
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010 

 

 

129 

Manuscript received March 5, 2010 

Manuscript revised March 20, 2010 

Test Requirements of Service Connections with their Applications 

to a Testing Tool 

Hoijin Yoon, 

  
Department of Computer Engineering,  

 Hyupsung University, 

 Hwaseong-si, Gyeonggi-Do, Korea 

 

Summary 
This paper presents what should be test requirements of service 

connections in Service-oriented architecture (SOA), and then it 

applies the test requirements to real SOA systems and a common 

web service test tool, SoapUI.  Services in SOA are deployed on 

their proper layers according to whether they are biased on 

business process or application solution. An interaction between 

services in the different layers is called connection while an 

interaction between them in the same ones is called integration. 

So a connection is a new and important spot to be tested in SOA.  

This paper present test requirements for the connection and 

generates test requirements for SOA systems of real companies 

as the examples.  And it also explains how to apply the test 

requirements to a common web service test tool, since many 

SOA developers still stay on the tools supporting Web services. 

Key words: 
Service-oriented architecture, testing, service connection, web 

service, business service layer, application service layer, SoapUI 

1. Introduction 

The major impact for the Service-Oriented Architecture 

(SOA) initiative is solving the age-old problem of 

integration.  According to many analyst estimates, up to 

30% of a typical IT budget is allocated to integration 

activities [1], which is directly related to process 

integration, enterprise integration, and mergers and 

acquisitions (M&A) integration.  With the aid of SOA, 

resources can be shifted to more strategic projects, which 

otherwise would have been spent for the integration.  SOA 

supports the demand for IT and process integration.  In 

building an enterprise system as a SOA, there are two 

things we should consider as followed, and this paper 

proposes one of the solutions for them. 

First, a connection between SOA services is a new spot to 

be tested in SOA.  An interaction between services in the 

different layers is called connection to distinguish it from 

conventional integration.  Connection is necessary in SOA, 

since SOA put services in their proper layers to keep the 

coupling of a business process and its applications loose. 

This layering system is one of the most important principle 

to support the loosely-coupled between business process 

and application solution, which is the main aim of many 

enterprise systems‟ going to SOA.  A connection means 

interactions between a business service and an application 

service.  Meanwhile, organizations are interested in 

upgrading their systems to SOA architectures, but they 

have been trying this still as pilot projects.  The try could 

not be progressed to a real project. One of the main 

reasons is that there aren‟t any testing methods covering 

the connection‟s characteristics, even though almost every 

SOA system should request a high reliability as an 

enterprise-level system.  In HP Software Universe 2007 

[2] held at the beginning of 2007, many analysts 

emphasized that the success in building SOA architectures 

could critically depends on the connection testing. 

Although some testing techniques [3,4,5] have been 

developed for the web service integrations based on the 

first generation web service techniques such as SOAP, 

WSDL, and UDDI, they do not emphasize where business 

services and application services are deployed separately.  

Of course, some ESB products-IBM Web Sphere [6] or 

Fiorano BIS- have implemented testing tools inside the 

products. But the tools still ask the test engineers to fill 

blank fields of the tools with test requirements and their 

test cases.  

Second, many SOA developers still stay on the tools 

supporting Web services.  In terms of testing, they rely on 

some popular open source products, such as SoapUI, JUnit, 

and TESTMAKER, which were developed for testing Web 

services.  The tools could work well also on SOA, because 

the connection is technically still working through SOAP 

message exchanges as in Web service integrations.  This 

paper proposes what should be included in their test steps 

of the connections according to the definition of the 

connection of services with supporting SOA principles.  

From the considerations just mentioned before, this paper 

proposes what should be test requirements for connections 

of SOA services, and it defines test requirements of two 

real enterprise system examples.  Once the test 

requirements are defined, this paper explains which part of 

SoapUI covers the test requirements.  

Section 2 explains the service connection of SOA 

compared to the integration of Web services and then 

analyzes some existing testing tools to show why this 

paper chooses SoapUI as a tool.  Section 3 defines a 

diagram to show layers and connections of SOA, and 

generates test requirements from the diagram. Section 4 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010 

 

 

130 

 

applies our approach to the two different enterprise cases 

of SOA systems, and then it shows how to use the test 

requirements in SoapUI.  Section 5 concludes this paper 

with contributions and future work. 

From this section, input the body of your manuscript 

according to the constitution that you had. For detailed 

information for authors, please refer to [1]. 

2. BACKGROUND  

This section first explains what the connection means in 

SOA compared to the web service integration, and then it 

describes some common test tools of web services 

including SoapUI used in this paper. 

2.1 Service Connection in SOA 

2.1.1 Layering System in SOA 

Contemporary SOA is a complex and sophisticated 

architectural platform that offers significant potential to 

solve many historic and current IT problems. Three of the 

primary influences of contemporary SOA are shown in Fig. 

1.  

 

Contemporary

SOA

Principles of 

service-orientation

Second-generation 

WS-* 

concepts

First-generation 

Web Services 

concepts

 

Fig. 1. External influences that form and support contemporary SOA [7]  

Contemporary SOA organizes Web services according to 

the principles of service-orientation; autonomy, reusability, 

enterprise-wide loose coupling, extensibility, layers of 

abstraction, orchestration, and so on.  Service-orientation 

principles fully promote black box type abstraction on a 

service interface level.  Fig. 2 shows three primary service 

layers and three specific service layers of the service 

interface layer; application service layer, business service 

layer, and orchestrations service layer.  

The application service layer establishes the ground level 

foundation that exists to express technology-specific 

functionality.  Services that reside within this layer can be 

referred to simply as application services, SA.  Their 

purpose is to provide reusable functions related to 

processing data within new or legacy application 

environment.  Some SOA systems can work with only 

application services.  Their maturity level in terms of SOA 

is said to be low.  

b
u

s
in

e
s
s
 

p
ro

c
e

s
s
 l
a

y
e

r

s
e

rv
ic

e
 

in
te

rf
a

c
e

 l
a

y
e

r
a

p
p

lic
a

ti
o

n
 

la
y
e

r

orchestration 

service layer

business 

service layer

application 

service layer

SO

SB SB SB
SB

SA SA SA

 

Fig. 2. Layers of SOA architecture [7] 

The business service layer introduces services concerned 

solely with representing business logic, called business 

services, SB.  They act as controllers to compose available 

application services to execute their business logic.  

Systems with business services are in the much higher 

maturity level in terms of SOA.   

The orchestration service layer is a parent level of 

abstraction that alleviates the need for other services to 

manage interaction details required to ensure that service 

operations are executed in a specific sequence.  Within the 

orchestration service layer, process services compose other 

services that provide specific sets of functions, 

independent of the business rules and scenario-specific 

logic required to execute a process instance. 

2.1.2 Integration vs. Connection in SOA 

The services in the same layer have no direct connections, 

since the service connections are set between services in 

different layers. The fact that web services communicate 

within the business service layer or the application service 

layer means they implement the functions supporting 

similar business tasks or application operations.  Therefore, 

web services that communicate with each other within one 

layer are strongly recommended to be “integrated” into 

one SOA service as shown in Fig. 3.  It can guarantee that 

the architecture is loosely-coupled and abstract to business 

process changes or an application version-up. 

 

Web Service

Web Service

Integration

Service 

Connection

 

Fig. 3. Web Service Integration vs. Service Connection 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010 

 

 

131 

 

Through identifying SOA services, a set of web services 

deployed in the same layer is recommended to be 

identified as one SOA service.  It is because a service in 

SOA is autonomous. If two different services are working 

together in the business service layer, they might support 

the same or similar task of their business process. If two 

different services are communicating in the application 

service layer, it might serve the same or similar operation 

of applications of the application layer.  The relations 

between them could cause a stronger coupling, which is 

not proper for SOA.  The conventional integration of web 

services is applied to the integration of web services in the 

process of identifying SOA services.  Therefore, the bold 

lines of Fig. 3 mean connections between SOA services, 

and they exist between two different layers.  

2.1.3 Testing of Web Service Integration 

Web service is one of the most common ways to build a 

SOA.  Web service providers use the Web Service 

Description Language (WSDL) [8] to describe the services 

they provide and how to invoke them.  The service 

providers then register their services in a public service 

registry using universal description, discovery, and 

integration (UDDI) [9]. Application programs discover 

services in the registry and obtain a URL for the WSDL 

file that describes the service. Then, the applications can 

invoke the services using the XML-based simple object 

access protocol (SOAP) in either asynchronous messaging 

or remote procedure call (RPC) mode [10,11].  

Testing issues on web services have been studied by 

several researchers.  They proposed how to test web 

services in terms of web service unit testing or web service 

integration testing.  Actually, web service unit testing 

could be solved by traditional white box testing, since 

most web services are coded in Java.  However, web 

service integration testing is difficult, because the 

integration works through exchanging message, not 

through method calls, which is the traditional approach to 

integrating two units.  Some methods [3,4,5] have been 

developed with focusing on SOAP messaging. A flow 

graph could be drawn to show which service sends a 

request message to which service.  In [12,13], the flow 

graph connects two different services evenly without any 

hierarchical concepts.  It is one of the main differences 

between the web service integration and the SOA service 

connection. 

2.2 Testing Tools of Web services 

There are common test tools for web services; such as 

SoapUI[14], JUint[15], TestMaker[16], WebInject[17].  

They generate SOAP messages for testing automatically 

by analyzing WSDL and its schema.  JUnit is a test 

solution based on Java technology, and it support Test 

Driven Development (TDD) practically for Java 

developers.  TestMaker is an open source tool for web 

services. It provides a graphical environment and it 

supports a script language, Python.  TestMaker makes test 

cases from WSDL.  WebInject tests web applications and 

web services, and it records test results as well as test 

cases on an XML file.  

Table 1. Some test tools of web service 

 SoapUI Junit TestMaker WebInject 

IDE 

Eclipse, 

NetBens, 

IntelliJ  

Eclipse, 

NetBens  

Eclipse, 

NetBens  
 

Test 

Function 

Test 

Load 

Testing 

Unit Test 

Function 

Test 
 

Intelligent 

Test 

Functional 

unit or 

system Test 

Function 

Test 

Regression 

Test 

 

This paper uses SoapUI to show how the test requirements 

are applied to a test tool, since many web service 

developers prefer SoapUI to the others. It generates SOAP 

messages of test steps only by including proper WSDL 

files, and it also shows the replies of the messages on 

user‟s windows.  

3. Test Requirement for Connections  

Test requirements for SOA services need to be generated 

according to the SOA connection principles.  Something to 

show the connection as a diagram would help not to pass 

over the principles.  That‟s the why service message flow 

diagram (SMFD) is defined in this paper.  The diagram is 

used to generate test requirements for connections.  

3.1 Service Message Flow Diagram (SMFD) 

In the diagram, the request-response mechanism between 

services is expressed as edges.   The service is one of two 

kinds; business service and application service.  A 

business service is a collection of tasks implementing a 

business process, and an application service is a collection 

of operations of the technical implementation.   In an 

SMFD, a node could be a task or an operation depending 

on the type of service that the task or the operation comes 

from.  SMFD is defined in Definition 1.  

 

Definition 1. Service Message Flow Diagram (SFMD) 
SFMD is an acyclic spanning tree, G(V,E).  

· V represents an orchestration service, a business service 

task, or an application service operation.  

· E represents a message flow where a parent requests a 

child's service.  

· (p,q)  E, where p V is the parent of qV.  

· V has a name representing which operation of which 

service the vertex is.  



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010 

 

 

132 

 

 

A SMFD is drawn from the architecture shown in Fig. 4 

by decomposing a service by a task or an operation and 

drawing a node for each task or operation.  As shown in 

Fig. 4, a business service is related to a task included in a 

business process, and an application service is related to an 

operation.  Nodes for tasks should be located in a higher 

level of the tree than nodes for operations in SMFD.  For 

the sake of convenience, nodes have their own name that 

represent which operation of which service they are. For 

example, a node called SA13 is the third operation of an 

application service named SA1.  

Tasks of SB

SO

SB11 SB12 SB21 SB31 SB41

SA11 SA12 SA13 SA21 SA22 SA31
Operations 

of SA

Connections

Fig. 4. Task and Operation of a SMFD 

3.2 Test Requirements 

The more complicated the connections are, the more 

transactions are feasible.  A transaction is a set of 

messages that are exchanged to do a meaningful task of 

business processes. In SMFD, a transaction is made of 

edges from task nodes to terminal nodes, and the edges 

should be covered by the connection testing. The 

requirements to test connections are defined as a set of 

paths in a SMFD. 

Test requirements need to cover all the connections. A 

connection is made of message flows between services; 

not between operations and not between tasks.  A task of 

business services sends a request-message to an operation 

of application services, and then the operation sends a 

response-message back to the task.  Therefore, the 

connection in SOA is decided by a pair of a task and an 

operation.  It would be hard to know which message flows 

should be covered by test data if connections of service 

units are described.  To get the information of a connection, 

we need something more than relationships of service 

units.  That is the SMFD defined in Section 3.1.  

A node in a SMFD means a task or an operation depending 

on which kind of service the node comes from.  An edge in 

a SMFD connects a task with an operation. All the 

connections are drawn across different layers in a SMFD.  

It means that an operation does not send a request or a 

response to any other operation, nor does a task sends a 

request or not to any other tasks.  SOA does not 

recommend a connection between operations or a 

connection between tasks, as the connection could cause a 

tight coupling of services.  An edge in SMFD satisfies 

these requirements of SOA connections.  It is located 

across the layers, and it connects a task and an operation.  

Therefore, the edges are what the connection testing 

covers.  They are defined as the test requirements in 

Definition 2. 

 

Definition 2. Test requirements for service connections 

(TR) 
The edges in a SMFD represent the qualified connections 

in SOA.  Therefore, connection testing should check if the 

response returned to the task of an edge is the same as the 

expected output of the connection.  

As explained in Definition 2, an edge shows one 

transaction where a task requests to an operation and then 

the operation responds back to the task.  The response 

from an operation is what a testing engineer compares with 

the expected output. Consequently, the connection that 

testing should cover is put across the business service layer 

and the applications service layer, and it links a task to or 

from an operation as shown in Figure 4. In the SMFD 

shown in Figure 4, the following set of test requirements is 

generated. RR(x) means the responses of an edge, x, and 

E(x) means the expected output with an edge, x. 

 

TR={RR(SB11,SA11)=E(SB11,SA11), 

RR(SB12,SA11)=E(SB12,SA11), 

RR(SB12,SA12)=E(SB12,SA12), 

RR(SB21,SA13)=E(SB21,SA13), 

RR(SB31,SA13)=E(SB31,SA13), 

RR(SB31,SA21)=E(SB31,SA21), 

RR(SB31,SA22)=E(SB31,SA22),  

RR(SB41,SA31)=E(SB41,SA31)} 

 

In the case of RR(SB11,SA11)=E(SB11,SA11), SA11 takes a 

request message for the task SB11, and then SA11 returns a 

response of the request back to the same task, SB11. The 

returned response should be the same as its expected 

output. It is one of the elements of TR.  Existing test data 

selection [3,4,5] based on Web service‟s SOAP messages 

could be applied to cover the test requirement, TR, 

described above.  

4. A Case Study 

This section describes two ways to apply the test 

requirements in order to show the connection test 

requirement is working practically.  First, this paper 

defines test requirements of two SOAs of two real 

organizations.  Second, it shows the test requirements 

work on a common test tool of web services. The test tool 

of web service is countable here, because many SOA 

developers are still on web services techniques and the 

web service is still one of the most popular implementation 

for SOA. 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010 

 

 

133 

 

4.1 Application to Enterprise Systems 

4.1.1 Two enterprise systems 

The first company is RailCo, a mid-size company with a 

modest IT staff.  The second, Transit Line Systems Inc. 

(TLS), is a larger corporation with multiple IT departments 

managing enterprise-level solutions. The names of these 

companies are aliases, since they do not want to open their 

real names to the public. The two companies also have a 

business relationship. RailCo has just upgraded their 

system in order to perform transactions via B2B solutions 

with TLS, which has already built B2B solution on a 

mature SOA architecture.  TLS has a higher maturity level 

than RailCo in terms of the SOA maturity level.   

s
e

rv
ic

e
 i
n

te
rf

a
c
e

 l
a

y
e

r

Legacy 

System

Polling 

Notifica

tion

Trans

form

Meta

data 

Checking

Invoice 

Process

ing

PO 

Proce

ssing

orchestration service layer

business service layer

application service layer

 
(a) RailCo 

s
e

rv
ic

e
 i
n

te
rf

a
c
e

 l
a

y
e

r

business service layer

Human

Resour

ces

Time

sheet

Accounts 

Payable
Notificat

ion

Employ

ee
Invoice

Time

Sheet 
Submission

application service layer

orchestration service layer

 
 (b) TLS 

Fig. 5. Service deployment on layers [2] 

Fig. 5 shows the architectures of RailCo and TLS. The 

architecture of RailCo has no orchestration service layer 

because the company did not have budget for building a 

middleware.  Instead, business services control application 

services to follow its business process. In this sense, 

RailCo‟s business services are task-centric business 

services, while TLS‟s are entity-centric business services.  

They might be refined as orchestration services in the 

future.  

4.1.2 SMFDs 

Before drawing the organizations‟ SMFDs of Fig. 5, a 

service should be decomposed by a task or an operation, 

and connections should be set between tasks and 

operations.  We describe services, tasks, operations, and 

moreover their connections in a table.   

From  the connection tables, nodes and edges are drawn as 

in Fig. 6 (a) and (b). Two things look weird in Fig. 6.  One 

is that RailCo‟s SMFD shown in Fig. 6 (a) has no root.  It 

is because RailCo has not built any process service in the 

orchestration service layer due to budget constraints as 

mentioned in Section 4.1.1.  The other thing to look weird 

is that TLS‟s SMFD shown in Fig. 6 (b) does not draw the 

operation of SA3.  The request message flow of a process 

service, SO, and the operation, SA31 is not shown in 

SMFD.  It is because SA3‟s operation is requested by a 

process service of the orchestration service layer not by a 

business service. As explained in Fig. 4, the connection is 

between a task and an operation. 

SB11 SB12 SB21SB13

SA11 SA22 SA31 SA42 SA21 SA41SA12SA32

 
(a) RailCo 

SB11

SO

SA11

SB12

SA23SA22SA21SA12

SB31SB22SB21

 
(b) TLS 

Fig. 6. SMFDs of TLS and RailCo 

4.1.3 Test Requirement 

(1) RailCo 

There are ten connections in the SMFD of RailCo as 

shown in Fig. 6 (a).  It means that the connection testing 

needs to cover all the 10 connections of tasks and 

operations. According to Definition 2, the TR for RailCo 

is as follows.   

 

TR={RR(SB11,SA11)=E(SB11,SA11), 

RR(SB12,SA11)=E(SB12,SA11), 

RR(SB12,SA22)=E(SB12,SA22), 

RR(SB12,SA31)=E(SB12,SA31), 

RR(SB12,SA42)=E(SB12,SA42), 

RR(SB13,SA11)=E(SB13,SA11), 

RR(SB13,SA21)=E(SB13,SA21), 

RR(SB13,SA41)=E(SB13,SA41), 

RR(SB21,SA12)=E(SB21,SA12),  

RR(SB21,SA32)=E(SB21,SA32)} 

 

For instance, in case of RR(SB13,SA11)=E(SB13,SA11), SB13 

is a task to „send an electronic invoice to a service‟ as 

described in Table 2.  It sends a request message to SA11, 

which „exports document to network folder‟ as seen in 

Table 2.  This connection is notated as the edge, (SB13, 

SA11), in Fig. 6 (a). RR(SB13,SA11)=E(SB13,SA11) in TR 

means that a test data should check if the response back to 

SB13 from SA11 is equal to its expected output. SB13 begins 

this transaction by sending a request message to SA11.  

 

(2) TLS 

TR of TLS consists of eight elements, which are edges 

between nodes of a task of a business service and nodes of 

an operation of an application service.  The edges from SO 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010 

 

 

134 

 

are not counted as connections of services, since the 

process service in the orchestration service layer work as a 

middleware.  It controls or manages the process, but it 

does not request other service‟s functions for executing 

SOA systems.  The RailCo system works even though it 

has no process services in the architecture.  Therefore, the 

connections that the testing should cover in Fig. 6 (b) are 

limited to those of tasks and operations.  The TR for TLS 

is generated as follows. 

 

TR={RR(SB11,SA11)=E(SB11,SA11), 

RR(SB12,SA12)=E(SB12,SA12), 

RR(SB21,SA11)=E(SB21,SA11), 

RR(SB22,SA11)=E(SB22,SA11), 

RR(SB22,SA12)=E(SB22,SA12), 

RR(SB31,SA21)=E(SB31,SA21), 

RR(SB31,SA22)=E(SB31,SA22), 

RR(SB31,SA23)=E(SB31,SA23)} 

 

In case of RR(SB22,SA12)=E(SB22,SA12), SB22 is a task to 

„reject timesheet‟ as described in Table 3.  It sends a 

request message to SA12, which „comments‟ as seen in 

Table 3.  This connection is notated as the edge, (SB22, 

SA12), in Figure 6 (b). RR(SB22,SA12)=E(SB22,SA12) in TR 

means that a test should check if the response back to SB22 

from SA12 is equal to its expected output. SB22 begins this 

transaction by sending a request message to SA12.  

4.2 Application to a Testing Tool, SoapUI 

A connection is made up of a business service and an 

application service. The business service in one connection 

requests a specific operation of an application service to 

work its part of the business process.  This service 

connection is working through an orchestration of services 

as an intermediate.  Using an intermediate enhances 

SOA‟s loosely coupling of services and it guarantees that 

every service has no direct coupling each other in SOA. 

Works of 

a Business Service

Operations of 

an Application Service

SOAP messages

Orchestration

S

B

1

2

S

B

1

2

S

B

1

2

S

B

1

2

a

aa

b

bb

C

cc

d

dd

S

B

1

2

e

eeSOAP messages

 
Fig. 7 Connection in Orchestration 

Fig. 7 shows how an orchestration works with business 

services and application services.  For one work of a 

business process, an orchestration first sends a request 

message to its appropriate business service implementing 

behaviors of the work, and then it receives the response 

from the service. The response is supposed to be 

transferred to its matching application service having an 

operation to implement the business work in IT level. For 

example, a web page getting information could be a 

business service and an application handling the 

information taken from the web page could be its matching 

application service.  

As shown in Fig. 7, a message, a, is sent to a business 

service by an orchestration, and then the following 

message, aa, is sent to its matching application service.  A 

pair of these two request messages describes one 

connection of the services. Therefore, the test steps for 

testing connection should keep the sequence of two 

messages as an atomic.  A pair of a message to business 

services and a message of their matching applications is 

denoted as (a,aa) for the convenience‟s sake. To test the 

orchestration of Fig. 7, the connection testing runs the test 

steps including (c,cc), (d,dd), (e,ee) as well as (a,aa),(b,bb). 

 

 
Fig. 8. Test Steps of Orchestration 

Fig. 8 shows that a testing tool, SoapUI, set the test suite 

for the orchestration.  In case that SOA developers use 

SoapUI as a testing tool, each test steps for testing an 

orchestration need to include an atomic sequence of a 

request messages as described before.  As shown in Fig. 

8‟s test steps of the test cases, “TC:Work1toOp1” and 

“TC:Work1toOp2”, “toBusiSvc_CartAdd” is a request 

message to CartAdd defined in a business service, 

AWSEcommerceServicePortType[18], and right after that, 

“toAppSvc_ConversinRate_HKDtoUSD” is a request 

message to ConversionRate defined in an application 

service, CurrencyConvertorSoap[19], with the value, HKD 

and USD, in the message as shown in Figure 3.  

“toBusiSvc_CartAdd” could be a of Fig. 7, and 

“toAppSvc_ConversinRate_HKDtoUSD” could be aa of 

Fig. 7. 

5. Conclusions and Future Work 

This paper developed the test requirements for SOA 

service connection, which was defined separately from 

service integrations.  As examples, it also applied the test 

requirements to two SOA cases of real companies, TLS 

and RailCo.  In addition, it built test steps supporting the 

test requirement in a common test tool of web services, 

because many SOA developers still stay on web service 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010 

 

 

135 

 

technology, and one of SOA implementation techniques is 

an implementation of web services.  

Currently, many SOA implementations put all their 

services on a hybrid service layer instead of a business 

service layer and an application service layer separately, 

where it means that they don‟t decide if a service supports 

a business process or its application.  Through improving 

the system to a more mature SOA system, it distinguishes 

services for a business process from services for its 

applications.  That makes the system have two separate 

service layers; business service layer and application 

service layer.  This paper focused on the system with these 

separate layers.  

A service connection is a new important spot of testing in 

SOA as talked in some SOA conferences.  Compared to 

the conventional integration, this paper first clearly 

defined the service connection based on the SOA layering 

system.  The SOA layering system is strongly 

recommended for keeping the loosely-coupled between a 

business process and its applications.  If services are 

deployed on a single layer, a business process and its 

applications would be tight coupled.  This paper caught 

service connections by defining a graph, SMFD.  A node 

in SMFD is a task of business services or an operation of 

application services depending on which kind of service 

the node comes from, and an edge is a connection itself 

between them.  Edges in SMFD are transformed into test 

requirements, TR.  We are improving SMFD to cover B2B 

connections.  Actually, TLS and RailCo aimed to make a 

connection between their systems.  It was the motivation 

that RailCo reorganized its non-SOA system to SOA 

architecture.  In Fig. 6, SB12 of RailCo can request SA21 

of TLS as a B2B connection.  This connection will be 

covered in our next version of SMFD. 

To test service connections completely, a test data 

selection criteria is needed.  We are working on selecting 

effective test data with satisfying the test requirement this 

paper proposed.  The test data can be used to fill in the 

blanks of SOAP request messages of SoapUI‟s test steps.  

With the test data selection criteria, some experimental 

studies will evaluate the effectiveness of test data selected 

by the criteria. 

References 

[1] Eric A. Mark, A Planning and Implementation Guide for 

Business and Technology, John Wiley and Sons, 2006.  

[2] HP Software Universe 2007, 

http://h30350.www3.hp.com/conference/index.jsp, 2007 

[3] Hai Huang, Wek-Tek Tsai, Raymond Paul, and Yinong 

Chen, “Automated Model Checking and Testing for 

Composite Web Services,” Proceeding on IEEE 

International Symposium on Object-Oriented Real-Time 

Distributed Computing, 2005 

[4] Xianoying Bai and Wenli Dong, “WSDL-Based Automatic 

Test Case Generation for Web Service Testing,” Proceeding 

on IEEE International Workshop on Service-Oriented 

System Engineering, 2005 

[5] Jeff Offutt and Wuzhi Xu, “Generating Test Cases for Web 

Services Using Data Perturbation,” Proceeding on 

Workshop on Testing, Analysis and Verification of Web 

Services, pp.41-50, July 2004 

[6] Robert Peterson, “Get started with WebSphere Integration 

Developer,” IBM WebSphere Developer Technical Journal, 

2005.12.07 

[7] Thomas Erl, Service-Oriented Architecture – Concepts, 

Prentice Hall, 2005 

[8] Roberto Chinnici, Martin Gudgin, Jean-Jacques Moreau, 

and Sanjiva Weerawarana, “Web Services Description 

Language (WSDL) Version 1.2,” W3C Recommendation, 

2002, www.w3.org/TR/wsdl12 

[9]  “Universal Description, Discovery, and Integration,” 

OASIS standard, 2002 

[10] Francisco Curbera, Matthew Duftler, Rania Khalaf, William 

Nagy, Nirmal Mukhi, and Sanjiva Weerawarana, 

“Unraveling the Web Services Web: An Introduction to 

SOAP, WSDL, and UDDI,” IEEE Internet Computing, 

Vol.6, No.2, Mar./Apr. 2002, pp.86-93 

[11] D. Box, D. Ehunbuske, G. Kakivaya, A. Layman, N. 

Mendelsohn, H. Nielsen, S. Thatte, and D. Winer, “Simple 

Object Access Protocol (SOAP) 1.1,” W3C Note 08, May 

2000 

[12] Daniel A. Menascé, “Composing Web Services: A QoS 

View,” IEEE Internet Computing, pp.88-90, Nov./Dec. 2004 

[13] Daniel A. Menascé, “QoS Issues in Web Services,” IEEE 

Internet Computing, pp.72-75,Nov./Dec. 2002  

[14] SoapUI – Web Service Testing,  http://www.soapui.org/ 

[15]  JUnit - Test Driven Development , http://www.junit.org 

[16] PushToTest TESTMAKER, http://www.pushtotest.com 

[17] webInject – web/HTTP Test Tool, http://www.webinject.org 

[18] Amazon Web Service Ecommerce Service, 

http://webservices.amazon.com/AWSECommerseService/A

WSECommerseService.wsdl 

[19] Currency Converter Web Service,  

http://www.webservicex.net/CurrencyConvertor.asmx?WS

DL 

 
Hoijin Yoon received the B.S. and 

M.S. degrees in Computer Science and 

Engineering from Ewha Womans University 

in 1993 and 1998, respectively. She also 

received her ph.D with the dissertation about 

software component testing from Ewha. 

After the degree, she stayed in Georgia 

Institute of Technology as a visiting scholar 

and then worked at Ewha Womans University. She has been 

teaching at Hyupsung University as a full-time lecturer since 

2007,  She is interested in Software Testing, Service Oriented 

Architecture, and Testing in Cloud computing. 

http://www.w3.org/TR/wsdl12
http://www.soapui.org/
http://www.junit.org/
http://www.pushtotest.com/
http://www.webinject.org/

