
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

165

Manuscript received March 5, 2010

Manuscript revised March 20, 2010

Ternary Tree & A New Huffman Decoding Technique

Dr. Pushpa R.Suri
†
 and Madhu Goel

††
,

 Department of Computer Science & Applications, Kurukshetra University, Kurukshetra, India

Summary
In this paper, the focus is on the use of ternary tree over binary

tree. First of all, we give the introduction of Huffman’s coding.

Then Huffman decoding is discussed. Here, a new one pass

Algorithm for Decoding adaptive Huffman ternary tree codes is

implemented. To reduce the memory size and speed up the

process of searching for a symbol in a Huffman ternary tree, we

purpose a memory efficient array data structure to decode the

binary codeword. Here we develop two algorithms. In first

algorithm we use Huffman ternary tree with height h with

binary codeword which results out the corresponding symbol of

the given codeword in very short time and requires less

memory. In the second algorithm, we use array data structure to

decode the binary codeword. Both algorithms show totally new

formulas and require less effort.

Keywords:
Ternary tree, Huffman’s Algorithm, Adaptive Huffman coding,

Huffman decoding, prefix codes, compression ratio, error

detecting & correcting

1. INTRODUCTION:

Ternary tree or 3-ary tree is a tree in which each node has

either 0 or 3 children (labeled as LEFT child, MID child,

RIGHT child).

Huffman coding is divided in to two categories:-

1. Static Huffman coding

2. Adaptive Huffman coding

Static Huffman coding suffers from the fact that the

uncompressed need have some knowledge of the

probabilities of the symbol in the compressed files. This

can need more bits to encode the file. If this information

is unavailable, compressing the file requires two passes.

FIRST PASS finds the frequency of each symbol and

constructs the Huffman tree. SECOND PASS is used to

compress the file. We already use the concept of static

Huffman coding [12] using ternary tree And we conclude

that representation of Static Huffman Tree [12] using

Ternary Tree is more beneficial than representation of

Huffman Tree using Binary Tree in terms of number of

internal nodes, Path length [8], height of the tree, in

memory representation, in fast searching and in error

detection & error correction. Static Huffman coding

methods have several disadvantages.

Therefore we go for adaptive Huffman coding.

Adaptive Huffman coding calculates the frequencies

dynamically based on recent actual frequencies in the

source string. Adaptive Huffman coding which is also

called dynamic Huffman coding is an adaptive coding

technique based on Huffman coding building the code as

the symbols are being transmitted that allows one-pass

encoding and adaptation to changing conditions in data.

The benefits of one-pass procedure is that the source can

be encoded in real time, through it becomes more

sensitive to transmission errors, since just a single loss

ruins the whole code.

Implementations of adaptive Huffman coding: -

There are number of implementations of this method, the

most notable are

1. FGK (Faller Gallager Knuth) Algorithm

2. Vitter Algorithm

We already use the concept of FGK Huffman coding

[13] using ternary tree And we conclude that

representation of FGK Huffman Tree using Ternary Tree

is more beneficial than representation of Huffman Tree

using Binary Tree in terms of number of internal nodes,

Path length [12], height of the tree, in memory

representation, in fast searching and in error detection &

error correction.

We also already use the concept of Vitter Huffman

coding [14] using ternary tree And we conclude that

representation of algorithm V Huffman Tree using

Ternary Tree is more beneficial than representation of

Huffman Tree using Binary Tree in terms of number of

internal nodes, Path length [8], height of the tree, in

memory representation, in fast searching and in error

detection & error correction.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

166

All of these methods are defined- word schemes that

determine the mapping from source messages to code-

words on the basis of a running estimate of the source

message probabilities. The code is adaptive, changing so

as to remain optimal for the current estimates. In this

way, the adaptive Huffman codes responds to locality, in

essence, the encoder is learning the characteristics of the

source. The decoder must learn along with the encoder

by continually updating the Huffman tree so as to stay in

synchronization with the encoder. Here we are given the

concept of error detection and error correction. And the

main point is that, this thing is only beneficial in

TERNARY TREE neither in binary tree nor in other

possible trees.

Now here we try to use the concept of adaptive Huffman

decoding algorithm using ternary tree.

In 1951, David Huffman [2] and his MIT information

theory classmates gave the choice of a term paper or a

final exam. Huffman hit upon the idea of using a

frequency-sorted binary tree and quickly proved this

method the most efficient. In doing so, the student out

did his professor, who had worked with information

theory inventor Claude Shannon to develop a similar

code. Huffman built the tree from the bottom up instead

of from the top down.

Huffman codes are widely used in the area of data

compression and telecommunications. Some applications

include JPEG [3] picture compression and MPEG video

and audio compression. Huffman codes are of variable

word length, which means that the individual symbols

used to compose a message are represented (encoded)

each by a distinct bit sequence of distinct length. This

characteristic of the codeword helps to decrease the

amount of redundancy in message data, i.e., it makes

data compression possible.

The use of Huffman codes [7] affords compression,

because distinct symbols have distinct probabilities of

incidence. This property is used to advantage by tailoring

the code lengths corresponding to those symbols in

accordance with their respective probabilities of

occurrence. Symbols with higher probabilities of

incidence are coded with shorter codeword, while

symbols with lower probabilities are coded with longer

codeword. However, longer codeword still show up, but

tend to be less frequent and hence the overall code length

of all codeword in a typical bit string tends to be smaller

due to the Huffman coding.

A basic difficulty in decoding Huffman codes is that the

decoder cannot know at first the length of an incoming

codeword. As previously explained, Huffman codes are

of variable length codes. Huffman codes can be detected

extremely fast by dedicating enormous amounts of

memory. For a set of Huffman code words with a

maximum word length of N bits, 2
N

memory locations

are needed, because N incoming bits are used as an

address into the lookup table to find the corresponding

code words.

A technique requiring less memory is currently

performed using bit-by-bit decoding, which proceeds as

follows. One bit is taken and compared to all the possible

codes with a word length of one. If a match is not found,

another bit is shifted in to try to find the bit pair from

among all the code words with word length of two. This

is continued until a match is found. Although this

approach is very memory-efficient, it is very slow,

especially if the codeword being decoded is long.

Another technique is the binary tree search method. In

this implementation technique, Huffman tables used

should be converted in the form of binary trees. A binary

tree is a finite set of elements that is either empty or

partitioned into three disjoint subsets. The first subset

contains a single element called the root of the tree. The

other two subsets are referred to as left and right sub

trees of the original tree. Each element of a binary tree is

called a node of the tree. A branch connects two nodes.

Nodes without any branches are called leaves. Huffman

decoding for a symbol search begins at the root of a

binary tree and ends at any of the leaves; one bit for each

node is extracted from bit-stream while traversing the

binary tree [1]. This method is a compromise between

memory requirement and the number of Huffman code

searches as compared to the above two methods. In

addition, the coding speed of this technique will be down

by a factor related to maximum length of Huffman code.

Another technique currently used to decode Huffman

codes is to use canonical Huffman codes. The canonical

Huffman codes are of special interest since they make

decoding easier. They are generally used in multimedia

and telecommunications. They reduce memory and

decoding complexity. However, most of these techniques

use a special tree structure in the Huffman codeword

tables for encoding and hence are suitable only for a

special class of Huffman codes and are generally not

suitable for decoding a generic class of Huffman codes.

As indicated in the above examples, a problem with

using variable codeword lengths is the difficulty in

achieving balance between speed and reasonable

memory usage.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

167

Huffman is a fairly standard compression algorithm, and

it is still commonly used. In order to do this you need a

very simple tree. The nodes need a char and a number of

occurrences (I used an unsigned short in mine). The tree

does not need any of the standard BST methods, but you

will need to be able to create a tree by merging two

existing trees. All data is stored in the leaf nodes,

frequency information is stored in every node in the tree.

• The message “go eagles” requires 144 bits in Unicode

but only 38 using Huffman coding

• A Huffman tree is a binary tree [10] used to store a

code that facilitates file compression

There are basically two concepts in Huffman coding

 Huffman Encoding

 Huffman Decoding

2. HUFFMAN ENCODING:

This is a two pass problem. The first pass is to collect the

letter frequencies. You need to use that information to

create the Huffman tree. Note that char values range

from -128 to 127, so you will need to cast them. I stored

the data as unsigned chars to solve for this problem, and

then the range is 0 to 255.

Open the output file and write the frequency table to it.

Open the input file, read characters from it, gets the

codes, and writes the encoding into the output file.

Once a Huffman code has been generated, data may be

encoded simply by replacing each symbol with its code.

3. HUFFMAN DECODING:-

This can be done in one pass. Open the encoded file and

read the frequency data out of it. Create the Huffman tree

[14] base on that information (The total number of

encoded bytes is the frequency at the root of the

Huffman tree.). Read data out of the file and search the

tree to find the correct char to decode (a 0 bit means go

left, 1 go right for binary tree and 00 bit means go left,

01 bit means go mid, 10 bit means go right in case of

ternary tree) This gets tricky since you read in 8 bit

blocks, but the codes can be shorter or longer than that

and there are no separators.

If you know the Huffman code for some encoded data,

decoding may be accomplished by reading the encoded

data one bit at a time. Once the bits read match a code

for symbol, write out the symbol and start collecting bits

again.

Huffman codes to binary data

Since they are arbitrary in length, Huffman codes can be

difficult to represent. The string data type has major

advantages, the length [15] can be changed, and

characters can be appended to them, or removed from

them at either end. While you will probably use strings to

represent the codes, you are not going to write a string of

ones and zeros to the file. That would defeat the point of

the program, which is file compression. You will need to

convert from a string of length 8 to a char value which

can written to the file, and do there reverse process as

well. This problem is that of finding the minimum length

bit string which can be used to encode a string of

symbols.

One application is text compression:

What's the smallest number of bits (hence the minimum

size of file) we can use to store an arbitrary piece of text?

Huffman's scheme uses a table of frequency of

occurrence for each symbol (or character) in the input.

This table may be derived from the input itself or from

data which is representative of the input. For instance,

the frequency of occurrence of letters in normal English

might be derived from processing a large number of text

documents and then used for encoding all text documents.

We then need to assign a variable-length bit string to

each character that unambiguously represents that

character. This means that the encoding for each

character must have a unique prefix. If the characters to

be encoded are arranged in a binary tree:

Encoding tree for ETASNO

An encoding for each character is found by following the

tree from the route to the character in the leaf: the

encoding is the string of symbols on each branch

followed.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

168

For example:

 String Encoding

 TEA 10 00 010

 SEA 011 00 010

 TEN 10 00 110

We already use the concept of Huffman encoding using

ternary tree. Here I try to use the concept of Huffman

decoding using ternary tree .we now implemented an

algorithm which is used for Huffman decoding.

Huffman codes are widely used and very effective

techniques for compressing data. Huffman’s algorithm

uses a table of the frequencies of occurrence of each

character to build up an optimal way of representing each

character as a binary string (i.e. a codeword). The

running time of Huffman algorithm on a set of n

characters is o (log n).

Hasemian presented an algorithm [6] to speed up the

search process for a symbol in a Huffman tree and to

reduce the memory size. He used a tree clustering

algorithm to avoid high sparsity of the Huffman tree.

However, finding the optimal solution of the clustering

problem is still open. Moreover, the codeword of a single

side growing [16] Huffman tree is different from the

codeword of the original Huffman tree. Later, Chung

gave a memory efficient data structure, which needs the

memory size 2n-3, to represent the Huffman tree. In this

paper, we shall purpose a more efficient algorithm to

save memory space.

The remaining part of this paper is organized as follows.

In section 4, for easy understanding, we give the idea of

the algorithm. After that, a memory efficient version of

our algorithm is presented; section 5 contains our

conclusion remarks.

4. IDEA OF OUR ALGORITHM:

In this section, we introduce algorithm A without saving

any memory space in order to present our idea simply.

Then Algorithm B, we shall describe how to implement

our algorithm so that the memory requirement is

extremely efficient.

Let T be a Huffman tree which contains n symbols. the

symbols the leaves of T are labeled from left to right as

s0 ,s1,s2,………………….sn-1

The level of a node with respect to T is defined by saying

that the root has level 0 and other nodes have a level that

is one higher than they have with respect to the sub tree

of the root which contains them. The largest level is the

height of the Huffman tree. The weight of a symbol is

defined to be
dh23 where h is the height of the

Huffman tree and d is the depth of the symbol. Let wi be

the weight of the symbol si for i=0,1,…….n-1. Define

the count0=w0 and counti=counti-1 + wi for i=1,2,……n-1.

For example see figure 1. The value of wi, counti and si,

i=0, 1, n-1 in the Huffman tree are shown in table 1.

Notice that the height h of the Huffman tree is 4

Example based on Algorithm A and Algorithm B

Figure 1

In above Huffman Tree, There are Eight Symbols

Table 1

dh

iweight 23

Where h is the height of the tree

d is the depth of the tree

Count = Cumulative Total

ALGORITHM A

Input:

The va lue of S i , W i and

count i , 1............2,1,0 ni , of a

Huffman ternary Tree T with height h and

a binary codeword c.

Output: -

The corresponding sy mbol ks of c .

METHOD:-

STEP 1: Compute

2

2
3.)1(

dh
ct

 ,

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

169

Where d is the number o f binary

digit s in C.

STEP 2:

Search t i f f rom array count, i f t i s no t

in the ar ray count, then c is no t a codeword

of T; o therwise assume tha t Count k = t .

STEP 3:

I f
dh

kw
 23 , then c i s not a

codeword of T ; o therwise kS is the

corresponding symbol o f codeword c .

End of Algori thm A

Here, weight of a symbol is defined to be
dh23 (For

Single growing Huffman Tree).

If there are more than 3 nodes on a Huffman ternary Tree

on a single level, then add 1 in every
th)13(node, 5th

and 6th node weight will be same.

ALGORITHM B

Input:

 The arrays S , b and COUNT of a

Huffman ternary Tree T with height h and

a binary codeword c.

Output: The corresponding sy mbol kS of

C.

STEP 1:

Compute

2

2
3)1(

dh
ct

, where d i s the

number o f b inary d igi ts inC .

STEP 2:

 Find count k such that

kk counttcount 1

STEP 3:

Compute 1 kk countcountx

STEP 4:

Decompose x in to 1x , 2x and 3x

such tha t ,321 xxxx
ei

ix 3 ,

......,2,1i for some non-negative

integer ie and assume, without loss of

genera l i ty that 21 ee .

STEP 5:

Use 321 &,, xxxbk to determine

ba ww , and cw which are the weights o f

kk SS 313 , and 13 kS respect ively.

STEP 6:

 I f kcountt and
2

2
3

dh
wc

 then

S
3k-1

 i s the corresponding symbol o f C.Let

13 kk and s top.

STEP 7:

I f
ck wcountt and

2

2
3

dh
wb

 then

kS 3 is the cor responding symbol o f C , Let

kk 3 and s top.

STEP 8:

I f
bk wcountt and

2

2
3

dh
wa

 then

13 hS is the corresponding symbol o fC , Le t

13 kk and s top.

Otherwise C i s no t a codeword of

binary code c.

Here:

13313 kkki wwww

For
1..........,2,1,0 ni

 iii wcountcount 1

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

170

For 1.............,2,1,0 ni

Now Apply Algori thm A

ALGORITHM A

Example 1 .

Let 000010C

Step 1: Compute

2

2
3).1(

dh
Ct

2

642
3.)12(

93.)3(3.)3(2

2

2

68

Step 2 :

 94 count

Step 3:

 33 34
4 w

Therefore 4S is the corresponding symbol o f

code word 000010.

Example – 2 .

Let 00001101C

Step 1:

Compute

2

2
3.)1(

dh
Ct

143.)14(2

88

d Number o f binary digit s in C.

Step 2:

We can no t f ind 14 from array count and

therefore 00001101 are not a codeword of T .

Algor i thm B

There are eight symbols. We are using Ternary Trees.

Therefore we divide symbols in to three parts i.e.

366.2
3

80

.

Therefore 3,2,1,0i

i 0 1 2 3

icount 2 9 54 81

ib 0 1 0 1

Example

11 333

kkk
wwwwi

For 1...........,2,1,0 ni

iii wcountcount 1

For 1...........,2,1,0 ni

For i = 0

 W o = W - 1 + W 0 + W 1

 = 1 + 1

 = 2

Count o = Count - 1 + W 0

 = 2

Count o = Count - 1 + W 0

 = 0 + 2

 = 2

For i= 1

 W 1 = W 2 + W 3 + W 4

 = 7

Count 1 = Count 0 + W 1

 = 2 +7 = 9

For i = 2

 W 2 = W 5 + W 6 + W 7

 = 45

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

171

Count 2 Count 1 + W 2

 = 9 + 45

 = 54

For i = 3

 W 3 = W 8 + W 9 + W 1 0

 = 27 +0 +0

Count 3 = Count 2 + W 3

 = 54 + 27

 = 81

Let C =0001

Step 1: -

2

2
3.)1(

dh
ct

2

44*2
3.)11(

 = (2) .
2

4
3

 = 29 = 18

Step 2:

 COUNT 1 , < 18 < COUNT 2

 And K = 2

Step 3: X = 54 – 9

 = 45

Step 4: Decompose X in to X 1 , X 2 , X 3

 i .e . X 1 =9, X 2=9, X 3= 27

Step: 5

W a = 9(weight o f S 3 k - 1 = S3 x 2 - 1 = S 5) = 9

W b = 9 (weight o f S 3 k= S6= 9)

W c = 27 (weight o f S 3 k + 1 = S7 = 27)

Respect ively

Step 6: t = 18

 Count 2 - W a

 Count 2 - W b

 Count 2 – W c

Step: 7 i f t = Count k

 COUNT 2 =

933 2

48

2

2

dh

Wc

= S 3 k - 1 = S 5 i s corresponding

Symbol .

4.1 Benefits of Ternary decoding algorithm Over Binary

decoding algorithm:

If we will represent the same data item with same

weights in Binary Tree as well as in Ternary Tree then

we can easily point out the comparison between two

representation as follows: -

IN TERNARY TREE: -

 Level of the tree = 4

 Height of the tree = 4

 x is decomposed into three parts x1 , x2 and x3

 Weight= 3
h-l

 t = (c+1). 3
(2h-d)/2

 i=(w0+…..wn)/3

 wi=w3k-1+w3k+w3k+1

 counti=counti-1+wi

 Number of Internal nodes= 4

 Total Number of Nodes (Internal + External) =

13

 Searching on Node is fast

WHILE IN BINARY TREE: -

 Level of the tree = 8

 Height of the tree = 8

 Weight= 2
h-l

 x is decomposed into two parts x1 and x2

 t = (c+1) 2
h-d

 i= (w0+wn)/2

 wi=w2k+w2k+1

 counti=counti-1+wi

 Number of Internal Nodes = 8

 Total Number of Nodes (Internal + External) =

17

 Searching on Node is slow

5. CONCLUSION:

We conclude that our algorithm can be done in less than

o(log n) time and needs memory space less than n + [n/2]

+ [n/2 log n] + 1 which is required in the case of

Huffman binary tree. Moreover our algorithm can also be

parallelized easily. We can conclude that decoding the

binary codeword generated by Huffman ternary tree by

using above two algorithms requires less time and it is

more efficient than the algorithm which is given by R.

Hasemian for Huffman binary tree. We already showed

that representation of Huffman Tree using Ternary tree is

more beneficial than representation of Huffman Tree

using Binary tree in terms of number of internal nodes,

Path length, height of the tree, in memory representation,

in fast searching and in error detection & error correction.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

172

6. ACKNOWLEDGEMENT:

The author Madhu Goel would like to thank Kurukshetra

University Kurukshetra for providing me University

Research Scholarship & support of Kurukshetra Institute

of Technology & Management.

REFERENCES:
[1] BENTLEY, J. L., SLEATOR, D. D., TARJAN, R. E.,

AND WEI, V. K. A locally adaptive data compression

scheme. Commun. ACM 29,4 (Apr. 1986), 320-330.

[2] DAVID A. HUFFMAN, Sept. 1991, profile Background

story: Scientific American, pp. 54-58

[3] ELIAS, P. Interval and regency-rank source coding: Two

online adaptive variable-length schemes. IEEE Trans. InJ

Theory. To be published.

[4] FALLER, N. An adaptive system for data compression. In

Record of the 7th Asilomar Conference on Circuits,

Systems, and Computers. 1913, pp. 593-591.

[5] GALLAGER, R. G. Variations on a theme by Huffman.

IEEE Trans. Inj Theory IT-24, 6 (Nov.1978), 668-674.

[6] Hashemain, “memory efficient and high-speed search

Huffman Coding” IEEE Trans. Communication 43(1995)

pp. 2576-2581.

[7] Hu, Y.C. and Chang, C.C., “A new losseless compression

scheme based on Huffman coding scheme for image

compression”,

[8] KNUTH, D. E, 1997. The Art of Computer Programming,

Vol. 1: Fundamental Algorithms, 3rd edition. Reading,

MA: Addison-Wesley, pp. 402-406

[9] KNUTH, D. E. Dynamic Huffman coding. J. Algorithms 6

(1985), 163-180.

[10] MacKay, D.J.C., Information Theory, Inference, and

Learning Algorithms, Cambridge University Press, 2003.

[11] MCMASTER, C. L. Documentation of the compact

command. In UNIX User’s Manual, 4.2 Berkeley

Software Distribution, Virtual VAX- I Version, Univ. of

California, Berkeley, Berkeley,Calif., Mar. 1984. ,

[12] PUSHPA R. SURI & MADHU GOEL, Ternary Tree & A

Coding Technique, IJCSNS International Journal of

Computer Science and Network Security, VOL.8 No.9,

September 2008

[13] PUSHPA R. SURI & MADHU GOEL, Ternary Tree &

FGK Huffman Coding Technique, IJCSNS International

Journal of Computer Science and Network Security,

VOL.9 No.1, January 2009

[14] PUSHPA R. SURI & MADHU GOEL, A NEW

APPROACH TO HUFFMAN CODING, Journal of

Computer Science. VOL.4 ISSUE 4 Feb. 2010 .

[15] ROLF KLEIN, DERICK WOOD, 1987, on the path length

of Binary Trees, Albert-Lapwings University at Freeburg.

[16] ROLF KLEIN, DERICK WOOD, 1988, On the Maximum

Path Length of AVL Trees, Proceedings of the 13th

Colloquium on the Trees in Algebra and Programming, p.

16-27, March 21-24.

[17] SCHWARTZ, E. S. An Optimum Encoding with

Minimum Longest Code and Total Number of Digits. If:

Control 7, 1 (Mar. 1964), and 37-44.

[18] TATA MCGRAW HILL, 2002 theory and problems of

data structures, Seymour lipshutz, tata McGraw hill

edition, pp 249-255

[19] THOMAS H. CORMEN, 2001 Charles e. leiserson,

Ronald l. rivest, and clifford stein.

[20] Thomas H.Cormen Charles E. Leiserson, Ronald L. Rivest,

and Clifford Stein. Introduction to algorithms, Second

Edition. MIT Press and McGraw-Hill, 2001. Section 16.3,

pp. 385–392.

Dr. Pushpa Suri is a reader in the department of computer

science and applications at Kurukshetra University Haryana

India. She has supervised a number of Ph.D. students. She has

published a number of research papers in national and

international journals and conference proceedings.

Mrs. Madhu Goel has Master’s degree

(University Topper) in Computer

Science. At present, she is pursuing her

Ph.D. and working as Lecturer in

Kurukshetra Institute of Technology &

Management (KITM), Kurukshetra

University Kurukshetra. Her area of

research is Algorithms and Data

Structure where she is working on Ternary tree structures. . She

has published a number of research papers in national and

international journals.

