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Abstraction 
Huge amounts of moving object data have been collected with 

the advances in wireless communication and positioning 

technologies. Trajectory patterns extracted from historical 

trajectories of moving objects can reveal important knowledge 

about movement behavior for high quality LBS services, 

especially for location prediction. Existing approaches cannot 

forecast accurate locations in the distant future since they use 

motion functions which emphasize the recent movements of 

objects. In this paper, we propose a new approach which utilizes 

frequent trajectory patterns to predict location. Using line 

simplification and clustering, the proposed method simplifies 

trajectories and clusters them into spatio-temporally meaningful 

regions. After original trajectories are discretized into the 

sequences using regions, trajectory patterns from discretized 

sequences are extracted using a prefix-based projection approach. 

Then, we construct a tree-structured prediction model using these 

patterns, which allows an efficient indexing of discovered 

patterns to find the best match. We experimentally analyze that 

the proposed method’s efficiency in discovering trajectory 

patterns, predicting a future location accurately even though the 

query time is far in the future. 

Key words: 
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1. Introduction 

With the advances of positioning technology and wireless 

communication, an accurate location of a mobile device 

can be provided and utilized in various kinds of location 

based services. For example, users with GPS-equipped cell 

phones can log their positions at a fixed time interval and 

transmit it to the server of the wireless carrier. Reliable and 

high quality LBS services, such as traffic management or 

route finding system, require not only the current positions 

but also the future locations of users. Although the 

accuracy and the availability of positioning data have been 

increased, we cannot track an object for a long time due to 

the failures in GPS systems and mobile devices as well as 

the limitations of wireless networks. When the current 

location of a moving object is not available, a reliable 

method for location prediction of a moving object is 

required [1]. Since existing methods adopt mathematical 

functions based on objects’ recent movements, they may 

not provide an accurate prediction results for a location in 

the distant future. Motion functions that are used for 

location prediction cannot represent an object’s movement 

since it moves in a far more complex way in reality. A 

sudden detour from the path or complicated movement 

along the road networks cannot be captured by linear or 

nonlinear motion functions [2]. 

Since moving objects such as mobile users or vehicles 

often go along similar routes, we can give a reasonable 

answer to the prediction query about the object’s location, 

if the movement patterns are known in advance. Data 

mining techniques can be used to discover spatio-temporal 

regularities in trajectories. Existing studies on discovering 

trajectory patterns simply discretize spatial and temporal 

properties into location symbols based on a fixed size grid. 

Then, frequent sequential patterns are extracted from the 

sequences of discretized location symbols. There are some 

limitations in these approaches. Due to the improper cell 

size, hidden patterns in trajectories may be lost during the 

discretization step. Moreover, the redundant appearance of 

the same symbols in the discretized sequences, which 

means the duration value between two different locations, 

not only hinders the efficient processing of data, but also 

decreases the interpretability of extracted patterns [3].  

In order to tackle this problem, we introduce a compact 

representation of trajectories, which approximates the 

movements of objects into spatio-temporal regions. In this 

paper, we address the problem of discovering frequent 

trajectory patterns using this data abstraction as well as 

predicting the future location of an object based on the 

extracted patterns. Our approach first approximates 

original trajectories into the simplified sequences and finds 

frequent patterns from the sequences. Finally, a prediction 

model is constructed based on these patterns and the best 

match for an object’s location is determined among all the 

possible paths in the model.  

The rest of this paper is organized as follows. In Section 2, 

we describe related works. The problem of extracting 

frequent trajectory patterns and predicting future location 

based on patterns is represented in Section 3. We present 

experimental evaluations of our approach in section 4. 

Finally, Section 5 provides concluding remarks and 

discussions for future works.   

2. Related Works 

There have been many studies that address the problem of 

predicting an object’s future location. Efficient access 
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methods for predictive query processing have been 

proposed in [4] and [5]. They use motion functions to 

estimate objects’ future locations that are based on the 

recent movements of objects. Although Recursive Motion 

Function (RMF) [5] is known as the most accurate one 

among the existing methods, it cannot give us an accurate 

answer when the query time is far from the current time.  

In the recent years, several methods for predicting future 

locations based on frequent patterns have been proposed. 

In [6], a mining algorithm for predicting user movements 

in a PCS (Personal Communication Systems) network was 

proposed. They define the mobility pattern as a sequence 

of cells and mine frequent paths based on sequential 

pattern mining. Morzy applied the PrefixSpan algorithm to 

predict the location of a moving object [1]. Since he 

assessed the extracted rules based on the support and 

confidence of the rules, spatio-temporal closeness of the 

rule to the given query trajectory was not considered in the 

evaluation process. In [2], a hybrid approach, which 

estimates an object’s future location, was proposed by 

Jeung et al. They selectively used a motion function for 

near future predictions or a pattern based prediction for a 

query of the distant future. In [7], Giannotti et al pursued a 

similar goal. They propose a method to predict the next 

location of a moving object. They utilized movement 

patterns named Trajectory Patterns, which were proposed 

in their previous work. Although their approach is similar 

to ours in representing spatio-temporal movements in an 

abstracted way, they require more complex spatio-temp 

-oral computations for estimating prediction candidates. 

3. A Prediction Model based on Frequent 

Patterns  

Mainly, our approach for predicting objects’ future 

locations is divided into two sub-problems: (i) mining 

frequent trajectory patterns and (ii) location prediction 

based on the extracted patterns. This section first defines 

the problem of mining spatio-temporal patterns in 

trajectory data and proposes a mining algorithm which 

uses the line simplification and clustering. Then, a tree 

structured prediction model that is constructed based on 

the extracted patterns will be described. Finally, we 

present a prediction strategy for a new trajectory. 

  

3.1 Mining Frequent Trajectory Patterns 
 

A trajectory of a moving object is a temporally ordered 

sequence over a long history, consisting of spatial 

locations that are measured in 2-dimensional coordinates 

 
 

Fig. 1. A spatio-temporal region 

 

at each time-stamp. We can represent a spatio-temporal 

sequence S as a consecutive set of location measurements, 

S = {(x1, y1, t1),(x2, y2, t2),..., (xn, yn, tn), where (xi, yi) is the 

location of object at timestamps ti, (ti < ti+1). In order to 

mine the frequent patterns based on the sequential pattern 

mining approach, continuous spatial and temporal values 

should be discretized prior to the mining process. To 

discretize trajectory data, each (xi, yi) at timestamp ti is 

transformed to the id of the spatial region describing the 

object’s location. Since the interval between consecutive 

timestamps is fixed, the sequence is converted to a 

generalized sequence of location symbols “l1l2…” and 

temporal properties of movements, therefore, are 

abstracted into redundant symbols and their sequential 

order [8]. In general, the data space is partitioned into a 

fixed size grid or cells based on communication 

infrastructure, and thus location symbols consist of the IDs 

of the cells. Although this is simple and intuitive, we may 

not obtain satisfactory results in finding spatio-temporal 

patterns for several reasons. First, an inappropriate cell 

size results in losing some patterns during the 

discretization. Second, since the performance of the 

sequential mining process is closely associated with the 

length of sequence and the number of different items 

appearing in the sequence, redundancy of the same symbol 

deteriorates the mining performance. Third, inaccurate and 

unintuitive patterns could be derived from data. Actually, 

{A…AB…BC…C} has a different temporal meaning 

compared to {ABC}. However, if the former is found to be 

a frequent pattern, {ABC} will also be frequent irrelevant 

to its actual frequency in the database. Thus, we need to 

represent the trajectory in a better way that incorporates 

temporal constraints. Data space can be partitioned into 

disjointed areas which represent meaningful spatio- 

temporal changes in objects’ movements. If we represent 

original trajectories as sequences of these areas, a 

spatio-temporal pattern can be defined as a pattern ST = 

{(R1,d1), (R2,d2),…,(Rn,dn)}, where Ri is a region that 

spatially approximates points between Pli and Pri in 

original trajectory T, and di is a duration of an object’s 

movements within the corresponding region. Fig. 1 shows 

an example of a trajectory pattern which approximates 

objects’ movements into a 3-dimensional region. Finally, 
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we can reframe the problem of mining frequent trajectory 

patterns into a problem of discovering all frequent 

sequential patterns from sequences of these regions. 

In order to discover spatio-temporal patterns from 

trajectories, we propose a pattern mining method based on 

line simplification and clustering [3]. The data space needs 

to be partitioned into spatio-temporally meaningful regions 

by abstracting spatio-temporal properties in order to 

improve efficiency of the mining process. To address this 

problem, we first summarize trajectories into their 

approximations using line simplification. Line 

simplification is a method for compressing polylines 

within a deterministic error bound [9]. Starting from the p1 

and pn of a whole trajectory, the algorithm abstracts it into 

line segments which approximate all the original points 

within the corresponding segment, such that the 

perpendicular distance from the centerline of the segment 

is, at most δ. To represent the segments, we construct 

feature vectors based on the simplified segments by 

incorporating temporal constraints and then normalize 

them to equalize the importance of all features. Next, we 

cluster similar segments into regional groups to partition 

the data space appropriately. We consider the preclustering 

phase of BIRCH [10] as a segments clustering step, which 

has linear time complexity in input size and stores a 

summary of data in a compact tree structure, called the 

CF-tree. As a result, spatio-temporal segments are grouped 

into clusters which divide the data space into disjointed 

groups. Then original trajectories are discretized into 

sequences of cluster-IDs into which the simplified 

segments fall in. We adopt a depth-first search based 

method extending from [11] to discover frequent trajectory 

patterns from these sequences. By scanning the sequence 

database, all single region ids with a support count of 

greater than given the min_sup are found as 1-length 

frequent patter. Starting from the discovered 1-length 

regions, we apply a variant of a prefix-projection algorithm 

to discover longer ones, as shown in the algorithm below. 

The algorithm extends prefixes by a depth-first traversal 

and iteratively generates sub-projections with new prefixes 

until the condition is met. Details about the frequent 

pattern mining in this subsection are described in the 

previous work of the authors [3]. 

 

3.2 Prediction Model for Moving Objects 
 

When the frequent trajectory patterns are discovered, 

association rules are generated from the patterns. We can 

adopt the idea of a rule-based classifier to build a 

prediction model. Predicting the next location of a new 

trajectory is merely a problem of matching it to the rule’s 

antecedents and finding the best match. If we find the best 

matched rule, the result is a region symbol in the rule’s 

consequence, which is temporally closest to the query tim 

e. For example, when we have a pattern r1r2r3r4 and a ne- 

 

w trajectory is discretized to r1r2, then r3 will be the 

next location if the query time is closer to the region r2. 

r3 will be the prediction result in other cases.  

The number of rules generated from the frequent patterns 

is enormously large, thus we have to prune the rules before 

constructing a prediction model in order to reduce the 

number of rules and the size of the model. A minimum 

confidence level can be used to select rules with strong 

confidence. 

In order to efficiently access generated patterns, we 

present a tree-based indexing structure called FPT 

(Frequent Pattern Tree). It is modified from a TRIE 

structure and compactly represents the selected patterns 

from the previous step. The path from a root to each node 

corresponds to a trajectory pattern and each node, except 

the root, has a parent, which is a region symbol appeared 

at preceding position in the rule’s body part. As shown in 

Fig. 2, each node, except the root, is consist of three 

entries of the form of (region, duration, support); where 

region is the region symbol in a trajectory pattern, 

duration is the duration value of the region, and support 

means the support count of the pattern which is described 

by a path from the root to the corresponding node.  

When the FPT is constructed, predicting the future 

location of a new trajectory simply is a problem of finding 

the closest path on the tree to the given partial trajectory. 

To match a new trajectory with all possible paths on FPT, 

we have to discretize a trajectory into the form of a 

sequence of regional symbols. As the summary of 

spatio-temporal approximation during pattern mining 

phase is maintained in a CF-tree, we can apply it to the 

discretization of the new query. The CF-tree summarizes  

Algorithm Mining ST-patterns  
Input : Trajectory database T, a simplification threshold δ, a 
clustering threshold ε  
Output : A frequent pattern tree based on trajectory patterns 
begin 
1:  T′ := Line_Simplification(T, δ); 
2:  V := FeatureVector_Construction(T′) ;   
3:  R := Discovering_STRegions(V, ε); 
4:  n := 1; 
5:  F := Pattern_Extraction(, n, R); 
6: FPT := Pruning_Rules(F, min_conf); 
7: return FPT; 
End 

Algorithm Predicting Locations(t, q, FPT, CF-tree) 

Input : A new trajectory t, a query time q, a frequent pattern 
tree FPT , CF-tree from the mining phase 
Output : A best score prediction result 
1:  t′:= Discretize(t, CF-tree); 
2:  S := {α–projected patterns for all patterns in Fα } 
3:  for each path  FPT { 
4:    score := Calculate_Score(path, t′, ) 
5:    if score is the best 
6:       prediction = Compute_Prediction(path, q) 
7: } 
8: return prediction; 
End 
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Fig. 2. A Frequent Pattern Tree  

 

the information about clusters of data points in their nodes, 

which is a triple consists of (N,


LS , SS), where N is the 

number of data points in the cluster, 


LS is the linear sum 

of the N data points and SS is the square sum of the N data 

points. After a new trajectory is simplified into line 

segments with a given threshold δ, we can find the closest 

cluster to the segments using CF (Clustering Features) 

values [10]. Once a trajectory is discretized into a 

sequence of regions, it is not required to perform complex 

spatio-temporal computations to calculate the similarity 

between a path on the FPT tree and the given query. This 

reduces the processing time to evaluate all the paths for the 

given trajectory and improves the prediction performance.  

To find the best path among all the paths on the FPT, we 

have to evaluate the closeness of the candidate paths on 

the tree and the given trajectory. Therefore we have to 

compute the matching scores of paths and select the 

temporally closest result to the query time. When we have 

path p and a new trajectory t, the score is calculated as 

follows.  

Score (p, t) = Sm × confidence × Tdiff ( 0 ≤ Score ≤ 1 ) 

 Sm : sum of the matching scores of all the nodes along 

the path, defined as 
k

n

k km SS   , where k is a 

weight value for 
kS  and 

kS  is a match score between 

region symbols on the node and the new query.  

 confidence : confidence of the rule. 

 Tdiff : the difference between the query time and the 

total length of the path. 

For an accurate prediction, recent positions of a moving 

object should have a greater importance than older 

positions. k , weight for 
kS  is used for this purpose. In 

addition, if the timestamp of the last position of a path is 

far away from the query time, the prediction result cannot 

be accurate. Thus, Tdiff is included to incorporate temporal 

similarity to the query time.  

4. Experimental Evaluations 

In this section, we provide preliminary results of 
experimental evaluations of the proposed approach. C++ 
was used in implementation and experiments were perfor- 

 

Fig. 3. Prediction accuracy of the proposed method 

 

 

Fig. 4. Visualization of prediction results of 3 sample queries 

med on a Pentium D 3.4 GHz machine with 1GB memory. 

We use the C++ library of geometry functions for 

implementing line simplification and several distance 

functions. The preclustering phase of BIRCH is 

implemented based on the original paper [10] and open 

source code
1
.  

Due to the lack of real trajectory data for privacy reasons, 

we generated synthetic data using Network-based 

Generator, by T. Brinkhoff [12]. We generated data based 

on the Oldenburg map. We use a dataset of 200 objects and 

500 time units for the accuracy test. For the scalability test, 

the number of objects of dataset was varied from 100 to 

500 and value of time units was set to 1000. For both cases, 

we set the maximum velocity of moving objects to 50 and 

the report probability to 1000 which means that the 

location is reported at every time stamp during movements. 

In order to compare the scalability of the mining process, 

we used two different existing methods GSP [13] and 

PrefixSpan [11]. For both cases, we discretized input data 

into a sequence of a location symbols using equal width 

discretization (EQW), which is mostly used in existing 

spatio-temporal mining studies. 

We performed 10-cross validations on a dataset of 200 

objects to evaluate the prediction accuracy. As test datasets, 

partial queries of 60% of the total length are used. 

Prediction length, which means how far the query time is 

from the length of the given trajectory, is the most critical 

factor to a degradation of the prediction accuracy. To test 

the accuracy of a query time in the distant future, we obse-  

                                                   
1 http://pages.cs.wisc.edu/~vganti/birchcode/. 

http://pages.cs.wisc.edu/~vganti/birchcode/
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Fig. 5.  The impact of threshold values on pattern mining and prediction 

rve the accuracy over increasing prediction length. Line 

simplification threshold δ was set to 0.001 or 0.002, 

clustering threshold ε and min_sup to 0.05 for both cases. 

Note, however, that generated data is distributed in a 

workspace of 10001000 units, all values are normalized 

between 0 and 1, and so threshold values should be within 

this boundary. The number of frequent patterns extracted 

from the mining phase was 192 and 718, when δ is set to 

0.002 and 0.001, respectively. As shown in Fig. 3, our 

method shows very high accuracy with a moderate 

decrease as the prediction length increases, especially 

when δ is 0.001 (that is, the input data is properly 

discretized). To illustrate the results in detail, Fig 4 shows 

the visualization result for 3 test queries. A training data 

are represented by gray polylines and 3 different partial 

queries are represented in black, while the light blue 

indicates their whole path. The prediction results for 320 

time units and 460 time units are depicted in red dots. As 

we expected, predicted positions locate correctly on the 

expected paths.   

The next experiment examined the impact of threshold 

values required for the proposed method. At first, we 

tested the prediction accuracy with respect to the increased 

min_sup values. For all cases, δ was set to 0.002 and ε to 

0.05. As we increased the min_sup, the number of rules 

generated from the mining phase decreased, thus the 

predictive power of the model fell slowly. Since the large 

number of patterns disturbed the efficient construction of 

an FPT model, we argue that there is a tradeoff between 

the predictive power of a model and the construction time. 

Second, the impact on the mining performance of the two 

threshold values δ and ε was evaluated. For testing the 

impact of δ, we set min_sup and ε to 0.05. For testing ε, we 

made no change in min_sup and the δ was set to 0.002. As 

we increase the threshold δ, the boundary of spatial area 

becomes large, thus a smaller number of simplified 

segments were generated for each trajectory. The length of 

sequence of spatio-temporal regions decreases as the value 

of δ grew. Therefore, as the threshold value increases, we 

expect that the running time of the mining process 

decreases, which is compatible with the result in Fig. 5b. 

Similarly, as threshold ε increases, more segments are 

grouped into one cluster and the number of different 

spatio-temporal regions is reduced. That is, ε is tightly 

associated with the different number of items (i.e. 

spatio-temporal regions) in the sequences. Although they 

do not have a linear relationship, Fig. 5 illustrates that the 

execution time phases down as the ε increases. 

In the last experiment, we study the scalability of the 

proposed method by comparing total execution time with 

respect to the data size. We run a scale up experiment 

under two different min_sup values. We set δ to 0.06 and ε 

to 0.04 and divide the search space with a grid of 1010 

cells for EQW discretization for GSP and PrefixSpan 

algorithms. As shown in Fig. 6, the proposed method 

shows significant speed increase over the other methods. 

Since the performance of the mining process is highly 

associated with the length of input sequences and the 

number of different items appearing in the sequences, 

abstracted representations of our method result in a data 

reduction effect and the pruning of search space in the 

mining process. We can expect that the performance 

difference will be more pronounced when the cell size for 

discretization of the compared methods becomes smaller 

(like 2020 cells). 

5. Conclusions 

In this paper, we presented a new approach predicting the 

future location of moving objects based on frequent 

trajectory patterns. Trajectory patterns are utilized to 

construct a prediction model that allows us to predict 

accurate locations; particularly the movements of objects 

that are too complex to be represented by a motion 

function. We introduced the problem of sequential 

representation of temporal properties degrading the mining 

efficiency and the compactness of extracted patterns. To 

address this problem, we proposed an efficient method for 

mining frequent trajectory patterns. The proposed method 

discovers spatio-temporal regions using line simplification 

and clustering, and extracts frequent patterns in a prefix- 
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Fig. 6.  Mining efficiency under different data sizes 

 

projection approach. We also present a tree-structured 

prediction model using the extracted patterns. By scoring 

all potential paths on the frequent pattern tree, we can 

acquire the prediction result from the best matched path to 

a given trajectory. Experimental results demonstrate that 

our method forecasts locations accurately when the query 

time is far from the current time. It also discovers frequent 

trajectory patterns more efficiently than existing 

approaches.  
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