilized by musicians and 

composers since its conception in 1983. MIDI data is a 

very efficient method of representing musical performance 

information, and this makes MIDI an attractive protocol 

not only for composers or performers, but also for 

computer applications which produce sound, such as 

multimedia presentations or computer games. However, 

the lack of standardization of synthesizer capabilities 

hindered applications developers and presented new MIDI 

users with a rather steep learning curve to overcome.  

Fortunately, thanks to the publication of the General MIDI 

System specification, wide acceptance of the most 

common PC/MIDI interfaces, support for MIDI in 

Microsoft WINDOWS and other operating systems, and 

the evolution of low-cost music synthesizers, the MIDI 

protocol is now seeing widespread use in a growing 

number of applications. This document is an overview of 

the standards, practices and terminology associated with 

the generation of sound using the MIDI protocol. 

 

3.3 MIDI vs. Digitized Audio  

Originally developed to allow musicians to connect 

synthesizers together, the MIDI protocol is now finding 

widespread use as a delivery medium to replace or 

supplement digitized audio in games and multimedia 

applications. There are several advantages to generating 

sound with a MIDI synthesizer rather than using sampled 

audio from disk or CD-ROM. The first advantage is storage 

space. Data files used to store digitally sampled audio in 

PCM format (such as .WAV files) tend to be quite large. 

This is especially true for lengthy musical pieces captured 

in stereo using high sampling rates. MIDI data files, on the 

other hand, are extremely small when compared with 

sampled audio files. For instance, files containing high 

quality stereo sampled audio require about 10 Mbytes of 

data per minute of sound, while a typical MIDI sequence 

might consume less than 10 Kbytes of data per minute of 

sound. This is because the MIDI file does not contain the 

sampled audio data, it contains only the instructions needed 

by a synthesizer to play the sounds. These instructions are 

in the form of MIDI messages, which instruct the 

synthesizer which sounds to use, which notes to play, and 

how loud to play each note. The actual sounds are then 

generated by the synthesizer. For computers, the smaller 

file size also means that less of the PCs bandwidth is 

utilized in spooling this data out to the peripheral which is 

generating sound. Other advantages of utilizing MIDI to 

generate sounds include the ability to easily edit the music, 

and the ability to change the playback speed and the pitch or 

key of the sounds independently. This last point is 

particularly important in synthesis applications such as 

karaoke equipment, where the musical key and tempo of a 

song may be selected by the user. 

 

Figure 3. A PC-Based MIDI System 

4. Conclusion 
 

Proposed systems aims towards implementing low cost 

synthesizers using existing PC power .The inputs are 

provided by only buttons and processing is done at PC. 

Many sound synthesis methods like sampling, frequency 

modulation (FM) synthesis, additive and subtractive 

synthesis model sound. This is good for creating new 

sounds, but has several disadvantages in reproducing 

sounds of real acoustic instruments. The most important 

disadvantage is that the musician does not have the physical 

based variability he has with real musical instruments. 

Therefore it is difficult to phrase a melody with these 

methods.  

Because of these disadvantages there are various methods 

for sound synthesis based on physical models that do not 

model the sound but the sound production mechanism. 

They all start from physical models in form mathematical 

equations such as of partial differential equations (PDEs). 

They can be obtained by applying the first principles of 

physics. These mathematical equations are then realised 

into equivalent circuits by digital wave guide method to get 

real melody of instrument. 
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