
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010 

 

 

 

93 

Manuscript received March 5, 2010 

Manuscript revised March 20, 2010 

Hardware Implementation for Design of Modified Adaptive 

Median Filter for Image Processing 

Ch.Ravi Kumar 
Research Scholar ,Bharath 

University,Chennai,India 

Asst. Professor, Prakasam Engg. College, 

Kandukur, Prakasam Dt. Andhrapradesh 

S.K. Srivathsa 
Senior Professor, St. Joseph College of Engg 

Chennai   

 

Abstract 
Digital image processing is an ever elaborating and dynamic 

area with applications reaching out into our everyday life such 

as medicine, space exploration, surveillance, authentication, 

automated industry inspection and many more areas. 

Applications such as these involve different processes like 

image enhancement and object detection. Median filtering is a 

powerful instrument used in image processing. The traditional 

median filtering algorithm, without any modifications gives 

good results. There are many variations to the classical 

algorithm, aimed at reducing computational cost or to achieve 

additional properties. Median filters are used mainly to remove 

salt-and pepper noise. The filter logic is implemented on a 

novel reconfigurable fabric. In this paper look into a Efficient 

architecture for non-linear modified Adaptive median filter 

implementation is presented. Then Adaptive Median Filter 

solves the dual purpose of removing the impulse noise from the 

image and reducing distortion in the image and the classical 

adaptive median filter has some deficiencies: the filtered 

images remain the positive impulse noise in the black 

background and the negative impulse noise in the white 

background. To solve the above questions, a modified scheme 

is proposed.  The practical results show the effectiveness of our 

improvements allowing real-time processing and a minimum 

use of resources. 

1. Introduction 

 
Image Processing is an ever expanding and dynamic area 

with applications impacting our everyday life in such 

diverse areas as medicine, space exploration, 

surveillance, and authentication. In real-time image 

transmission, images are mostly affected by additive 

noise (like Gaussian noise) or impulse noise (e.g. salt and 

pepper noise). The received images should be enhanced 

in such a way that the Mean Square Error (MSE) of the 

received image with reference to the original image is 

minimized. The image enhancement requires a series of 

filtering operations on the received image. These filters 

are serially connected since image processing design is 

divided into a number of processing stages. 

Implementing such filters on a general purpose computer 

is straightforward, but not very time efficient due to 

constraints on processor speed and available memory.  

The run-time efficiency of filters can be improved 

through the use of specially designed Application 

Specific Integrated Circuits (ASICs) and Digital Signal 

Processors (DSPs). Fast execution times for complex 

computations can be achieved by optimizing the circuits 

for the specific application  

System on Chip (SoC) platforms based on ASICs and 

DSPs can exploit the parallelism and pipelining 

algorithms to allow for greatly reduced execution times. 

However, these designs result in a fixed hardware 

architecture and circuitry, and therefore cannot 

implement complex systems in an efficient and flexible 

manner. These limitations can be overcome by 

leveraging recent advances in Reconfigurable SoC‟s 

based on Field Programmable Gate Arrays (FPGAs). The 

latest version of these reconfigurable systems introduces 

the concept of „Dynamic Run-time Partial 

Reconfiguration,‟ where only a small portion of the 

circuitry is modified at run-time while the system 

remains functioning. Implementing image processing 

algorithms on reconfigurable hardware allows for the 

dynamic selection of the filter depending on the 

characteristics of the received image. This improves the 

image quality for a wide range of images, while 

simplifying the debugging and verification process. 

 

 
Fig 1.Median filter 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010 

 

 

94 

2. Modified Adaptive Median Filter 

The Modified Adaptive Median Filter is designed to 

eliminate the problems faced with the standard median 

filter. The basic difference between the two filters is that, 

in the Adaptive Median Filter, the size of the window 

surrounding each pixel is variable. This variation 

depends on the median of the pixels in the present 

window. If the median value is an impulse, then the size 

of the window is expanded. Otherwise, further 

processing is done on the part of the image within the 

current window specifications. „Processing‟ the image 

basically entails the following: The center pixel of the 

window is evaluated to verify whether it is an impulse or 

not. If it is an impulse, then the new value of that pixel in 

the filtered image will be the median value of the pixels 

in that window. If, however, the center pixel is not an 

impulse, then the value of the center pixel is retained in 

the filtered image. Thus, unless the pixel being 

considered is an impulse, the gray-scale value of the 

pixel in the filtered image is the same as that of the input 

image.  

Very diverse FPGA-based custom-computing boards are 

appearing in the market. These boards possess different 

interfaces for their communication with the host. But in 

general, boards devoted to real-time image processing 

have a USB interface, because it gives them the 

necessary speed to work as coprocessors. Also, USB bus 

has a growing popularity due to its interesting properties. 

 
Fig 2. simultaneous computation of output pixel 

 

The fact that we have a 32-bit data bus has a very large 

influence in the necessary hardware architecture for 

implementing image processing operations, because it 

causes that in each  read/write operation we obtain/send 

four image pixels (supposing 8-bit pixels). We have 

gained benefit from this situation replicating the 

functional units in order to apply the median filter 

simultaneously on four pixel neighbourhoods. In this 

way we take advantage of the inherent neighbourhood 

parallelism, and we accelerate the operation four times. 

Figure 2 presents the approach followed for  the 

simultaneous computation of these four output pixels. 

Images are divided in pixels (squares) that are grouped in 

32-bit words (4 pixels). The value of each output pixel 

O(x,y) is computed using the 9 pixels of the image I that 

are inside the 3x3 mask with centre in I(x,y). Each mask 

application has been represented with a different texture. 

Note that the pixel P4 of the previous word is computed 

and not that of the current word. In this way, it is only 

necessary to read six words in the input image instead of 

nine, reducing the number of read operations, and 

therefore increasing the performance. Pipelining this 

approach using two stages it is possible to get an 

architecture that writes four pixels (one word) in the 

output image in each clock cycle, only reading three 

input image words by cycle 

 

 
Fig  3. Pipelining  approach using two stages 

3. Moving Window Architecture 

In order to implement a moving window system in 

VHDL, a design was devised that took advantage of 

certain features of FPGAs. FPGAs generally handle flip -

flops quite easily, but instantiation of memory on chip is 

more difficult. Still, compared with the other option, off-

chip memory, the choice using on-chip memory was 

clear. It was determined that the output of the 

architecture should be vectors for pixels in the window, 

along with a data valid signal, which is used to inform an 

algorithm using the window generation unit as to when 

the data is ready for processing. Since it was deemed 

necessary to achieve maximum performance in a 

relatively small space, FIFO Units specific to the target 

FPGA were used. Importantly though, to the algorithms 

using the window generation architecture, the output of 

the window generation units is exactly the same. This 

useful feature allows algorithm interchangeability 

between the two architectures, which helped significantly, 

cut down algorithm development time. A window size 

was chosen because it was small enough to be easily fit 

onto the target FPGAs, and is considered large enough to 

be effective for most commonly used image sizes. With 

larger window sizes, more FIFOs and flip -flops must be 

used, which increases the FPGA resources used 

significantly. Figure 1, 2 shows a graphic representation 

of the FIFO and flip flop architecture used for this design 

for a given output pixel window.  

   

                                                                                             

 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010 

 

 

95 

 
Fig.4 Moving Window Architecture 

 

 

Fig. 5 Reading Pixels from Window. 

4. Parallel Sorting strategy: 

To make a fair comparison of the parallel sorting strategy 

against wave sorter strategy in terms of the total number 

of required steps to sort an array, it is necessary to 

consider the steps used to read data from memory and 

the steps required to store the sorted data back to 

memory. The proposed approach is based on the same 

structure of the registers array used in the wave sorter 

strategy. With this kind of array, data can be stored in the 

array by sending a datum to the first register and later, 

when the second datum is sent to the first register, the 

value on the first array is shifted to the second register. 

Thus, for every datum sent to the array to be stored, 

values in registers are shifted to their respective adjacent 

registers. This process requires n steps. The same 

number of steps is required to take data out from the 

array. This approach allows storing a new set of data in 

the array while the previous set is being sent back into 

the memory. As mentioned in section 2, suffix sorting 

might imply more than one sorting iterations. If k sorts 

are required, then the parallel sorting requires to ((n+n/2) 

* k + n) to sort an array of n data. Thus total number of 

steps required can be obtained by the following equation: 

 

 
 

 
 

Fig 6.Parallel sorting with two levels of comparators 

performance 

 

The parallel strategy leads to a significant reduction 

compared to the wave sorter approach. Furthermore, in 

additional sorts the necessary number of steps for sorting 

is equal to the number of characters in the biggest group 

of identical characters divided by 2 (remember that an 

additional sorting is implied if groups of identical 

adjacent characters appear in the array). This implies that 

in practice, it is possible to reduce more than the number 

of steps to solve the suffix problem.  

5. Implementation and Testing: 

The modified adaptive filter works on a rectangular 

region Sxy. The modified adaptive median filter changes 

the size of Sxy during the filtering operation depending on 

certain criteria as listed below. The output of the filter is 

a single value which the replaces the current pixel value 

at (x, y), the point on which Sxy is centered at the time. 

The following notation is adapted from the book and is 

reintroduced here: 

Zmin = Minimum gray level value in Sxy. 

Zmax = Maximum gray level value in Sxy  

Zmed = Median of gray levels in Sxy 

Zxy = gray level at coordinates (x, y) 

Smax = Maximum allowed size of Sxy 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010 

 

 

96 

The adaptive median filter works in two levels 

denoted Level A and Level B as follows: 

 

Level A: A1= Zmed - Zmin 

 A2= Zmed - Zmax 

  If A1 > 0 AND A2 < 0, Go to level B 

Else increase the window size 

If window size <= Smax repeat level A 

Else output Zxy. 

   

 Level B:  B1 = Zxy – Zmin 

  B2 = Zxy – Zmin 

  If B1 > 0 And B2 < 0 output Zxy 

  Else output Zmed. 

 

The modified adaptive medianfilter 

 

There are some deficiencies in the above algorithm. It is 

known that the condition Zmin < Zmed < Zmax is always 

satisfied. When Zmin < Zmed < Zmax go to level B. 

Otherwise, when Zmin = Zmin < Zmax, Zmax= Zmin < Zmed . 

it is kept in level A and the window size is increased . 

When Smax is reached, the algorithm outputs the 

value of Zxy 

 

   Negative impulse appears as black point (pepper noise) in 

an image and positive impulse appears as white point 

(salt noise). When the black image in a window is 

corrupted by impulse noises, there are black and white 

pixels. For an 8-bit image, it means the pixel values are 0 

or 255. But most of the pixel values are 0. So Zmin 

    = Zmed  = 0, Zmax  = 255. Even the window size is 

increased to maximum, Zmin  = Zmin =0, Zmax = 255. In 

this case, the output value m'n med max 

should be 0. But, according to the algorithm, the output 

value is equal to Zxy. Zxy may be any value between 0 

and 255. So the salt noise can not be filtered in the black 

background of corrupted image. For the same reason, the 

pepper noise can not be removed in the white 

background. 

 

If the output value is changed from Zxy to Zmed 

in the expression (1), the above questions can be solved. 

For the black image, Zmin = Zmed < Zmax 

 output is Zmin= Zmed= 0. For ,min <med m Zmed mi 

the white image, Zmax= Zmin < Zmed,output is 

Zmax =Zmed = 255. For the general image, 

Zmin < Zmed < Zmax the algorithm goes to level B. 

 

 

The algorithm has three main purposes: 

(a) To remove „Salt and Pepper‟ noise. 

(b) To smoothen any non impulsive noise. 

(c) To reduce excessive distortions such as too 

much thinning or thickening of object 

boundaries. 

6. Result: 

Two signals were considered for the test. These were 

subjected to salt and pepper noise of unit amplitude. Fig. 

shows one form of the evolved architecture of the 

reconfigurable fabric during operation. Fig. 7 give the 

deviations of the output with respect to the original value 

of the signals.  

However, pepper noise still can be observed in the black 

region of the image, such as the connectors at the left-top 

ofthe image. Figure 7(c) shows the result of the modified 

adaptive median filter. Pepper noise in the black region 

of the image is removed efficiently. Improvement over 

the classical adaptive median 

 

 
 

Fig 7.Results of filtering with a 3X3 median and 

conditional median filter. From left to right, first row:  

noisy image; second row: Adaptive median 

filter,Modified  Adaptive median filter. 

 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010 

 

 

97 

CONCLUSION 

The Proposed architecture provides the capacity of 

implementing the reconfigurable framework in a 

pipelined fashion. The architecture is pipelined which 

processes one pixel per clock cycle, thus to process an 

image of size 512 x 512 it requires 0.65 ms when a clock 

of 100 MHz  is used and hence is suitable for image 

processing. The classical adaptive median filter has some 

deficiencies: the filtered images remain the positive 

impulse noise in the black background and the negative 

impulse noise in the white background. To solve the 

above questions, a modified scheme is proposed. 

Experiment results shows the proposed scheme can 

improve the filtering performance significantly. 

 

References 
[1] Zdenek Vasicek, Lukas Sekanina, Novel Hardware 

Implementation of Adaptive Median Filters 

        978-1-4244-2277-7/08/ © 2008 IEEE 

[2] Olli Vainio, Yrjö Neuvo, Steven E. Butner, A Signal 

Processor for Median-Based Algorithms, IEEE 

Transactions on Acoustics, Speech, Processing VOL 37. 

NO. 9, September 1989. 

[3] V.V. Bapeswara Rao and K. Sankara Rao, A New 

Algorithm for Real-Time Median Filtering, IEEE 

Transactions on Acoustics, Speech, Processing VOL 

ASSP-34. NO. 6, December 1986. 

[4] M. O. Ahmad and D. Sundararajan, Parallel 

Implementation of a Median Filtering Algorithm, Int. 

Symp. on Signals and Systems, 1988. 

[5] Dobrowiecki Tadeusz, Medián Szűrők, Mérés és 

Automatika, 37. Évf., 1989. 3.szám 

[6] Xilinx Foundation Series Quick Start Guide, 1991-1997. 

Xilinx. Inc. 

[7] Jim Torresen, “An Evolvable Hardware Tutorial”, FPL 

2004, 821-830 

[8] L. Sekanina, “Evolvable Hardware Tutorial”, in GECCO 

2007, New York 

[9] Bernard Widrow and Samuel D. Steavns, “Adaptive 

Signal Processing”, Pearson Edition, 2000. 

[10] Redmill, D. W., Bull, D. R., and Dagless, E., “Genetic 

synthesis of reduced complexity filters and filter banks 

using primitive operator directed graphs”. IEE Proc. 

Circuits Devices Syst, vol.147, pp. 303-310, 2000. 

[11] Bull, D. R. and Horrocks, D. H., “Primitive operator 

digital filters”, IEE Proc. Circuits, Devices and Systems, 

pp. 401-412, 1991. 

[12] L. Sekanina and P. Mikusek, “Analysis of Reconfigurable 

Logic Blocks for Evolvable Digital Architectures”, 

EvoWorkshops 2008, LNCS 4974, pp. 144–153, 2008. 

Evolution Hardware (EH‟05) 

 


