
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

235

Manuscript received March 5, 2010

Manuscript revised March 20, 2010

A Memory-based Ant Colony Algorithm for the Bipartite

Subgraph Problem

Rong-Long Wang and Li-Qing Zhao

Graduate School of Engineering, University of Fukui, Bunkyo 3-9-1, Fukui-Shi, Japan 910-8507

Summary
An innovative ant colony algorithm called memory-based ant

colony algorithm is proposed to solve the bipartite subgraph

problem. In the proposed algorithm, artificial ant has memory of

solution found previously, and can use it to construct a new

solution. Besides, in the proposed algorithm two kinds of

pheromone and two kinds of heuristic information are also

adopted to reinforce the search ability. The proposed algorithm is

tested on a large number of instances and compared with other

algorithms. The experimental results show that the proposed

algorithm is superior to its competitors.

Key words:
Bipartite subgraph problem, ant colony optimization, NP-

complete problem, combinatorial optimization problems

1. Introduction

The bipartite subgraph problem [1] is an important

problem from combinatorial optimization. It has many

important applications in modeling matching problem,

modern coding theory, and communication network,

printed circuit board, and computer science [2]. It was

proved to be a NP-complete problem [3] [4]. It is well

known that there is no tractable algorithm to solve NP-

complete problem, which motivates to find better

algorithms that yield better approximate solutions. Many

approximate algorithms have been proposed for bipartite

subgraph problem. An algorithm for solving the largest

bipartite subgraphs in triangle-free graph with maximum

degree three has been proposed [5]. Grotschel and

Pulleyblank [6] defined a class of weakly bipartite graphs

such that the convex hull of incidence vectors of bipartite

subgraphs is defined by odd cycle inequalities. Barahona

[7] characterized another class of weakly bipartite graphs.

Based on the Hopfield neural network [8], Lee et al. [9]

proposed a maximum neural algorithm for the bipartite

subgraph problem. Unfortunately, the maximum neural

network that is based on the steepest descent method

sometimes causes the excessive fixation of the state of the

neural network and easily converges to the oscillation state

of local minimum because of the limitation of its ability

[10]. Wang et al. [11] proposed a parallel algorithm using

gradient ascent learning algorithm of the Hopfield network,

the result of which is superior to that of Lee et al. Global

search methods such as simulated annealing can also be

applied to the problem, but they are generally very slow

[12] [13].

Currently, in the optimization field, swarm intelligence

algorithms have been shown to be good problem solvers

with various application domains. These mainly consist of

the particle swarm optimization (PSO) and the ant colony

optimization (ACO) [14]. Especially ACO algorithms have

been shown to be very successful for solving problems

from combinatorial optimization. The inspiring source of

ACO algorithms are real ant colonies. More specifically,

ACO is inspired by the ants‟ foraging behavior. At the

core of this behavior is the indirect communication

between the ants by means of chemical pheromone trails,

which enables them to find short paths between their nest

and food sources. This characteristic of real ant colonies is

exploited in ACO algorithms in order to solve, for

example, discrete optimization problems. In the original

ACO algorithms, only one kind of pheromone is used.

However for some combinatorial optimization problems, it

is not efficient to show the quality of solution using only

one kind of pheromone. We have proposed a two-state ant

colony algorithm for the minimum graph bisection

problem [15], in which two kinds of pheromone and two

kinds of heuristic information are adopted to reinforce the

search ability.

In this paper, we proposed a memory-based ant colony

algorithm for solving the bipartite subgraph problem. In

the proposed algorithm, artificial ant has memory of

solution found previously, and can use it to construct a

new solution. Besides, the idea of using two kinds of

pheromone and two kinds of heuristic information

proposed in our previous work [15] is also adopted in the

proposed algorithm. The proposed algorithm is tested on a

large number of instances and compared with other

algorithms. The experimental results show that the

proposed algorithm works remarkably well and is superior

to its competitors.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

236

2. Problem Formulation

For a given N-Vertex M-edge undirected graph G=(V,E), if

the vertex set V can be partitioned into two subsets V1 and

V2, such that each edge of G is incident to vertex in V1 and

to a vertex in V2, then the graph G is called bipartite graph,

and be denoted by G=(V1,V2,E). Given a graph G=(V,E)

with a vertex set V and an edge set E, the goal of bipartite

subgraph problem is to find a bipartite subgraph with the

maximum number of edges, such that

V1∪V2 = V, V1∩V2 In other words, the goal of bipartite

subgraph problem is to remove the minimum number of

edges from a given graph such that the remaining graph is

a bipartite graph. This problem can be formulated as

follows: For a given graph with N vertices and M edges, its

vertex set can be represented using vector =(x1,

x2, . . . ,xN), where xi (i = 1, 2, . . . ,N) expresses #i vertex is

partitioned into the subset V1 or V2. A value of 1 for the xi

implies that #i vertex is partitioned into subset V1, and a

value of 0 denotes that it is partitioned into subset V2.

Therefore, the bipartite subgraph problem can be

mathematically transformed into the following

optimization problem:

Maximize ; C=∑ij |xi-xj| (1)

Where dij is 1 if there is an edge from vertex #i to vertex #j,

otherwise, 0.

3. Ant Colony Optimization

Ant Colony Optimization (ACO) [16] is one of the most

recent techniques for solving combinatorial optimization

problems, and has been unexpectedly successful in recent

years. ACO is based on the indirect communication of a

colony of simple agents, called artificial ants, mediated by

artificial pheromone trails. It implements a randomized

construction heuristic that makes probabilistic decisions as

a function of artificial pheromone trails, which are

determined by the pheromone intensity and the heuristic

information based on the input data of the problem to be

solved, if they are available. The first ACO algorithm,

called Ant System (AS) [16] was proposed by Dorigo in

1992. Since then, the ACO algorithms attracted the

attention of more researchers.

Firstly, AS was applied to the Traveling Salesman

Problem (TSP). Given a set of n towns, the TSP can be

stated as the problem of finding a minimal length closed

tour that visits each town once. We call dij the length of the

path between towns i and j, and Let τij(t) called pheromone

be the intensity of trail on edge (i, j) which connects i and j

at time t. Each of m ants decides independently on the city

to be visited next based on the intensity of pheromone trail

τij and a heuristic value ηij , until the tour is completed.

Each ant is placed on a random start city, and builds a

solution going from city to city, until it has visited all of

them. The probability by which an ant k in a city i chooses

to go to a city j next is given by:

 (2)

Where the heuristic value ηij = 1/dij , the parameters α and

β determine the relative influence of pheromone and

heuristic, and J
k
 is the set of cities that remain to be visited

by ant k positioned on city i. Once all ants have built a tour,

ants perform following pheromone update rule:

 (3)

Eq. (3) consists of two parts. The left part makes the

pheromone on all edges decay. The speed of this decay is

defined by ρ, the evaporation parameter. The right part

increases the pheromone on all the edges visited by ants.

The amount of pheromone an ant k deposits on an edge

(i,j) is defined by L
k
(t), the length of the tour created by

that ant at iteration t.

 (4)

In this way, the increase of pheromone for an edge

depends on the number of ants that use this edge, and on

the quality of the solutions found by those ants.

Even though the original AS algorithm achieved

encouraging results for the TSP problem, it was found to

be inferior to state-of-the-art algorithms for the TSP as

well as for other problems. Therefore, several extensions

and improvements of the original AS algorithm were

introduced over the years. ACS [17] has been introduced

to improve the performance of AS. It differs in three main

aspects from ant system. First, in ACS ants choose the

next city using the pseudo-random-proportional action

choice rule: when located at city i, ant k moves with

probability q0 to city l for which τil(t)∙[ηil]
β
 is maximal.

With probability (1-q0) an ant performs a biased

exploration of edges according to Eq. 2. Second, in ACS

only the global best ant is allowed to add pheromone. The

most interesting contribution of ACS is the introduction of

a local pheromone update in addition to the pheromone

update performed at the end of the construction process

(called offline pheromone update). The effect of the local

updating rule is to make an already chosen edge less

desirable for a following ant. The Max-Min AS [18] is a

direct improvement over AS. The main modifications

introduced by Max-Min AS with respect to AS are the

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

237

following. First, to exploit the best solution found, after

iteration only the best ant which can be either the

iteration-best or the best-so-far, is allowed to add

pheromone. Second, to avoid search stagnation, the

allowed range of the pheromone trail strengths is limited to

the interval [τmin, τmax]. Last, the pheromone trails are

initialized to the upper trail limit, which causes a higher

exploration at the start of the algorithm. Another

improvement over AS is the rank-based version of Ant

System (ASrank) [19]. In ASrank, always the global-best tour

is used to update the pheromone trails. Additionally, a

number of best ants of the current iteration are allowed to

add pheromone. To this aim the ants are sorted by tour

length, and the quantity of pheromone an ant may deposit

is weighted according to the rank r of the ant. Only the (w-

1) best ants of each iteration are allowed to deposit

pheromone. The global best solution, which gives the

strongest feedback, is given weight w. The rth best ant of

the current iteration contributes to pheromone updating

with a weight given by max {0, w-r}.

In addition to the ACO algorithms outlined above, there

are some variants when applying ACO to various

problems. For a more comprehensive overview that covers

the application of ant-based algorithms to combinatorial

optimization problems we refer the interested reader to

[20][21].

4. A Memory-based Ant Colony Algorithm

for Solving the Bipartite Subgraph

Problem

Artificial ants in ACO algorithms can be seen as

probabilistic construction heuristics that generate solutions

iteratively by taking into account accumulated past search

experience: pheromone trails and heuristic information on

the instance under solution. In the existing ACO

algorithms, each ant starts with an empty solution and

constructs a complete solution iteratively. It is a process

that the solution is constructed gradually from empty

solution. In other word, the solution is incomplete in the

whole process of iteration.

In this section, we propose a memory-based ant colony

algorithm for the bipartite subgraph problem. In the

memory-based ant colony algorithm, artificial ant has

memory of solution found previously, and can use it to

construct a new solution. Firstly a randomly initial

solution is given; then, the initial solution is adjusted

gradually until the end condition is achieved. Thus, the

solution is always complete in the whole process, and the

heuristic information is update once the solution is updated.

The principle of updating heuristic is that awards and

penalties are executed by taking into account accumulated

past search experience after a solution is updated. Besides,

the idea of using two kinds of pheromone and two kinds of

heuristic information proposed in our previous work [15]

is also adopted in the proposed algorithm. The details of

this algorithm are as follows.

In the proposed ACO algorithm, each ant has two states in

which the ant deposits two kinds of pheromone (τ
1
and τ

0
)

on vertex. Pheromone τ
1
 and τ

0
 indicate the learned

desirability of partitioning the vertex into subset V1 and V2

respectively. Besides, two kinds of heuristic information η
1

and η
0
 are also associated to a vertex to indicate the

heuristic desirability of partitioning the vertex into subset

V1 and V2 respectively. In the proposed algorithm, ant

selects a vertex with high associated pheromone trail τ
1
and

heuristic value η
1
 for subset V1, and then selects a vertex

for subset V2 using τ
0
, η

0
 in each iteration. In iteration t an

ant k selects #i vertex for subset V1 and V2 with

probabilities pk
1
(i), pk

0
(i) respectively.

 (5)

 (6)

Where τi
1
, τi

0
 are pheromone trail and ηi

1
, ηi

0
 are heuristic

information in vertex #i. J
k
 is the set of vertexes that

remain to be partitioned by ant k, the parameters r1 and r2

determine the relative influence of pheromone and

heuristic information.

In the iteration, pheromone trails are updated. We use C

(shown in Eq. (1)) to characterize the pheromone update

process. The pheromone trails of the global-best ant and

several other random ants in current iteration are captured

with certain weight to update the pheromone. For example,

if the number of random ants is Nr, the pheromone update

is as follows:

 (7)

 (8)

where ρ is a coefficient such that (1 - ρ) represents the

evaporation of trail between time t and t+1,

, represent the pheromone update of the

global-best ant, and , represent pheromone

update of the random ants.

The amount of pheromone an ant k deposits on vertex #i is

defined by:

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

238

 (9)

 (10)

where Ck is defined in Eq. (1), Edge_Num is the number of

edges in graph G=(V,E).

The heuristic information can play a significant role in the

performance of ACO algorithms. Original ACO algorithm

uses static heuristic information, in which the heuristic

information can be computed only once, when initializing

the algorithm. Then it remains the same throughout the

whole run of the algorithm. In the proposed method, we

use dynamic heuristic information. The dynamic heuristic

information depends on the partial solution constructed

and it is computed at each construction step of each ant.

Once a vertex is partitioned according to the probabilities

(shown in Eq. 5 and Eq. 6), the heuristics information is

updated by executing awards and penalties. Awards and

penalties is the foundation in the proposed memory-based

ant colony algorithm, and how to execute the awards and

penalties is very important.

In the proposed method for the bipartite subgraph problem,

the heuristic information is defined as followings:

 (11)

 (12)

where [EdgetoV1]i is the edge number which the #i vertex

connects to the vertex in group V1, [EdgetoV2]i is the edge

number which the #i vertex connects to the vertex in group

V2. The method to execute the awards and penalties is as

follows. For the #r vertex (dir=1) which has been

partitioned just now, if the value of xr is changed from 1

(in V1) to 0 (in V2) according the probabilities, then add α1

to [EdgetoV2]i as awards, and subtract α2 from [EdgetoV1]i

as penalties, otherwise subtract α2 from [EdgetoV2]i, add α1

to [EdgetoV1]i. We call α1 award parameter and α2 penalty

parameter. Thus, we have:

 (13)

 (14)

The awards and penalties are executed after each vertex is

partitioned in the current iteration, and then update the

heuristic information according to Eq. (11) and Eq. (12)

for the next iteration.

5. Algorithm

The following search procedure describes the proposed

memory-based ant colony algorithm for solving the

bipartite subgraph problem:

(1) Set parameters.

(2) Randomly generate initial solutions and initialize the

pheromone τ
1
and τ

0
.

(3) Update the pheromone trails τ
1
and τ

0
 according to Eq.

7 and Eq. 8.

(4) Update probabilities using Eq. 5 and Eq. 6, and

partition a vertex to V1 or V2 according to the

probabilities

(5) Awards and penalties are executed and heuristic

information is updated for all vertexes according to Eq.

11 and Eq. 12.

(6) If all vertexes are partitioned, go to next step, else go

to step (4).

(7) Calculate the solution quality using Eq. 1.

(8) If termination condition is satisfied, terminate this

procedure. Otherwise, go to the step (3). The

termination condition is as follow:

 (15)

6. Simulation Results

In order to verify the proposed approach, we have tested

the algorithm with a large number of randomly generated

graphs [22] defined in terms of two parameters, n and p.

The parameter n specifies the number of vertices in the

graph; the parameter p, 0 < p < 1, specifies the probability

that any given pair of vertices constitutes an edge. In

preliminary experiments we tried to find reasonable

parameter settings for the proposed memory-based ant

colony algorithm. The award and penalty parameters α1, α2

are very important for the proposed algorithm. A set of

different values was used for the algorithm to verify which

group is better. From our preliminary simulations, we find

that α1=6.00, α2=5.00 can result good results. The other

parameters setting used in simulations is as follows: ants

number is 100, the parameters (r1, r2) = (1, 6) which

decide whether pheromone or heuristic is important, the

evaporation parameters ρ=0.5. To evaluate our results, we

compared our results with the other existing algorithm

including Marks et al.‟s heuristic algorithm [23], Lee et

al.‟s neural network algorithm [9] and Wang et al.‟s

Hopfield neural network learning algorithm [11].

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

239

Table 1: The comparisons of simulation results produced by different algorithms

Vertexes Probability Edges

Marks et.al [23]

Lee. et.al [9]

Wang et.al [11]

SA [22]

Proposed algorithm

50 0.05 61 53 52 53 53 53

50 0.15 183 136 133 136 136 136

50 0.25 305 205 203 205 205 205

80 0.05 158 134 127 134 134 134

80 0.15 474 330 325 330 330 330

80 0.25 790 513 504 513 513 513

100 0.05 247 207 196 206 207 207

100 0.15 742 501 492 501 502 502

100 0.25 1235 778 761 779 779 779

150 0.05 558 423 402 421 419 423

150 0.15 1676 1077 1062 1074 1069 1077

150 0.25 2790 1692 1645 1693 1674 1699

200 0.05 995 722 685 713 714 722

200 0.15 2985 1871 1838 1864 1586 1874

200 0.25 4975 2954 2886 2941 2948 2955

250 0.05 1556 1104 1060 1100 1094 1107

250 0.15 4668 2856 2809 2856 2849 2872

250 0.25 7780 4516 4435 4510 4526 4534

300 0.05 2242 1530 1486 1524 1522 1540

300 0.15 6727 4062 3987 4059 4061 4073

300 0.25 11212 6440 6393 6435 6441 6458

Information on the test graphs as well as all results is

shown in table (1). From table (1) we can know that the

proposed approach outperformed the other compared

algorithms for the bipartite subgraph problem. Besides,

because the simulated annealing (SA) is a well known

search method and has good local search ability, we also

compared the proposed algorithm with SA. For SA, we

used the scheme proposed by Johnson et al [22], because

the problem discussed by Johnson et al. is similar to the

bipartite subgraph problem and very good solution was

reported in their work. In the bipartite subgraph problem,

the neighbors of a solution

can be obtained from by modifying the partition of a

single vertex. Simulation results are also shown in table

(1). From the table (1), we can know that the performance

of the proposed memory-based ant colony algorithm is

also better than SA.

7. Conclusions

We have proposed a memory-based ant colony algorithm

for efficiently solving the bipartite subgraph problem. In

the proposed algorithm, artificial ant has memory of

solution found previously, and can use it to construct a

new solution. The proposed algorithm is evaluated by

performing a large number of simulations. The simulation

results showed that the proposed algorithm works

remarkably well and is superior to its competitors to solve

the bipartite subgraph problem.

References

[1] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer, “Some

simplified NP-complete graph problem,” Theor, Comput.

Sci., vol.1, pp.237-267, 1976

[2] S. Armen, et al., “Bipartite Graphs and their Applications,”

Cambridge Tracts in Mathematics, No. 131, pp.1, 1998.

[3] R. M. Karp, Reducibility among combinatorial problems, in

Complexity of Computer Computations, Plenum: New York,

pp85-104, 1972.

[4] S. Even and Y. Shiloach, “NP-completeness of several

arrangement problems,” Technical Report 43, Department

of Computer Science, Technion, Haifa Istrael, 1975.

[5] J. A. Bondy and S. C. Locke, “Largest bipartite subgraph in

triangle-free graphs with maximum degree three,” J. Graph

Theory, Vol.10, pp.477-504, 1986.

[6] M. Grotschel and W. R Pulleyblank, “Weakly bipartite

graphs and the max-cut problem,” Oper. Res. Lett., Vol.1,

No.1, pp.23-27, 1981.

[7] F. Barahona, “On some weakly bipartite graph,” Oper.

Res. Lett., Vol.2, No.5, pp.239-242, 1983.

[8] J. J. Hopfield and D. W. Tank, “ „neural‟ computation of

decisions in optimization problems,” Biol. Cybern., Vol.52,

pp.141-152, 1985.

[9] K. C. Lee, N. Funabiki, and Y. Takefuji, “A parallel

improvement algorithm for the bipartite subgraph

problem,” IEEE Trans. Neural Network, vol.3, No.1

pp.139-145, 1992.

[10] Y. Takenaka, N. Funabiki and T. Higashino, “A proposal

neural filter: A constraint resolution scheme of neural

networks for combinatorial optimization problems,” IEICE

Trans. Fundamentals, Vol.E83-A, No.9, pp.1815-1823,

2000.

[11] R. L. Wang, Z. Tang, and Q. P. Cao, “A near-optimum

parallel algorithm for bipartite subgraph problem using the

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

240

Hopfield neural network learning,” IEICE Trans.

Fundamentals, Vol.E85-A, No.2, pp.497-504, 2002.

[12] D. H. Ackley, G. E, Hinton, and T. J. Sejnowski, “A

learning algorithm for Boltzman machines,” Cogn. Sci.,

Vol.9, pp.147-169, 1985.

[13] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the

Theory of Neural Computation, Addision Wesley, 1991.

[14] R. Poli, J. Kennedy and T. Blackwell, “Particle swarm

optimization---An overview,” Swarm Intell., Vol.1, pp33-57,

2007.

[15] R.-L. Wang and K. Okazaki, “A two-state ant colony

algorithm for solving the minimum graph bisection

problem”, International Journal of Computational

Intelligence and Applications, Vol.8, No.4, pp487-498, 2009.

[16] M. Dorigo, Optimization, “learning and natural algorithms,”

PhD thesis, Dipartimento di Elettronica, Politecnico di

Milano, Italy, 1992.

[17] M. Dorigo, L. M. Gambardella, “Ant colony system: A

cooperative learning approach to the traveling salesman

problem,” IEEE Trans. Evol. Comput., Vol.1, pp.53-66,

1997.

[18] T. Stutzle and M. Dorigo, “A short convergence proof for a

class of ACO algorithms,” IEEE Trans. Evol. Comput.

Vol.6, pp.358-365, 2002.

[19] B. Bullnheimer, R. F. Hartl and C. Strauss, “A New Rank

Based Version of the Ant System: A Computational Study,”

Central Eur. J. Oper. Res. Econ., Vol.7, pp.25-38, 1999.

[20] C. Blum, “Ant colony optimization: Introduction and recent

trends,” Physics of Life Reviews, Vol.2, No.4, pp.353-373,

2005.

[21] N. Frank, S. Dirk, W. Carsten, “Analysis of different

MMAS ACO algorithms on unimodal functions and

plateaus,” Swarm Intelligence, Vol.3, No.1, pp.35-68, 2009.

[22] D. S. Johnson, C. R. Aragon, L. A. McGeoch and C.

Schevon, “Optimization by simulated annealing: An

experimental evaluation; Part 1, graph partitioning,” Oper.

Res., Vol.37, pp.865-892, 1989.

[23] J. Marks, W. Ruml, S.Shieber, and J.Ngo, “A seed-

growthheuristic for graph bisection,” Proc.Algorithm and

Experiments, Trento, Italy, pp.76-87, 1998.

Rong-Long Wang received a B.S. degree from Hangzhe

teacher‟s college, Zhejiang, China and an M.S. degree from

Liaoning University, Liaoning, China in 1987 and 1990,

respectively. He received his D.E. degree from Toyama

University, Toyama, Japan in 2003. From 1990 to 1998, he was

an Instructor in Benxi University, Liaoning, China. In 2003, he

joined University of Fukui, Fukui Japan, where he is currently an

associate professor in Department of Electrical and Electronics

Engineering. His current research interests include genetic

algorithm, neural networks, and optimization problems.

Li-Qing Zhao received the B.S. and M.S. degrees in Micro-

electronics from Nan-Kai University in 2006 and 2009,

respectively. During 2006 to 2009, she was focus on LCD

research. From 2009 she is working toward her Ph.D degree at

Fukui University, Japan. Her main research interests include ant

colony optimization and combinatorial optimization problems.

