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Summary 
An innovative ant colony algorithm called memory-based ant 

colony algorithm is proposed to solve the bipartite subgraph 

problem. In the proposed algorithm, artificial ant has memory of 

solution found previously, and can use it to construct a new 

solution. Besides, in the proposed algorithm two kinds of 

pheromone and two kinds of heuristic information are also 

adopted to reinforce the search ability. The proposed algorithm is 

tested on a large number of instances and compared with other 

algorithms. The experimental results show that the proposed 

algorithm is superior to its competitors. 
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1. Introduction 

The bipartite subgraph problem [1] is an important 

problem from combinatorial optimization. It has many 

important applications in modeling matching problem, 

modern coding theory, and communication network, 

printed circuit board, and computer science [2]. It was 

proved to be a NP-complete problem [3] [4]. It is well 

known that there is no tractable algorithm to solve NP-

complete problem, which motivates to find better 

algorithms that yield better approximate solutions. Many 

approximate algorithms have been proposed for bipartite 

subgraph problem. An algorithm for solving the largest 

bipartite subgraphs in triangle-free graph with maximum 

degree three has been proposed [5]. Grotschel and 

Pulleyblank [6] defined a class of weakly bipartite graphs 

such that the convex hull of incidence vectors of bipartite 

subgraphs is defined by odd cycle inequalities. Barahona 

[7] characterized another class of weakly bipartite graphs. 

Based on the Hopfield neural network [8], Lee et al. [9] 

proposed a maximum neural algorithm for the bipartite 

subgraph problem. Unfortunately, the maximum neural 

network that is based on the steepest descent method 

sometimes causes the excessive fixation of the state of the 

neural network and easily converges to the oscillation state 

of local minimum because of the limitation of its ability 

[10]. Wang et al. [11] proposed a parallel algorithm using 

gradient ascent learning algorithm of the Hopfield network, 

the result of which is superior to that of Lee et al. Global 

search methods such as simulated annealing can also be 

applied to the problem, but they are generally very slow 

[12] [13]. 

 

Currently, in the optimization field, swarm intelligence 

algorithms have been shown to be good problem solvers 

with various application domains. These mainly consist of 

the particle swarm optimization (PSO) and the ant colony 

optimization (ACO) [14]. Especially ACO algorithms have 

been shown to be very successful for solving problems 

from combinatorial optimization. The inspiring source of 

ACO algorithms are real ant colonies. More specifically, 

ACO is inspired by the ants‟ foraging behavior. At the 

core of this behavior is the indirect communication 

between the ants by means of chemical pheromone trails, 

which enables them to find short paths between their nest 

and food sources. This characteristic of real ant colonies is 

exploited in ACO algorithms in order to solve, for 

example, discrete optimization problems. In the original 

ACO algorithms, only one kind of pheromone is used. 

However for some combinatorial optimization problems, it 

is not efficient to show the quality of solution using only 

one kind of pheromone. We have proposed a two-state ant 

colony algorithm for the minimum graph bisection 

problem [15], in which two kinds of pheromone and two 

kinds of heuristic information are adopted to reinforce the 

search ability.  

 

In this paper, we proposed a memory-based ant colony 

algorithm for solving the bipartite subgraph problem. In 

the proposed algorithm, artificial ant has memory of 

solution found previously, and can use it to construct a 

new solution. Besides, the idea of using two kinds of 

pheromone and two kinds of heuristic information 

proposed in our previous work [15] is also adopted in the 

proposed algorithm. The proposed algorithm is tested on a 

large number of instances and compared with other 

algorithms. The experimental results show that the 

proposed algorithm works remarkably well and is superior 

to its competitors. 
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2. Problem Formulation 

For a given N-Vertex M-edge undirected graph G=(V,E), if 

the vertex set V can be partitioned into two subsets V1 and 

V2, such that each edge of G is incident to vertex in V1 and 

to a vertex in V2, then the graph G is called bipartite graph, 

and be denoted by G=(V1,V2,E). Given a graph G=(V,E) 

with a vertex set V and an edge set E, the goal of bipartite 

subgraph problem is to find a bipartite subgraph with the 

maximum number of edges, such that  

V1∪V2 = V, V1∩V2  In other words, the goal of bipartite 

subgraph problem is to remove the minimum number of 

edges from a given graph such that the remaining graph is 

a bipartite graph. This problem can be formulated as 

follows: For a given graph with N vertices and M edges, its 

vertex set can be represented using vector =(x1, 

x2, . . . ,xN), where xi (i = 1, 2, . . . ,N) expresses #i vertex is 

partitioned into the subset V1 or V2. A value of 1 for the xi 

implies that #i vertex is partitioned into subset V1, and a 

value of 0 denotes that it is partitioned into subset V2. 

Therefore, the bipartite subgraph problem can be 

mathematically transformed into the following 

optimization problem: 

 

Maximize ; C=∑ij |xi-xj|                  (1) 

 

Where dij is 1 if there is an edge from vertex #i to vertex #j, 

otherwise, 0. 

3. Ant Colony Optimization 

Ant Colony Optimization (ACO) [16] is one of the most 

recent techniques for solving combinatorial optimization 

problems, and has been unexpectedly successful in recent 

years. ACO is based on the indirect communication of a 

colony of simple agents, called artificial ants, mediated by 

artificial pheromone trails. It implements a randomized 

construction heuristic that makes probabilistic decisions as 

a function of artificial pheromone trails, which are 

determined by the pheromone intensity and the heuristic 

information based on the input data of the problem to be 

solved, if they are available. The first ACO algorithm, 

called Ant System (AS) [16] was proposed by Dorigo in 

1992. Since then, the ACO algorithms attracted the 

attention of more researchers. 

 

Firstly, AS was applied to the Traveling Salesman 

Problem (TSP). Given a set of n towns, the TSP can be 

stated as the problem of finding a minimal length closed 

tour that visits each town once. We call dij the length of the 

path between towns i and j, and Let τij(t) called pheromone 

be the intensity of trail on edge (i, j) which connects i and j 

at time t. Each of m ants decides independently on the city 

to be visited next based on the intensity of pheromone trail 

τij and a heuristic value ηij , until the tour is completed. 

Each ant is placed on a random start city, and builds a 

solution going from city to city, until it has visited all of 

them. The probability by which an ant k in a city i chooses 

to go to a city j next is given by: 

 

                      (2) 

 

Where the heuristic value ηij = 1/dij , the parameters α and 

β determine the relative influence of pheromone and 

heuristic, and J
k
 is the set of cities that remain to be visited 

by ant k positioned on city i. Once all ants have built a tour, 

ants perform following pheromone update rule: 

 

                      (3) 

 

Eq. (3) consists of two parts. The left part makes the 

pheromone on all edges decay. The speed of this decay is 

defined by ρ, the evaporation parameter. The right part 

increases the pheromone on all the edges visited by ants. 

The amount of pheromone an ant k deposits on an edge 

(i,j) is defined by L
k
(t), the length of the tour created by 

that ant at iteration t. 

 

        (4) 

 

In this way, the increase of pheromone for an edge 

depends on the number of ants that use this edge, and on 

the quality of the solutions found by those ants. 

 

Even though the original AS algorithm achieved 

encouraging results for the TSP problem, it was found to 

be inferior to state-of-the-art algorithms for the TSP as 

well as for other problems. Therefore, several extensions 

and improvements of the original AS algorithm were 

introduced over the years. ACS [17] has been introduced 

to improve the performance of AS. It differs in three main 

aspects from ant system. First, in ACS ants choose the 

next city using the pseudo-random-proportional action 

choice rule: when located at city i, ant k moves with 

probability q0 to city l for which τil(t)∙[ηil]
β
 is maximal. 

With probability (1-q0) an ant performs a biased 

exploration of edges according to Eq. 2. Second, in ACS 

only the global best ant is allowed to add pheromone. The 

most interesting contribution of ACS is the introduction of 

a local pheromone update in addition to the pheromone 

update performed at the end of the construction process 

(called offline pheromone update). The effect of the local 

updating rule is to make an already chosen edge less 

desirable for a following ant. The Max-Min AS [18] is a 

direct improvement over AS. The main modifications 

introduced by Max-Min AS with respect to AS are the 
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following. First, to exploit the best solution found, after 

iteration only the best ant which can be either the 

iteration-best or the best-so-far, is allowed to add 

pheromone. Second, to avoid search stagnation, the 

allowed range of the pheromone trail strengths is limited to 

the interval [τmin, τmax]. Last, the pheromone trails are 

initialized to the upper trail limit, which causes a higher 

exploration at the start of the algorithm. Another 

improvement over AS is the rank-based version of Ant 

System (ASrank) [19]. In ASrank, always the global-best tour 

is used to update the pheromone trails. Additionally, a 

number of best ants of the current iteration are allowed to 

add pheromone. To this aim the ants are sorted by tour 

length, and the quantity of pheromone an ant may deposit 

is weighted according to the rank r of the ant. Only the (w-

1) best ants of each iteration are allowed to deposit 

pheromone. The global best solution, which gives the 

strongest feedback, is given weight w. The rth best ant of 

the current iteration contributes to pheromone updating 

with a weight given by max {0, w-r}.  

 

In addition to the ACO algorithms outlined above, there 

are some variants when applying ACO to various 

problems. For a more comprehensive overview that covers 

the application of ant-based algorithms to combinatorial 

optimization problems we refer the interested reader to 

[20][21]. 

4. A Memory-based Ant Colony Algorithm 

for Solving the Bipartite Subgraph 

Problem 

Artificial ants in ACO algorithms can be seen as 

probabilistic construction heuristics that generate solutions 

iteratively by taking into account accumulated past search 

experience: pheromone trails and heuristic information on 

the instance under solution. In the existing ACO 

algorithms, each ant starts with an empty solution and 

constructs a complete solution iteratively. It is a process 

that the solution is constructed gradually from empty 

solution. In other word, the solution is incomplete in the 

whole process of iteration. 

 

In this section, we propose a memory-based ant colony 

algorithm for the bipartite subgraph problem. In the 

memory-based ant colony algorithm, artificial ant has 

memory of solution found previously, and can use it to 

construct a new solution. Firstly a randomly initial 

solution is given; then, the initial solution is adjusted 

gradually until the end condition is achieved. Thus, the 

solution is always complete in the whole process, and the 

heuristic information is update once the solution is updated. 

The principle of updating heuristic is that awards and 

penalties are executed by taking into account accumulated 

past search experience after a solution is updated. Besides, 

the idea of using two kinds of pheromone and two kinds of 

heuristic information proposed in our previous work [15] 

is also adopted in the proposed algorithm. The details of 

this algorithm are as follows. 

 

In the proposed ACO algorithm, each ant has two states in 

which the ant deposits two kinds of pheromone (τ
1
and τ

0
) 

on vertex. Pheromone τ
1
 and τ

0
 indicate the learned 

desirability of partitioning the vertex into subset V1 and V2 

respectively. Besides, two kinds of heuristic information η
1
 

and η
0
 are also associated to a vertex to indicate the 

heuristic desirability of partitioning the vertex into subset 

V1 and V2 respectively. In the proposed algorithm, ant 

selects a vertex with high associated pheromone trail τ
1 
and 

heuristic value η
1
 for subset V1, and then selects a vertex 

for subset V2 using τ
0
, η

0
  in each iteration. In iteration t an 

ant k selects #i vertex for subset V1 and V2 with 

probabilities  pk
1
(i),  pk

0
(i) respectively. 

 

                 (5) 

                 (6) 

 

Where τi
1
, τi

0
 are pheromone trail and ηi

1
, ηi

0
 are heuristic 

information in vertex #i. J
k
 is the set of vertexes that 

remain to be partitioned by ant k, the parameters r1 and r2 

determine the relative influence of pheromone and 

heuristic information. 

 

In the iteration, pheromone trails are updated. We use C 

(shown in Eq. (1)) to characterize the pheromone update 

process. The pheromone trails of the global-best ant and 

several other random ants in current iteration are captured 

with certain weight to update the pheromone. For example, 

if the number of random ants is Nr, the pheromone update 

is as follows:  

 
    

                                             (7) 
    

                                            (8) 

 

where ρ is a coefficient such that (1 - ρ) represents the 

evaporation of trail between time t and t+1, 

,   represent the pheromone update of the 

global-best ant, and ,  represent pheromone 

update of the random ants. 

 

The amount of pheromone an ant k deposits on vertex #i is 

defined by: 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010 

 

 

238 

 

                   (9) 

                 (10) 

 

where Ck is defined in Eq. (1), Edge_Num is the number of 

edges in graph G=(V,E). 

 

The heuristic information can play a significant role in the 

performance of ACO algorithms. Original ACO algorithm 

uses static heuristic information, in which the heuristic 

information can be computed only once, when initializing 

the algorithm. Then it remains the same throughout the 

whole run of the algorithm. In the proposed method, we 

use dynamic heuristic information. The dynamic heuristic 

information depends on the partial solution constructed 

and it is computed at each construction step of each ant. 

Once a vertex is partitioned according to the probabilities 

(shown in Eq. 5 and Eq. 6), the heuristics information is 

updated by executing awards and penalties. Awards and 

penalties is the foundation in the proposed memory-based 

ant colony algorithm, and how to execute the awards and 

penalties is very important.  

 

In the proposed method for the bipartite subgraph problem, 

the heuristic information is defined as followings: 

 

                                                          (11) 

                                                          (12) 

 

where [EdgetoV1]i is the edge number which the #i vertex 

connects to the vertex in group V1, [EdgetoV2]i is the edge 

number which the #i vertex connects to the vertex in group 

V2. The method to execute the awards and penalties is as 

follows. For the #r vertex (dir=1) which has been 

partitioned just now, if the value of xr is changed from 1 

(in V1) to 0 (in V2) according the probabilities, then add α1 

to [EdgetoV2]i as awards, and subtract α2 from  [EdgetoV1]i 

as penalties, otherwise subtract α2 from [EdgetoV2]i, add α1 

to [EdgetoV1]i. We call α1 award parameter and α2 penalty 

parameter. Thus, we have: 

 

    (13) 

    (14) 

 

The awards and penalties are executed after each vertex is 

partitioned in the current iteration, and then update the 

heuristic information according to Eq. (11) and Eq. (12) 

for the next iteration.  

5. Algorithm 

The following search procedure describes the proposed 

memory-based ant colony algorithm for solving the 

bipartite subgraph problem: 

 

(1) Set parameters. 

(2) Randomly generate initial solutions and initialize the 

pheromone τ
1
and τ

0
. 

(3) Update the pheromone trails τ
1
and τ

0
 according to Eq.  

7 and Eq. 8. 

(4) Update probabilities using Eq. 5 and Eq. 6, and 

partition a vertex to V1 or V2 according to the 

probabilities 

(5) Awards and penalties are executed and heuristic 

information is updated for all vertexes according to Eq. 

11 and Eq. 12. 

(6) If all vertexes are partitioned, go to next step, else go 

to step (4). 

(7) Calculate the solution quality using Eq. 1. 

(8) If termination condition is satisfied, terminate this 

procedure. Otherwise, go to the step (3). The 

termination condition is as follow: 

 

               (15) 

6. Simulation Results 

In order to verify the proposed approach, we have tested 

the algorithm with a large number of randomly generated 

graphs [22] defined in terms of two parameters, n and p. 

The parameter n specifies the number of vertices in the 

graph; the parameter p, 0 < p < 1, specifies the probability 

that any given pair of vertices constitutes an edge. In 

preliminary experiments we tried to find reasonable 

parameter settings for the proposed memory-based ant 

colony algorithm. The award and penalty parameters α1, α2 

are very important for the proposed algorithm. A set of 

different values was used for the algorithm to verify which 

group is better. From our preliminary simulations, we find 

that α1=6.00, α2=5.00 can result good results. The other 

parameters setting used in simulations is as follows: ants 

number is 100, the parameters (r1, r2) = (1, 6) which 

decide whether pheromone or heuristic is important, the 

evaporation parameters ρ=0.5. To evaluate our results, we 

compared our results with the other existing algorithm 

including Marks et al.‟s heuristic algorithm [23], Lee et 

al.‟s neural network algorithm [9] and Wang et al.‟s 

Hopfield neural network learning algorithm [11]. 
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Table 1: The comparisons of simulation results produced by different algorithms 

Vertexes Probability Edges 

 

Marks et.al [23] 

 

Lee. et.al [9] 

 

Wang et.al [11] 

 

SA [22] 

 

Proposed algorithm 

50 0.05 61 53 52 53 53 53 

50 0.15 183 136 133 136 136 136 

50 0.25 305 205 203 205 205 205 

80 0.05 158 134 127 134 134 134 

80 0.15 474 330 325 330 330 330 

80 0.25 790 513 504 513 513 513 

100 0.05 247 207 196 206 207 207 

100 0.15 742 501 492 501 502 502 

100 0.25 1235 778 761 779 779 779 

150 0.05 558 423 402 421 419 423 

150 0.15 1676 1077 1062 1074 1069 1077 

150 0.25 2790 1692 1645 1693 1674 1699 

200 0.05 995 722 685 713 714 722 

200 0.15 2985 1871 1838 1864 1586 1874 

200 0.25 4975 2954 2886 2941 2948 2955 

250 0.05 1556 1104 1060 1100 1094 1107 

250 0.15 4668 2856 2809 2856 2849 2872 

250 0.25 7780 4516 4435 4510 4526 4534 

300 0.05 2242 1530 1486 1524 1522 1540 

300 0.15 6727 4062 3987 4059 4061 4073 

300 0.25 11212 6440 6393 6435 6441 6458 

 

Information on the test graphs as well as all results is 

shown in table (1). From table (1) we can know that the 

proposed approach outperformed the other compared 

algorithms for the bipartite subgraph problem. Besides, 

because the simulated annealing (SA) is a well known 

search method and has good local search ability, we also 

compared the proposed algorithm with SA. For SA, we 

used the scheme proposed by Johnson et al [22], because 

the problem discussed by Johnson et al. is similar to the 

bipartite subgraph problem and very good solution was 

reported in their work. In the bipartite subgraph problem, 

the neighbors of a solution  

can be obtained from  by modifying the partition of a 

single vertex. Simulation results are also shown in table 

(1). From the table (1), we can know that the performance 

of the proposed memory-based ant colony algorithm is 

also better than SA. 

7. Conclusions 

We have proposed a memory-based ant colony algorithm 

for efficiently solving the bipartite subgraph problem. In 

the proposed algorithm, artificial ant has memory of 

solution found previously, and can use it to construct a 

new solution. The proposed algorithm is evaluated by 

performing a large number of simulations. The simulation 

results showed that the proposed algorithm works 

remarkably well and is superior to its competitors to solve 

the bipartite subgraph problem. 
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