
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

266

Manuscript received March 5, 2010

Manuscript revised March 20, 2010

Generating of homogeneous Boolean functions with high

nonlinearity using genetic algorithm

Mohannad Najjar

University of Tabuk, Tabuk, KSA

Summary

In this paper an advanced genetic algorithm is used to find

the maximum nonlinearity of n-argument Boolean

homogenous functions. The best nonlinearity for Boolean

functions number of arguments n was searched, where n= 8,

10, 12, 14 and for the degree k of homogeneity such that

1<k<n. The experimental results that were reached prove

that our genetic algorithm is a powerful tool to search for

high nonlinearity. Results are presented in diagrams and

tables.

Key words:

Cryptography, homogenous Boolean functions, bent

functions, hash functions, block ciphers, S-boxes, Genetic

Algorithms.

1. Introduction

In the paper the nonlinearity of n-argument Boolean

homogenous functions that are used as components of hash

functions was tested. The examples of hash functions of

this kind are:

1. MD4 and SHA-1 that use two homogenous functions:

- g(x,y,z)= yz xz xy – 3-argument

homogenous function of degree 2

- h(x,y,z)= x y z – 3-argument

homogenous function of degree 1
2. MD5 use h(x,y,z)= x y z – 3-argument

homogenous function of degree 1.

3. PETRA hash function

Boolean functions are powerful tools for creating

cryptographic algorithms (they are appropriate if they have

good cryptographic characteristics). The nonlinearity is the

most important characteristic of cryptographically strong

Boolean functions. When n is even the n-argument

functions that have the maximum nonlinearity equal to
 121 22 /nn

 are called bent (or perfect).

In the design of product ciphers two basic components are

used: substitution boxes and permutation boxes. A careful

design of both helps to obtain more secure cryptographic

algorithms. Each substitution box can be viewed as a set of

Boolean functions. On the other hand, for cryptographic

algorithms based on the structure used in MD4 and SHA-1

hash functions, homogenous Boolean functions can be

useful cryptographic components [2].

2. Nonlinearity of Boolean functions

Boolean function can be presented in different ways.

If the function f is presented as

f(x1, x2, ... , xn) = c0 c1x1 c2 x2 ... cnxn

c12x1x2 c13x1x3 ... c(n-1)nxn-1xn c123x1x2x3 ...

c12...n x1x2...xn,

where ci {0,1}, then we say that it is presented in the

algebraic normal form (ANF).

A Boolean function is called affine if its ANF is as

follows: f(x1, x2, ... , xn) = c0 c1x1 c2x2 ... cnxn,

where ci={0,1}. If c0=0 then the function f is called linear.

If the function is not affine then it is called nonlinear.

Let f, g: n be Boolean functions. The Hamming

distance between f and g, denoted by d(f,g), is defined as

follows:

(f,g) =

n
,x 10

 f (x) g(x).

Let Xn be a set of all affine n-argument Boolean functions.

The integer

(f) =
ng Xmin
 d(f,g),

is called the (Hamming) distance of f from the set of the

affine functions. The minimum distance of the function f

from the set of all affine functions is called nonlinearity of

f. A bent function is a function, whose distance from the

set of all affine functions is maximum, i.e., it is equal to 2
n–

1
–2

(n/2)–1
 [8].

An n-argument Boolean function is called homogeneous of

degree k if the algebraic normal form of the function is as

follows: f(x1, x2, ... , xn) = c0 c1x1 c2x2 ... cnxn

c12x1x2 c13x1x3 ... c(n-1)nxn-1xn c123x1x2x3 ...

c12...n x1x2...xn,

where ci{0,1}, and ci=0 for every conjunction in which

the number of variables is different from k.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

267

Fact: There exist

k

n

2 n-argument homogenous functions

of degree k [4].

3. Introduction to Genetic Algorithms

Genetic Algorithms (GAs) were invented by John Holland

and developed by him and his students and colleagues. In

1992 John Koza used genetic algorithm to evolve

programs to perform certain tasks. He called his method

"genetic programming" (GP). Later many scientists used

this technique. The algorithm begins with a set of solutions

(represented by chromosomes) called population.

Solutions from one population are taken and used to form a

new population. This is motivated by a hope, that the new

population will be better than the old one. Solutions, which

are then selected to form new solutions, are selected

according to their fitness - the more suitable they are the

more chances they have to reproduce [3].

Two important operations are used in genetic algorithm to

improve its work [3]:

Crossover operates on selected genes from parent

chromosomes and creates new offspring. The simplest way

to do that is to choose randomly some crossover point and

copy everything before this point from the first parent and

then copy everything after the crossover point from the

other parent.

Mutation is intended to prevent from falling all solutions

in the population into a local optimum of the solved

problem. Mutation operation randomly changes the

offspring resulted from crossover. In case of binary

encoding we used in tests we switch a few randomly

chosen bits from 1 to 0 or from 0 to 1.

4. The designed genetic algorithm

In the genetic algorithm presented in this paper as an initial

input we used a population of 1000 chromosomes

(Boolean functions). These initial chromosomes are

calculated by using a random n-argument nonlinear

homogenous function of degree k generator. We invented

an algorithm that generates random n-argument nonlinear

homogenous function of degree k by the using of a random

bit generator. These algorithms are represented in this

section.

4.1. Random binary digit generator

In the program’s application the ―RANDOM‖ function

from the Delphi standard 5 combined with real time (the

function ―Time‖) expressed in milliseconds was used. In

the first step real time is saved to a variable, after this

RANDOM(2) starts and samples 0 or 1, and the result is

saved to the variable. The sampling result is the addition

operation modulo 2 for the first and the second variable. It

is a very simple but effective solution.

Algorithm 1 (Random bit generator).

INPUT: real time taken from the system clock, random(2).

Method:

Randomize;

Present := Now; {Present real time in the system}

DecodeTime(Present, Hour, Min, Sec, MSec);

MSec:=MSec div 10; {the value of milliseconds is

divided by 10}

j:=MSec mod 2;

jj:=random(2); {Chosen 0 or one by using the system

random function}

result:=(j+jj) mod 2; {result is equal 0 or 1} ■

OUTPUT: a random bit.

 Function Random (Integer: x);

The Random function returns a random number within

the range 0 to x-1.

If x=2, the result of function is a random integer equal

0 or 1.

 Procedure DecodeTime(Time: TDateTime; var Hour,

Min, Sec, MSec: Word)

 The DecodeTime procedure breaks the value

specified as the Time parameter into hours, minutes,

seconds, and milliseconds.

4.2. Algorithm of generating random n-argument

nonlinear homogenous function of degree k

For an n-argument homogenous functions of degree k there

are n

k k-elements groups. It means that the number of

all the nonlinear homogenous functions of degree k is

equal to

k

n

2 and the number of all affine functions is

equal to 2
n+1

.

In order to test the distance for all n-argument homogenous

function of degree k generated as in Algorithm 1, or to find

any bent homogenous function the following algorithm was

used.

Algorithm 2 (Generation of random n-argument nonlinear

homogenous function of degree k).

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

268

INPUT: random bit and table m[1.. n

k] of all possible

monomials.

Method:

1. Compute the value l= n

k .

2. Construct the table a[1..l]:

 for i=1 to l do

 a[i]:=the value generated with the help of Algorithm 1.

3. f(x1,x2,…,xn):=0.

4. for i=1 to l do

 If a[i]=1 then f(x1,x2,…,xn) := f(x1,x2,…,xn) m[i].

5. If f(x1,x2,…,xn):=0 then goto 2. ■

OUTPUT: random n-argument nonlinear homogenous

function f of degree k.

4.3. Nonlinearity testing algorithm

The nonlinearity of random homogenous functions was

tested using Algorithm 3. As input we have n-argument

nonlinear homogenous function of degree k generated by

the Algorithm 2.

Algorithm 3 (Testing nonlinearity of random homogenous

function).

INPUT: random n-argument nonlinear homogenous

function of degree k.

METHOD:

1. Specify the distance for the Boolean function f from

the set of all affine functions.

2. Choose the minimum distance of the function f from

the set of all affine functions.

3. Write all results to the file.

OUTPUT: Boolean function nonlinearity.

4.4. Main Genetic Algorithm

The calculated chromosomes represent the Boolean

functions that we want to use as a start for our genetic

algorithm. These functions are represented by using binary

system. We checked the 1000 chromosomes by using a

tool that calculates the nonlinearity for each of them and

we selected the best 500 according to the chrematistics of

nonlinearity of Boolean functions. Then we do crossover

in the middle between these chosen offsprings

(chromosomes) the result will be new 500 offsprings. After

this we do mutation of 10 bits for all these chromosomes.

To the next population the chosen 500 chromosomes from

the previous population and the new 500 offsprings are

copied. The copying of 500 chromosomes from the

previous is an important operation that is called Elitism

and it is used to prevent the loss of the best found solutions

from the previous population [3]. These operations are

repeated 100 times.

The main genetic algorithm:

Algorithm 4 (Genetic algorithm calculation)

Input: Sample of 100 Boolean functions of n-argument

and k-degree randomly generated by algorithm 2.

Method:

1. Choose 50 Boolean functions (chromosomes) with the

best nonlinearity from the 100 functions and write them

to f1, f2, f3, . . . , f50

2. For i=1 to 100 do

 Begin

a. Make crossover in the middle between every pair

(f1,f2), (f3,f4), . . . (f49,f50) to produce new offsprings

f501,f502, . . . , f100

b. Do mutation of 10 bits for the new 50 offsprings:

f51,f52, . . . , f100.

c. Add the offsprings to parents and the result will be

1000 function: f1, f2, f3, . . . , f100

d. Choose 50 Boolean functions with the best

maximum nonlinearity from the 100 functions (the

original 50 and the 50 offspring) by using algorithm

3 and write them to f1, f2, f3, . . . , f50

 End.

Output: 100 Boolean functions of n-argument and k-

degree with the maximum nonlinearity.

By using algorithm 3 we tested the nonlinearity for number

of arguments n= 8, 10, 12, 14 for k-degree where 1<k<n-1.

For k= n-1 all combinations will be tested by using

comprehensive method.

5. Experimental results

The results of testing n variables Boolean functions for n=

8, 10, 12, 14 are presented in the following forms:

 diagrams in which the X-axis represents the nonlinearity

of functions (the number n of arguments is distinguished

by different colors) and the Y-axis presents the

percentage of the homogenous functions of degree k in

the sample of tested functions,

 aggregated form in tables, where we present the min and

the max nonlinearity that we reach by using the genetic

algorithm

In Diagrams 1–5 the results of testing n-argument

homogenous functions of degree k are presented, n=8, 10,

12, 14 and 1<k<n. The symbol n_k indicates the n-

argument homogenous functions of degree k.

For the typographical purposes the diagrams presenting

results for 10-, 12- and 14-argument functions are divided

into two parts each, denoted as x/1and x/2, x=2,3,4.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

269

Diagram 1 : 8_k, k=2,3,4,5,6,7

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

nonlinearity

p
e

rc
e
n

ta
g

e

Bent

8 - 7

8 - 6

8 - 5

8 - 4

8 - 3

8 - 2

Diagram 2/1:10_k, k=2,3,4,5

0%

10%

20%

30%

40%

50%

60%

70%

80%

3
4
4

3
4
8

3
5
2

3
5
6

3
6
0

3
6
4

3
6
8

3
7
2

3
7
6

3
8
0

3
8
4

3
8
8

3
9
2

3
9
6

4
0
0

4
0
4

4
0
8

4
1
2

4
1
6

4
2
0

4
2
4

4
2
8

4
3
2

4
3
6

4
4
0

4
4
4

4
4
8

4
5
2

4
5
6

4
6
0

4
6
4

4
6
8

4
7
2

4
7
6

4
8
0

4
8
4

4
8
8

4
9
2

4
9
6

nonlinearity

p
re

c
e
n

ta
g

e

Bent

10 - 5

10 - 4

10 - 3

10 - 2

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

270

Diagram 2/2 : 10_k, k=6,7,8,9

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0 6

1
2

1
8

2
4

3
0

3
6

4
2

4
8

5
4

6
0

6
6

7
2

7
8

8
4

9
0

9
6

1
0
2

1
0
8

1
1
4

1
2
0

1
2
6

1
3
2

1
3
8

1
4
4

1
5
0

1
5
6

1
6
2

1
6
8

1
7
4

1
8
0

1
8
6

1
9
2

1
9
8

2
0
4

2
1
0

2
1
6

2
2
2

2
2
8

2
3
4

2
4
0

2
4
6

2
5
2

2
5
8

2
6
4

2
7
0

nonlinearity

p
re

c
e
n

ta
g

e

10 - 9

10 - 8

10 - 7 10 - 6

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

271

Diagram 3/1 : 12_k, k=2,3,4,5,6

0%

10%

20%

30%

40%

50%

60%

70%

80%

1
1
7
4

1
1
9
2

1
2
1
0

1
2
2
8

1
2
4
6

1
2
6
4

1
2
8
2

1
3
0
0

1
3
1
8

1
3
4
0

1
3
6
6

1
3
8
8

1
4
1
0

1
4
2
8

1
4
6
0

1
4
9
6

1
5
3
2

1
5
6
8

1
6
0
4

1
6
4
0

1
6
7
6

1
7
1
2

1
7
4
8

1
7
8
4

1
8
2
0

1
8
5
6

1
8
9
2

1
9
2
8

1
9
6
4

2
0
0
0

nonlinearity

p
re

c
e

n
ta

g
e

Bent

12_6
12_5 12_4

12_3

12_2

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

272

Aggregated properties of the set of n-argument

(n=8,10,12,14) Boolean homogenous functions of degree

k (k=2,3,…,n–1)

In the tables 4.1–4.6 presented below the first row

demonstrates the number of arguments of Boolean

homogenous functions. The second row, called perfect dist

represents the distance of bent function. The third row,

called max.dist, represents the maximum nonlinearity that

we reached by using the genetic algorithm. The fourth row,

called min. dist shows the minimum nonlinearity that we

reached.

Table 4.1: Properties of the set of n=8 and k= 2, 3, 4, 5, 6, 7

Degree 2 3 4 5 6 7

Bent 120 120 120 120 120 120

Max 120 112 106 76 32 8

Min 96 92 74 46 16 2

Table 4.2: Properties of the set of n=10 and k= 2, 3, 4, 5, 6, 7, 8, 9

Degree 2 3 4 5 6 7 8 9

Bent 496 496 496 496 496 496 496 496

Max 496 472 464 412 272 134 48 10

Min 448 432 408 344 216 102 28 2

Table 4.3: Properties of the set of n=12 and k= 2, 3, 4, 5, 6

Degree 2 3 4 5 6

Bent 2016 2016 2016 2016 2016

Max 2016 1952 1944 1828 1430

Min 1920 1904 1892 1720 1344

Table 4.4: Properties of the set of n=12 and k= 7, 8, 9, 10, 11

Degree 7 8 9 10 11

Bent 2016 2016 2016 2016 2016

Max 948 512 214 70 12

Min 876 462 186 48 2

Table 4.5: Properties of the set of n=14 and k= 2, 3, 4, 5, 6,7

Degree 2 3 4 5 6 7

Bent 8128 8128 8128 8128 8128 8128

Max 8128 7984 7968 7764 6804 5274

Min 7936 7888 7848 7528 6616 5148

Table 4.6: Properties of the set of n=14 and k= 8, 9, 10, 11, 12, 13

Degree 8 9 10 11 12 13

Bent 8128 8128 8128 8128 8128 8128

Max 3522 1948 884 320 86 14

Min 3396 1864 838 280 66 2

6. Final Remarks

The tests in this paper confirm that genetic algorithms are

an effective tool of searching for the maximum

nonlinearity of homogenous Boolean functions. The results

presented in diagrams and tables above show we reached

very good results where we found high nonlinearity in

efficient time (from 10 seconds to 5 minutes), where we

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

273

used only 100 functions. In Table 4.7. we represent a

comparison with results in [1]:

Table 4.7: BEST NONLINEARITY ACHIEVED AFTER

TESTING 100 FUNCTIONS

n 8 9 10 11 12 13 14

Method

Benchmark 110 228 469 958 1946 - -

RHC 112 232 475 964 1958 - -

GA 111 229 470 959 1951 - -

GA HC 113 232 474 969 1962 - -

GA SM 112 - 472 - 1960 - 7984

As a benchmark the best results obtained from random

search for functions with inputs ranging from eight n = 8 to

twelve n = 12 were obtained for various search sizes for

100 functions [1]. RHC means a random search utilizing

the Hill Climbing 1 algorithm; GA means a basic genetic

algorithm with no hill climbing, GA HC means genetic

algorithm, which incorporate the Hill Climbing 1 algorithm

[1]. GA SM means the simple genetic algorithm designed

in this paper. As we can conclude that GA SM is better

than GA and Benchmark.

References

[1] Dimovski, A. Gligoroski, D. (2003): Generating highly

nonlinear Boolean functions using a genetic algorithm.

Telecommunications in Modern Satellite, Cable and

Broadcasting Service. TELSIKS 2003. 6th International

Conference. Publication Date: 1-3 Oct. 2003. Volume: 2,

On page(s): 604- 607 vol.2

[2] C. Qu, J. Seberry, J. Pieprzyk, (1999): On the symmetric

properties of homogeneous Boolean functions. In

Information Security and Privacy (Wollongong, NSW,

Australia, April 7–9). LNCS 1587, Springer, Berlin, 26–35.

[3] M. Obitko, (1998): Genetic Algorithms,

http://cs.felk.cvut.cz/~xobitko/ga/, Czech Technical

University, Prague

[4] C. Qu, J. Seberry, J. Pieprzyk, (1998): Homogeneous bent

functions (preprint). University of Wollongong, NSW,

Australia.

[5] William Millan, Andrew Clark, Ed Dawson, (1998):

Heuristic Design of Cryptographically Strong Balanced

Boolean Functions. Advances in Cryptology —

EUROCRYPT'98. Lecture Notes in Computer Science,

Springer Berlin / Heidelberg, Volume 1403/1998.

[6] W. Darłowski, (1998): Nonlinear Boolean functions for

cryptographic purposes" (in Polish). In VI Międzynarodowa

Wojskowa Konferencja Telekomunikacji i Informatyki.

Materiały Cz.I. (Jabłonna, Sept. 8–10) WIŁ, Zegrze 1997,

233–240.

[7] William Millan, Andrew Clark and Ed Dawson (1997): An

effective genetic algorithm for finding highly nonlinear

Boolean Functions‖. Proceedings of ICICS 1997, pp. 149-

158, Springer Lecture Notes in Computer Science, Volume

1334.

[8] W. Meier, O. Staffelbach, (1989): Nonlinearity criteria for

cryptographic functions." In Advances in Cryptology –

EUROCRYPT ’89 (Houthalen, Belgium, April 10–13)

LNCS 434, Springer, Berlin, 549–562.

[9] W. Meier and O. Staffelbach (1990): Nonlinearity Criteria

for Cryptographic Functions. In Advances in

Cryptology - Eurocrypt 89, Proceedings, LNCS,

volume 434, pages 549-562. Springer-Verlag.

[10] D.E. Goldberg (1989): Genetic Algorithms in Search,

Optimization and Machine Learning. Addison Wesley,

Reading, Massechusetts.

Mohannad Najjar received the B.S. and M.S. degrees in

Computer Engineering from Poznan University of Technology,

POLAND in 1998. Received Phd. In Telecommunication

Engineering – Cryptography in 2002. During 2002-2009, he

taught in Applied Science University- Amman, Jordan. Now he

is an assistant professor in University of Tabuk in KSA.

http://cs.felk.cvut.cz/~xobitko/
http://cs.felk.cvut.cz/~xobitko/ga/
http://www.cvut.cz/
http://www.cvut.cz/

