
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

280

Manuscript received March 5, 2010

Manuscript revised March 20, 2010

An Approach for Ensuring Concurrency Control of Global

Transactions in Heterogeneous Distributed Database

Systems

Arun Kumar Yadav
1
, Dr. Ajay Agarwal

2
, Kamlesh Chopra

3

1
Associate Professor, Venkteshwar Institute of Technology, Indore (M.P.), India

2
 Professor & Head, Krishna Institute of Engg. & Technology,Ghaziabad (U.P.), India

3
Lecturer, Venkteshwar Institute of Technology, Indore (M.P.), India

Abstract
In this paper, we have proposed the strategies for concurrency

control of global transactions in heterogeneous distributed

database systems. We have focused on the issues of consistency,

local autonomy and performance. A technique to prevent and

resolve inconsistency, classified into one of the two basic

approaches: optimistic or pessimistic. The previous research

intends to provide a high degree of concurrency among global

transactions, while the later is concerned with aborts of global

transactions. The strengths and weaknesses of the two

approaches are discussed.

Keywords:
Heterogeneous Distributed Database System (HDDBS), Local

Database System (LDBSs), Local Concurrency Controller (LCC),

Global Concurrency Controller (GCC),

1 Introduction

A heterogeneous distributed database system (HDDBS) is

a group of pre-existing database systems (called Local

Database Systems or LDBSs). An HDDBS is the natural

result of shifting priorities and needs of an organization as

it acquires new database systems that are designed

independently. For many applications, an HDDBS is an

attractive alternative to a single, integrated database

system. An HDDBS is different from a set of database

systems in that it supports global applications accessing

mu1tiple systems simultaneously. It is also different from

traditional homogeneous distributed database systems in

that it interconnects LDBSs in a bottom up fashion,

thereby allowing existing applications developed on each

of the LDBSs continue to be executing without any

modification.

One of the important feature of HDDBSs is autonomy

of LDBSs. Local autonomy defines the right of each

LDBS to control access to its data by other LDBSs and the

right to access and administer its own data independently

of other LDBSs. As a result, LDBSs may use different

data models, different concurrency control strategies and

they can schedule to accesses its data independently. Local

autonomy is required and necessary in HDDBSs to

guarantee that old applications are executable after

interconnection, to facilitate flexible interconnection of

various kinds of LDBSs, and to ensure the consistency and

the security of LDBSs.

Concurrency control in HDDBSs is different from

homogeneous distributed database systems, due to

existence of local concurrency controllers (LCCs). An

LCC reside at each LDBS and maintains its consistency.

LCCs are not capable of maintaining the consistency of the

global database, because global transactions may be

scheduled inconsistently at different sites. In order to

prevent this kind of inconsistency, a global concurrency

controller (GCC) is needed. The GCC is built on top of

LCCs coordinating local executions at different sites.

Controlling the concurrency in HDDBSs is more

difficult than that in homogeneous distributed database

systems, due to the autonomy of LCCs [1]. The LCCs are

independently designed and cannot be modified because of

the autonomy restrictions placed by the LDBSs. In

addition, the LCCs have the right to schedule local and

global transactions independently, based on their own

considerations. The GCC has only control over local

executions in submissions of global transactions. However,

it is possible that a global transaction effectively precedes

another even if it is executed entirely at all local sites [2].

The necessity and difficulties of the global

concurrency control in HDDBSs were accepted in [3].

Several conditions for global concurrency control were

identified in [4]. Since then, a large amount of work has

been done in developing algorithms for controlling global

concurrency.

In this paper, we are presenting algorithms to preserve

local autonomy, maintaining the global consistency and

will discuss their strengths, weaknesses, and performance.

The rest of the sections are organized as follows. We first

discuss, in Section 2, three basic issues of global

concurrency control in HDDBSs, namely, autonomy,

consistency and performance. In Sections 3 and 4, we

discuss the solutions for global concurrency control.

Section 5 concludes the paper with summary of algorithms,

results and suggestions for future work.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

281

2. Local Autonomy, Consistency and

Performance

The concurrency control is needed to maintain database

consistency and provide high performance by allowing

concurrent execution of transactions. In HDDBSs, the

global concurrency control mechanisms should also

preserve the autonomy of LDBSs. In this section, we are

discussing the three issues (i.e., local autonomy,

consistency and performance) in the context of HDDBS.

Firstly we are presenting an HDDBS model. A

classification of global concurrency control strategies is

also presented in this section.

2.1 HDDBS Model

An HDDBS is a distributed database system consisting of

LDBSs. Each local database is a set of data items. There

are two kinds of transactions in an HDDBS. A local

transaction accesses data items of one local database,

while a global transaction accesses data items of more than

one local database. A global transaction (consists of a set

of global sub-transactions) accesses a single local database

and is executed at the sites along with local transactions.

When local and global transactions are executed, they

transform the database from one consistent state to another

consistent state.

More specifically, a global transaction transforms the

global database from a consistent state to another

consistent state, while a local transaction and a global sub-

transaction transforms a local database from a consistent

state to another consistent state.

The transaction processing model for HDDBSs is

shown in Figure 1. It consists of a Global Data manager

(GDM), a Global transaction Manager (GTM), a collection

of LDBSs, a set of global and local transactions and a set

of server processes. A server process runs at each site and

represents the interface between the GTM and the LDBSs.

Global Data manager (GDM) decomposes the global

transaction into a set of sub-transactions and a Global

transaction Manager (GTM) submits the sub-transactions

to the corresponding LDBSs for the execution.

 When a global transaction is submitted to the HDDBS,

it first decomposes and translated by the GDM into a set of

sub-transactions that run at the local sites where the

required data reside. It is assumed that, for every global

transaction, there is at most one sub-transaction per site [3].

The GTM submits the sub-transactions to the

corresponding LDBSs and coordinates their executions at

local sites so that the global database consistency is

maintained. The GCC is a module of the GTM which is

responsible for the g1obal concurrency control.

These sub-transactions are then directed to the GTM.

2.2 Local Autonomy

Local autonomy is an important feature of HDDBSs. It

defines the ability of each LDBS to perform various kinds

of operations and various kinds of control over its own

database. For example, an LDBS should be able to

implement its own data model, catalog management

strategy, and its own naming convention. It should also be

able to control over local transactions and global sub-

transactions (e.g., to delay or abort a transaction) to

maintain the consistency of the local database. Local

autonomy also defines the right of each LDBS to make

decisions regarding the service it provides to other LDBSs.

Local autonomy is required to guarantee that local users

can continue to run local applications on their LDBS

regardless of interconnection and to ensure that the basic

consistency, security and performance requirements of an

LDBS are met while allowing other LDBSs to access its

data.

It is difficult to compute local autonomy. To discuss

how well a global concurrency control strategy preserves

local autonomy, we distinguish among different aspects of

local autonomy. The ability of global concurrency control

strategies to maintain these aspects of autonomy is

discussed in the next two sections.

G1n
G12

G11

GDM

Query Decomposition

G11 G12 G1n

GTM

Global Concurrency

and

Commitment Control

Server Server Server

LDBS1 LDBS2 LDBSn

Figure 1: A Transaction Processing Model

Global Transaction

(G1)

L
o

ca
l

T
ra

n
sa

ct
io

n

L
1

L
o

ca
l

T
ra

n
sa

ct
io

n

L
1

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

282

2.3 Consistency

As, in homogeneous distributed database systems, the goal

of global concurrency control in HDDBSs is to maintain

the HDDBS consistency. Due to the hierarchical structure

of HDDBSs, two kinds of consistency exist: one that

previously existed in each of the LDBSs (called local

consistency) and the other that results from the

interconnection process (called global consistency). Local

consistency defines constraints on relationships of data in

a local database and on interactions among local

transactions and global sub-transactions executed at the

site, while global consistency defines constraints on

relationship of data at different local database and on

interactions among global transactions, as well as

interactions among local transactions executed at different

sites. We assume that the LCC at each site maintains the

local consistency of the LDBS. More specially, it

guarantees the serializability of the local execution. It is

the GCC’s responsibility to coordinate local execution to

ensure global consistency.

The conventional way to maintain the global

consistency is to execute global and local transactions in a

serializable fashion. An execution of a set of transactions

is serializable if it is equivalent to a serial execution of the

transactions. Serializability in HDDBS represents the

strongest type of consistency in that it treats an HDDBS as

a strongly coupled homogeneous distributed database

system because GCC ensures that the concurrent execution

of global sub-transactions should be equivalent to the

serial execution. There is no difference between local and

global transactions and between local and global

consistencies. The problem with serializability in HDDBS

is that it is difficult to maintain, due to local autonomy of

LDBs ([5], [1]). Since LCCs have the right to schedule

local transaction and global sub-transactions independently,

the only control the GCC has over local executions is the

submission of global transactions. As mentioned before, it

is generally impossible to maintain the global

serializability by just controlling the submission of global

transactions.

2.4 Performance

Degree of concurrency is the main measure of

performance for concurrency control in database systems.

The degree of concurrency refers to the number of

transactions executing concurrently and provided by a

concurrency control protocol and is measured by the

possible interleaving of transactions it allows. In HDDBSs,

we consider two kind of interleaving: that among global

transactions and that among local transactions and global

sub-transactions at a site. The latter is determined by LCCs.

The GCC is responsible for providing a high degree of

concurrency of global transactions. One way of achieving

the goal is to impose few restrictions as possible on

submission and execution of global transactions.

Another important issue affecting performance is

abort ratio (i.e. the number of transactions selected as

victim to terminate from the system) of global transactions.

In HDDBSs, global transactions are aborted not only

because of the conflicts in a local execution, but also

because of the inconsistency of serialization orders

between local executions. Consider two global transactions

G1 and G2 which access two local databases L1 and L2

respectively. Suppose that they are submitted at about the

same time t1. Due to the different scheduling policies of

two LDBSs use, it is possible that the two global

transactions are scheduled in different orders at two sites

L1 and L2. Generally, the more common sites two global

transactions access, the more likely that they will be

scheduled inconsistently. Due to the same submission time

of global transactions G1 and G2, one of the global

transactions may be abort to ensure the consistency of the

database.

Another reason that abort ratio of global transactions

is important in HDDBSs is that the execution of a global

transaction is usually expensive. The abort of a global

transaction implies that all its sub-transactions must be

aborted. This is very difficult at some sites due to local

autonomy.

Therefore, it is very important for a concurrency

control strategy to abort as few global transactions as

possible. This can be done in two ways. First, it should try

not to abort global transactions because of local conflicts.

In other words, the abort of a sub-transaction should not

result in the abort of the global transaction. Second, it

should reduce the possibility of inconsistency between

local executions, and in case an inconsistency occurs,

aborts no more global transactions than necessary.

Providing the high degrees of concurrency and

minimizing the number of global transactions aborted is an

important decision in designing a global concurrency

control algorithm, and results in two different approaches

of global concurrency control.

2.5 Classification of Strategies

A global concurrency control strategy in HDDBSs can be

classified as pessimistic and optimistic. The optimistic

approaches try to provide a high degree of concurrency,

while the pessimistic approaches are concerned with the

abort ratio of global transactions.

Generally, pessimistic approaches attempt to prevent

inconsistency by imposing restrictions on the submission

of global transactions. The GCC assumes that there are

conflicts among global transactions whenever such

conflicts possibly exist. The strategies in this group differ

in the restrictions imposed on the submission of global

transactions to guarantee a specific (serialization or quasi

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

283

serialization) order. GCCs based on this approach do not

abort global transactions due to inconsistency between

executions. On the other hand, they allow low degrees of

concurrency because before submitting the global

transactions it ensures the serialization or quasi

serialization. In addition, they are usually unable to make

use of dynamic information about local executions because

it is impossible to predict in advance whether the

information is available.

In contrast to pessimistic approaches, optimistic

approaches do not control the submission of global

transactions. Instead, they detect and resolve inconsistency

after the execution of global transactions. The approaches

are based on the assumptions that not every pair of global

operations could conflict arbitrarily. The strategies in this

group differ in how they detect and resolve inconsistency.

3. Pessimistic Approaches

In this section, we discuss four pessimistic approaches of

global concurrency: altruistic locking, top-down, site

graph and access graph. One property they all share is that

no global transaction is aborted due to inconsistency

among local executions. Therefore, the main measure of

performance is the degree of concurrency of global

transactions.

3.1 Altruistic Locking

The altruistic locking strategy was initially proposed for

long-lived transactions and is also used as a concurrency

control strategy in HDDBSs [6]. The basic idea of the

strategy is to prevent inconsistency by not allowing two

global transactions to access a local database concurrently.

A global transaction must lock a site before it can access

the site. Once its all requests have been processed, it can

release the lock on the site. Releasing a lock is a

conditional unlocking operation. Other global transactions

waiting to lock the released site may be able to do so if

they are willing to abide by the following rules. (1) No two

global transactions hold locks on the same site

simultaneously unless one of the transactions locked and

released the site before the other locked it. In other words,

the later lock-holder is in the wake of the releasing

transaction. (2) If a transaction is in the wake of another

transaction, it must be completely in the wake of the

transaction. In other words, if G1 locks site A which has

been released by G2, then anything currently locked by G1

must have been released by G2 before it was locked by G1.

(This requirement is relaxed once G2 finishes.) Note that

the releasing operation is not two-phase, i.e. the global

transaction is free to continue to lock new sites after it has

released locks; while the unlocking operations is two-

phase and usually is done after global transactions

complete.

Example 1. Consider an HDDBS consisting of five

LDBSs: A, B, C, D, and E. Let G1 be a global transaction

which accesses sites A, C, D, and E in that order, G2

accesses sites A and C, and G3 accesses sites A and B.

Suppose that at current state, G1 hold the locks on sites A,

C and D. The sites A, C and D constitute the current wake

of G1. After G1 released the locks, G2 is allowed to access

sites A and C, since they are in the wake of G1.G3,

however, can only access site A, and has to wait until G2

completes and unlocks all its locks before it can access site

B, which is outside the wake of G1.

The execution order of global transactions is decided

in the following way. If a global transaction is in the wake

of other global transactions, then its order is after those

global transactions. For global transactions which are not

in the wake of each other, their order is decided by the

order they lock the conflict sites. It is shown that the

altruistic locking maintains the same execution order

among global transactions at all sites.

The main advantage of this strategy is that it exercises

no control over and requires no information about local

executions. In other words, it preserves local autonomy of

LDBSs. However, the strategy provides no concurrency

among global transactions because they are executed in

serial manner at each site. The benefit of doing this is that

the execution orders of global transactions at local sites are

always consistent. Another problem is that it maintains

global serializability only if all LCCs maintain strict

serializability of local executions.

In other words, serialization order of global sub-

transactions is compatible with their execution order. This

is however not true for concurrency control protocols (e.g.,

serialization graph testing). On the other hand, it has been

shown in [7] that it maintains quasi serializability

regardless of concurrency control protocols LCCs use.

3.2 Top-down

As discussed in [4], one way of performing global

concurrency control in HDDBSs is the top-down approach.

In top-down approach, the GCC determines the execution

order of global transactions before their submission to

a

b
c

d
e

f

h g

Figure 2: A Rooted tree interconnected HDDBS

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

284

local sites which is then enforced at each site. There are

two basic steps in a top-down approach of concurrency

control: (1) determining an order at global level, and (2)

enforcing the order at local level.

The non-two-phase locking protocol proposed in [8]

gives a solution in the first step. It provides a way of

dynamically determining the order as global transactions

are executed. This approach is adapted from the well

known non-two-phase locking protocol for the traditional

concurrency control problem [9].

The protocol applies to those HDDBSs that are

formed as a rooted tree. The sub-transaction of a global

transaction is treated as an atomic transaction step, and

each LDBS is treated as a distinct data item. The GCC

issues the sub-transactions of a global transaction to the

individual LDBSs according to the tree protocol. The

following is a simple example illustrating the idea.

Example 2.Consider an HDDBS which is interconnected

as a rooted tree in Figure 2. Let G be a. global transaction

and Gx, be its sub transaction executed at site X. Suppose

that sub-transactions of G are to be executed at sites B, E,

F and H. It first "locks" B and send sub- transaction Gb to

site B. Then it locks E and F. After that, and after the

execution of Gb completes, it may release the lock on B.

Likewise, on completion of the execution of Ge, and after

locking H, it can release the lock on E. While the locks on

sites are acquired in the tree order, it can be released in any

order.

In [10], various techniques of enforcing the global

execution order at local sites are discussed. One way of

doing this is to control the submission order of global sub

transactions. The task is performed by server processes at

local sites (called stub processes in [10] and site queue in

[11]). The server process guarantees that the LCC

schedules global sub-transactions in the order they are

submitted. More specifically, the server process submits a

global transaction to the LCC only if the serialization

orders of all previously submitted global transactions have

been determined by the LCC. The technique works for

those LCCs that determine the serialization order of a

transaction according to an event which can be identified

before the termination of the transaction. An LCC with

this property is said to be static [11].Both two phase

locking and time-stamp ordering protocols are static. For

example, in two-phase locking protocols, the serialization

order of a transaction is determined once it reaches its lock

point.

Unfortunately, not all concurrency control protocols

are static, e.g., serialization graph testing. It is generally

impossible to guarantee a specific serialization order using

the above technique. On the other hand, the technique can

always be used to impose a quasi serialization order. The

degree of concurrency provided by the algorithm depends

on local concurrency control strategies. For example, if

two-phase locking protocol is used, global sub-transactions

at the site are executed almost sequentially. A higher

degree of concurrency is possible if timestamp ordering

protocol is used. The price is, however, possible conflicts

between global sub-transactions, and therefore aborts of

some sub-transactions.

3.3 Site Graph

Site graph algorithm proposed in [12] is an attempt to

maintain global serializability without imposing any

restriction on LCCs. In this algorithm, the GCC maintains

an undirected graph, called site graph, in which the nodes

are sites and the edges are global transactions. When a

global transaction T is received, the GCC first determines

the sites that contain copies of data accessed by the global

transaction and connects them to form a linear link in the

graph. The following example illustrates the notions of site

graphs:

Example 3. Consider an HDDBS that contains data item x

at sites 1 and 2, y at sites 1 and 3, and z at sites 2 and 3.

Let G1 and G2 be two global transactions:

G1:r1(x) w1(y) G2:r2(y) w2 (z)

Since the data are replicated, the GCC may generate one of

the following sequences of local operations for each global

transaction:

G1:r1(x1) w1 (y1) w1 (y3) G2:r2 (y3) w2 (z2) w2 (z3) or

G1:r1(x1) w1 (y1) w1 (y3) G2:r2 (y1) w2 (z2) w2 (z3)

The site graphs for the sequences are shown in Figure 4.

(a) and 4. (b).

In Figure 4, site graph 4. (a) is acyclic, while site graph

4.(b) contains a cycle. That a site graph is cyclic means

that the execution of the global and local transactions may

be non-serializable. For instance, the following non-

serializable execution may occur if the second sequence is

submitted for execution.

Site 1: r1(x1) w1 (y1) r2 (y1)

Lock1

Lock3

Lock4

Lock2

a

b c

d e
f

g h

Figure 3: Top-Down locking in rooted tree

interconnected HDDBS

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

285

Site 2: w2 (z2)

Site 3: r1 (y3) w1 (y3) w2 (z3) w1 (z3)

In this execution, local transaction L introduces an indirect

order between G1 and G2 at site 3, which is different from

their order of conflicting operations at site 1. While for the

first sequence, the local transaction can not introduce

indirect orders and therefore is guaranteed to result in a

serializable execution.

The algorithm is the only pessimistic strategy that

both maintains global serializability and does not violate

local autonomy. However, it allows a lower degree of

concurrency among global transactions. The reason is that

the edges in a site graph cannot be purged even after the

completion of the corresponding transaction, as illustrated

by the fo1lowing execution.

El:

r1(a)wg1(a)wg2(b)w11(b)r12(c)wg2(c)wg3(d)w12(d)….r1n(y)wg

n(y)wgn+1(z)w1n(z)

In this execution, G1 executes entirely before G2,

which executes entirely before G3 and so on. The

serialization order, however, is the reverse:

Gn+1→Gn→…..G2→G1.In other words, a global

transaction (e.g., Gn+l) may effectively precedes another

global transaction (e.g., G1) which executed arbitrarily

long before.

3.4 Access Graph

The basic idea of the access graph algorithm proposed in

[13] is similar to the site graph algorithm. The algorithm

provides a higher degree of concurrency than the site

graph algorithm. More specifically, it only guarantees

quasi serializability in general.

The algorithm is based on the following property of

quasi serializable executions. The quasi serialization order

of two global transactions is compatible with their

execution order if they do not interleave with each other.

We say that two transactions interleave with each other if

either they are executed concurrently (direct interleaving)

or a third transaction directly interleave with both of them

(indirect interleaving). The algorithm ensures the quasi

serializability of a global execution by maintaining the

acyclicity of the access graph of the execution. An access

graph characterizes the current execution environment

from a single global transaction's point of view. More

specifically, the access graph of an execution with respect

to a global transaction is a sub-graph of its site graph. The

sub-graph consists of only those edges that are introduced

by global transactions who interleave (either directly or

indirectly) with the global transaction. It has been shown

that the quasi serializability of an execution is assured if its

access graphs are acyclic with respect to all global

transactions.

The algorithm works by grouping global transactions.

The transactions in each group form an acyclic access

graph and therefore can be submitted to local sites without

any control. Transactions at different groups, however,

must be executed separately.

Example 4. Consider an HDDBS consisting of five

LDBSs: A, B, C,D, and E. Let G1, G2 and G3 be three

global transactions where G1 accesses A, B and C, G2

accesses A and C, and G3 accesses B, D and E. Suppose

that they are submitted to the GCC in the order: GI,G2and

G3. The GCC directs G1 to the local sites immediately. G2,

however, cannot be submitted until G1 finished because

they form a cyclic access graph. Since G1 and G3 do not

form a cyclic access graph, G3 is submitted to local sites

and executed concurrently with G1 at site B. After both G1

and G3 have finished, G2 will be submitted.

The main advantage of using quasi serializability as

the correctness condition is that the GCC only needs to

consider those global transactions that are in the same

group. Therefore, edges in an access graph are purged after

all global transactions in the corresponding group have

completed. As a result, it provides a higher degree of

concurrency than the other three algorithms. In addition, it

does not violate local autonomy. On the other hand, it is

only suited to those HDDDS applications where quasi

serializability is appropriate as a correctness criterion.

3.5 Discussion

The basic idea of pessimistic approaches is to prevent

inconsistency between local executions from occurring.

There are two ways of doing this. The first is to control the

order in which global sub-transactions are submitted, and

the second is to control possible interactions among global

G2 G2 G2

G1

1 3

2

1 3

2

G1

(a) (b)

Figure 4: The Site Graph of G1 and G2

G3 G3

G1

G1

G2
G1

G1
A B

C

5. a Cyclic Access Graph

A B

C

D E

5. b Acyclic Access Graph

 Figure 5 Access Graph

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

286

transactions. The altruistic locking and top-down

algorithms follow the first approach, while the site graph

algorithm follows the second. The access graph algorithm

combines the two approaches and it controls interactions

among global transactions in a group and controls

submission order of global transactions in different groups.

The main advantage of the first approach is the

relatively high degree of concurrency (comparing to the

second one), due to making use of static information of

LCCs (i.e., when and how an LCC determines the

serialization order of a transaction). For example, the

altruistic locking algorithm allows a global transaction to

access a site which is still locked by other transactions as

long as they request no more work at the site. Similarly,

the top-down algorithm allows a global transaction to

access a site after the previous transactions serialization

orders have been determined. So a basic assumption

behind the approach is that LCCs serialize global sub-

transactions in an order compatible with their submission

order. This, generally, implies violation of static autonomy.

The second approach (controlling possible

interactions) makes no assumption on LCCs in

maintaining global serializability. Therefore, it can be

applied to all HDDBS applications. As mentioned before,

the approach suffers from low degree of concurrency.

The problems with both approaches may be solved if

global serializability is not required. For example, if quasi

serializability is used as the correctness criterion, the

assumption of compatibility of submission order and

serialization order is not necessary in the first approach,

and the degree of concurrency in the second approach can

also be greatly improved.

4. Optimistic Approaches

The three algorithms discussed in this section share a

common property of imposing no restriction on

submission of global transactions. Theoretically, they can

provide a very high degree of concurrency among global

transactions. In this approach the aborts of global

transactions is possible. Due to the difficulties of detecting

inconsistency, they may abort more global transactions

than necessary. All three approaches use serializability as

the standard.

4.1 Decentralized Global Concurrency Control

A decentralized global concurrency control algorithm for

HDDBSs is proposed in [14] where each LDBS uses two-

phase locking strategy. The basic idea of the algorithm is

to maintain global serializability by synchronizing release

of locks held by sub-transactions of a global transaction. A

global sub-transaction will not release locks until it

receives an "end-of-transaction" message issued by the

GCC. The message is issued only if the global transaction

finishes its execution at all local sites. Semantically, the

"end-of-transaction" is equivalent to the "commit"

message in two-phase commit protocol. It has been shown

that global serializability is assured if all global

transactions follow this protocol.

On the other hand, global deadlocks may occur, due to

inconsistency among local executions. Consider two

conflicting global transactions G1 and G2 that both access

sites 1and 2. Suppose that G1 is scheduled before G2 at

Site 1, but after G2 at Site 2. Then G2 waits for locks held

by G1 at Site 1, which in turn waits for locks held by G2 at

Site 2. The algorithm is optimistic in the sense that it

detects inconsistencies (global deadlocks in this case) after

the execution. Two algorithms have been proposed for

deadlock detection. The first is a time-out based

mechanism which checks the acyclicity of the potential

conflict graph (PCG) of an execution. A PCG is a directed

graph G = (V, E), where V consists of a set of global

transactions and E consists of edges Gi→Gj such that Gi is

in the waiting state and Gj in the active state at a local site.

The acyclicity of PCGs guarantees there is no global

deadlock. The cyclicity of PCGs, on the other hand, there

may or may not be deadlocks. The second algorithm is

based on the concept of value date [15]. The GCC

associates a value date (timestamp) with each global

transaction which denotes when the transaction is

supposed to finish. Global transactions that pass their

value date are aborted by the GCC, regardless of whether

they are still running. Global deadlocks, therefore, are

always broken after some of global transactions reach their

value dates.

The algorithm makes a practical assumption in that it

requires all LDBSs to use two-phase locking. This, from a

strict sense, violates design autonomy of LDBSs. No

LDBS is allowed to join the HDDBS unless it uses two-

phase locking as the concurrency control strategy.

In addition, both deadlock detection algorithms may

detect global deadlocks that do not exist, resulting aborts

of more global transactions than required. On the other

hand, it maintains global serializability and provides a high

degree of concurrency.

4.2 Super Database

An optimistic approach has been proposed in [16] called

the Super Databases. The basic idea behind this approach

is as follows. Each LCC executes the sub-transactions as

an ordinary local transaction. When a sub-transaction is

completed, the corresponding LCC reports to the GCC the

serialization order called 0-element. The GCC then

constructs for each global transaction an order-vector (0-

vector) as the concatenation of all 0-elements of the sub-

transactions of the global transaction. The order on the 0-

vectors is defined in a strict sense. 0-vector (T1) →0-

vector (T2) if and only if for all LDBSj, 0-element (T1, j)

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

287

→0-element (T2, j). If a global transaction does not have a

sub-transaction at a particular site, a wild-card 0-element,

denoted by * (star) is used for the corresponding

component of the 0-vector. The order of this component

does not matter and, by definition, 0-element (any) →*,

and, * →0-element (any). A certification is done for a

global transaction when it tries to commit. It is done by

comparing the 0-vector of the committing global

transaction against the 0-vectors of the recently committed

global transactions. If the new 0-vector can find a place in

the total order of the recently committed global

transactions 0-vectors, it is committed; otherwise, it is

aborted.

It is not hard to see that the algorithm maintains global

serializability. It also provides a high degree of

concurrency because it aborts only those global

transactions that introduce inconsistency. In addition, it

preserves static autonomy in the sense that it imposes no

restriction on local concurrency control strategies that

LDBSs use.

However, two minor issues must be addressed before

this algorithm can be widely used. The first problem is that

the LCC may not be able to determine the serialization

order of a transaction even after the completion of the

transaction. Generally, the serialization order of a

transaction depends not only on the execution of

previously executed transactions but also on the execution

of those executed later. The second problem is that it is not

clear how the GCC can get 0-elements of global sub-

transactions from LDBSs.

4.3 Optimistic Timestamp

The optimistic Timestamp approach proposed in [17] is

motivated by the observation that it is generally easier to

predict serialization order between global transactions that

directly conflicts with each other. The approach introduces

a synchronization object called timestamp in each site, and

requires each sub-transaction to access the timestamp on

its site. Each access to the timestamp consists of the

following two operations: reading the current value and

incrementing it by one. These two operations must be

included in the code of each sub-transaction and are

synchronized along with other database read/write

operations (so that access to these two operations is

atomic). It is assumed that each LCC maintains the

serializability of its local execution. According to the

serializability theory, two conflict transactions are ordered

in accordance with the order of their conflicting operations.

Since the timestamp accessing operations are conflicting

operations, the serialization order of the sub-transactions is

the same as the order that their timestamp accessing

operations are performed. Furthermore, the timestamp are

monotonously increased when it is accessed. Therefore,

the timestamp value accessed reflects the order that the

timestamp accessing operation is executed, and therefore

reflects the serialization order of the sub-transaction. The

serialization order, after being obtained, can be used by the

GCC to validate the execution of the global transactions.

The timestamp accessing operations are embedded in the

code of the sub-transactions. No explicit serialization order

is needed from the LCC; therefore, no modification of the

LCC is required.

The algorithm is interesting and unique in sense it

maintains the global serializability, provides a high degree

of concurrency and does not violate local autonomy. The

algorithm addresses the problem of how to effectively

obtain the serializations orders of global transactions. A

minor problem with this algorithm is that it may abort

more global transactions than required, due to conflicts

introduced by timestamp. Since every two global

transactions directly conflict with each other at each site

they access, it is very likely that there is a cycle in the

global serialization graph, unless some restrictions are

imposed on their submission.

5. Conclusion

5.1 Summary and Results

A brief summary of seven algorithms discussed in the

paper is given in the following table.

C
o
n

si
st

en
cy

A
u

to
n
o

m
y

C
o
n

cu
rr

en
cy

E
x

ac
t

A
b
o

rt

P
es

si
m

is
ti

c

Altruistic locking

SR/QSR Design/√ 6 1

Top-Down SR/QSR Design/√ 5 1

Site Graph SR √ 7 1

Access Graph SR/QSR Design/√ 4 1

O
p

ti
m

is
ti

c Decentralized GCC SR Static 1 6

Super Database

SR Dynamic 1 5

Optimistic Ticket SR √ 1 7

Table 5.1

In the Table 5.1, an SR entry in the third column indicates

that the algorithm maintains global serializability, while an

SR/QSR entry indicates that the algorithm maintains

global serializability in some environments, and maintains

quasi serializability in general. A check mark √ in the

fourth column means that the algorithm preserves local

autonomy, while Static (or Dynamic) means that the

algorithm may violate static (or dynamic) autonomy. A

Design / √ entry means that the algorithm may violate

design autonomy if serializability is used as the

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

288

correctness criterion, but preserves local autonomy if quasi

serializability is used as the criterion. The concurrency

degree and transaction abort ratio are numbered in order:

1for the best and 7 for the worst.

Generally, optimistic approaches are superior to

pessimistic approaches in concurrency degree, but inferior

to in transaction abort ratio. In most HDDBSs applications,

the number of global transactions is small in comparison to

that of local transactions. Therefore, a low degree of

concurrency among global transactions does not affect the

overall concurrency very much. On the other hand, a high

global transaction abort ratio is usually unacceptable in

most HDDBS applications.

One problem with most pessimistic approaches is that

they maintain global serializability only if the LDBSs use

specific concurrency control strategies. The problem,

however, is not that bad in practice. The reason is that the

algorithms work for most practically used strategies (e.g.,

two-phase locking and timestamp ordering protocols).

The key point in success of optimistic approaches is to

detect inconsistency between local executions precisely.

Although it is very likely that global transactions are

scheduled inconsistently at different sites, they usually do

not conflict with each other. If the real conflicts can be

detected precisely, the approaches will provide good

performance. Unfortunately, this is difficult, due to local

autonomy.

5.2 Future Work

Global concurrency control is still an active research area.

The following are some research directions that we think

for future.

Pessimistic and optimistic approaches each have

advantages over the other in some aspects. An interesting

problem is therefore how to combine them together to

develop an algorithm that not only provides a high degree

of concurrency but also aborts a small number of global

transactions.

As in many other research areas, one deficiency in our

discussion of global concurrency control is the lack of

performance data. Little work has been done in this

important area.

Another problem with the existing concurrency

control strategies is that most of them are designed

independently of other transaction management issues, e.g.,

commitment and recovery. Clearly, more attention should

be devoted to these issues, as well as the integration with

concurrency control strategies.

References
[1] W. Du, A. Elmagarmid, and W. Kim. Effects of local

autonomy on heterogeneous distributed database systems.

Technical Report ACT-00DS-EI-050-90, MCC, February

2000.

[2] P. Bcrnstein, V. Hadzilacos, and N. Goodman.

Concurrency Control and Recovery in Databases Systems.

Addison- Wesley Publishing Co., 2002.

[3] V. Gligor and G. Luckcenbaugh. Interconnecting

heterogeneous data base management systems. IEEE

Computer, 17(1):33-43, January 2000.

[4] V. Gligor and R. Popescu-Zeletin. Transaction

management in distributed heterogeneous Database

management systems. Information Systems, 11(4):287-

297, 2004.

[5] W. Du, A. Elmagarmid, Y. Leu, and S. Ostermann.

Effects of autonomy on global concurrency control in

heterogeneous distributed database systems. In

Proceedings of the Second International Conference on

data and Knowledge Systems for Manufacturing and

Engineering, pages 113-120, Gaithersburg, Maryland,

October 2004.

[6] R, Alonso, H. Garcia-Molina, and K. Salem. Concurrency

control and recovery for global procedures in federated

database systems. In IEEE Data Engineering Bulletin,

pages 5-11, September 2006.

[7] W. Du and A. Elmagarmid. Quasi serializability: a

correctness criterion for global concurrency control in

InterBase. In Proceedings of the International Conference

on Very Large Data Bases, pages 347-355, Amsterdam,

The Netherlands, August 2000.

[8] K. Vidyasankar. Non-two phase locking protocols for

global concurrency control in distributed heterogeneous

database systems. In CIPS, 2000.

[9] A. Silberschatz and Z. Kedem. Consistency in

hierarchical database systems. Journal of the ACM,

27(1):72-80, 2002.

[10] A. Elmagarmid and W. Du. A paradigm for concurrency

control in heterogeneous distributed database systems. In

Proceedings of the Sixth International Conference on

Data Engineering, Los Angeles, California, February

2004.

[11] Y. Leu and A. Elmagarmid. A hierarchical approach to

concurrency control for multi databases. In Proceedings

of the Second International Symposium on Databases in

Parallel and Distributed Systems, 2002.

[12] Y. Breitbart and A. Silberschatz. Multi database update

issues. In Proceedings of the International Conference on

Management of Data, pages 135-142, June 2004.

[13] W. Du and A. Elmagarmid. Maintaining transaction

consistency in HDDBSs using quasi serializable

executions. Technical Report CSD-TR-969 Purdue

University, March 2000.

[14] Y. Breitbart, W. Litwin, and A. Silberaschatz. Multi

database concurrency control systems. Technical Report

154-89, Department of Computer Science, University of

Kentucky, 2001.

[15] W. Litwin and H. Tirri. Flexible concurrency control

using value dates. IEEE Distributed Processing Technical

Committee Newsletter, 10(2):42-49, November 2002.

[16] C. Pu. Super databases for composition of heterogeneous

data bases. In Proceedings of the International

Conference on Data Engineering, pages 548-555,

February 2003.

[17] D. Georgakopoulos and M. Rusinkiewicz. Transaction

management in multi database systems. Technical Report

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

289

UH-CS-89-20, Department of Computer Science,

University of Houston, September 2004.

 Arun Kumar Yadav received

the B.E. (Computer Science &

Engineering) and M.Tech

(Information Technology) degree in

2000 and 2004, respectively.

Presently pursuing Doctorate

Degree (Ph.D) in Computer Science

from Singhania University,

Rajasthan and

working as Associate Professor & Head in the Department of

Information Technology in Venkteshwar Institute of Technology,

Indore (M.P.), India. His research interest includes Distributed

Database Security, Data Structures and Algorithms. He is a

member of IACSIT and IAENG.

Dr. Ajay Agarwal has done

B.Tech. Degree in Computer

Science & Engineering from

Institute of Engineering &

Technology, Lucknow (India),

M.Tech.(honors) Degree in

Computer Science & Engineering

from Motilal Nehru Regional

Engineering College, Allahabad and

Ph.D. in Computer Science from

Indian Institute of Technology, Delhi (India). Presently he is

working as a Professor and Head in Computer Application

Department at Krishna Institute of Engineering & Technology,

Ghaziabad, India. He is a member of various Technical Societies

viz. Institute of Electrical and Electronics Engineers (IEEE),

Computer Society of India (CSI), Indian Society for Technical

Education (ISTE), Institution of Engineers India, Institute of

Chartered Computer Professional of India and Indian Association

of Physics Teachers. He published many papers in various

International/ National Journals and Conferences. His main

research interests include: Distributed Database Security,

Wireless Sensor Network, Mobile Computing and Middleware.

Kamlesh Chopra received the

B.E. (Computer Science &

Engineering) degree in 2006 and

presently pursuing M.Tech

(Computer Science & Engineering)

from Rajiv Gandhi Technological

University, Bhopal (M.P.). Presently

working as Lecturer in the

Department of Computer Science &

Engineering in Venkteshwar

Institute of Technology, Indore (M.P.), India. His research

interest includes Distributed Database Security and Computer

Networks.

