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Abstract 
In this paper, we have proposed the strategies for concurrency 

control of global transactions in heterogeneous distributed 

database systems. We have focused on the issues of consistency, 

local autonomy and performance. A technique to prevent and 

resolve inconsistency, classified into one of the two basic 

approaches: optimistic or pessimistic. The previous research 

intends to provide a high degree of concurrency among global 

transactions, while the later is concerned with aborts of global 

transactions. The strengths and weaknesses of the two 

approaches are discussed.  
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1 Introduction  

A heterogeneous distributed database system (HDDBS) is 

a group of pre-existing database systems (called Local 

Database Systems or LDBSs). An HDDBS is the natural 

result of shifting priorities and needs of an organization as 

it acquires new database systems that are designed 

independently. For many applications, an HDDBS is an 

attractive alternative to a single, integrated database 

system. An HDDBS is different from a set of database 

systems in that it supports global applications accessing 

mu1tiple systems simultaneously. It is also different from 

traditional homogeneous distributed database systems in 

that it interconnects LDBSs in a bottom up fashion, 

thereby allowing existing applications developed on each 

of the LDBSs continue to be executing without any 

modification.  

One of the important feature of HDDBSs is autonomy 

of LDBSs. Local autonomy defines the right of each 

LDBS to control access to its data by other LDBSs and the 

right to access and administer its own data independently 

of other LDBSs. As a result, LDBSs may use different 

data models, different concurrency control strategies and 

they can schedule to accesses its data independently. Local 

autonomy is required and necessary in HDDBSs to 

guarantee that old applications are executable after 

interconnection, to facilitate flexible interconnection of 

various kinds of LDBSs, and to ensure the consistency and 

the security of LDBSs.  

Concurrency control in HDDBSs is different from 

homogeneous distributed database systems, due to 

existence of local concurrency controllers (LCCs). An 

LCC reside at each LDBS and maintains its consistency. 

LCCs are not capable of maintaining the consistency of the 

global database, because global transactions may be 

scheduled inconsistently at different sites. In order to 

prevent this kind of inconsistency, a global concurrency 

controller (GCC) is needed. The GCC is built on top of 

LCCs coordinating local executions at different sites. 

Controlling the concurrency in HDDBSs is more 

difficult than that in homogeneous distributed database 

systems, due to the autonomy of LCCs [1]. The LCCs are 

independently designed and cannot be modified because of 

the autonomy restrictions placed by the LDBSs. In 

addition, the LCCs have the right to schedule local and 

global transactions independently, based on their own 

considerations. The GCC has only control over local 

executions in submissions of global transactions. However, 

it is possible that a global transaction effectively precedes 

another even if it is executed entirely at all local sites [2].  

The necessity and difficulties of the global 

concurrency control in HDDBSs were accepted in [3]. 

Several conditions for global concurrency control were 

identified in [4]. Since then, a large amount of work has 

been done in developing algorithms for controlling global 

concurrency.  

In this paper, we are presenting algorithms to preserve 

local autonomy, maintaining the global consistency and 

will discuss their strengths, weaknesses, and performance. 

The rest of the sections are organized as follows. We first 

discuss, in Section 2, three basic issues of global 

concurrency control in HDDBSs, namely, autonomy, 

consistency and performance. In Sections 3 and 4, we 

discuss the solutions for global concurrency control. 

Section 5 concludes the paper with summary of algorithms, 

results and suggestions for future work. 
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2. Local Autonomy, Consistency and 

Performance  
 

The concurrency control is needed to maintain database 

consistency and provide high performance by allowing 

concurrent execution of transactions. In HDDBSs, the 

global concurrency control mechanisms should also 

preserve the autonomy of LDBSs. In this section, we are 

discussing the three issues (i.e., local autonomy, 

consistency and performance) in the context of HDDBS. 

Firstly we are presenting an HDDBS model. A 

classification of global concurrency control strategies is 

also presented in this section.  

 

2.1 HDDBS Model  
 

An HDDBS is a distributed database system consisting of 

LDBSs. Each local database is a set of data items. There 

are two kinds of transactions in an HDDBS. A local 

transaction accesses data items of one local database, 

while a global transaction accesses data items of more than 

one local database. A global transaction (consists of a set 

of global sub-transactions) accesses a single local database 

and is executed at the sites along with local transactions. 

When local and global transactions are executed, they 

transform the database from one consistent state to another 

consistent state. 

More specifically, a global transaction transforms the 

global database from a consistent state to another 

consistent state, while a local transaction and a global sub-

transaction transforms a local database from a consistent 

state to another consistent state.  

The transaction processing model for HDDBSs is 

shown in Figure 1. It consists of a Global Data manager 

(GDM), a Global transaction Manager (GTM), a collection 

of LDBSs, a set of global and local transactions and a set 

of server processes. A server process runs at each site and 

represents the interface between the GTM and the LDBSs. 

Global Data manager (GDM) decomposes the global 

transaction into a set of sub-transactions and a Global 

transaction Manager (GTM) submits the sub-transactions 

to the corresponding LDBSs for the execution. 

       When a global transaction is submitted to the HDDBS, 

it first decomposes and translated by the GDM into a set of 

sub-transactions that run at the local sites where the 

required data reside. It is assumed that, for every global 

transaction, there is at most one sub-transaction per site [3]. 

The GTM submits the sub-transactions to the 

corresponding LDBSs and coordinates their executions at 

local sites so that the global database consistency is 

maintained. The GCC is a module of the GTM which is 

responsible for the g1obal concurrency control. 

 
 

These sub-transactions are then directed to the GTM.  

 

2.2 Local Autonomy 

 

Local autonomy is an important feature of HDDBSs. It 

defines the ability of each LDBS to perform various kinds 

of operations and various kinds of control over its own 

database. For example, an LDBS should be able to 

implement its own data model, catalog management 

strategy, and its own naming convention. It should also be 

able to control over local transactions and global sub-

transactions (e.g., to delay or abort a transaction) to 

maintain the consistency of the local database. Local 

autonomy also defines the right of each LDBS to make 

decisions regarding the service it provides to other LDBSs. 

Local autonomy is required to guarantee that local users 

can continue to run local applications on their LDBS 

regardless of interconnection and to ensure that the basic 

consistency, security and performance requirements of an 

LDBS are met while allowing other LDBSs to access its 

data.  

It is difficult to compute local autonomy. To discuss 

how well a global concurrency control strategy preserves 

local autonomy, we distinguish among different aspects of 

local autonomy. The ability of global concurrency control 

strategies to maintain these aspects of autonomy is 

discussed in the next two sections.  
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2.3 Consistency  
 

As, in homogeneous distributed database systems, the goal 

of global concurrency control in HDDBSs is to maintain 

the HDDBS consistency. Due to the hierarchical structure 

of HDDBSs, two kinds of consistency exist: one that 

previously existed in each of the LDBSs (called local 

consistency) and the other that results from the 

interconnection process (called global consistency). Local 

consistency defines constraints on relationships of data in 

a local database and on interactions among local 

transactions and global sub-transactions executed at the 

site, while global consistency defines constraints on 

relationship of data at different local database and on 

interactions among global transactions, as well as 

interactions among local transactions executed at different 

sites. We assume that the LCC at each site maintains the 

local consistency of the LDBS. More specially, it 

guarantees the serializability of the local execution. It is 

the GCC’s responsibility to coordinate local execution to 

ensure global consistency. 

The conventional way to maintain the global 

consistency is to execute global and local transactions in a 

serializable fashion. An execution of a set of transactions 

is serializable if it is equivalent to a serial execution of the 

transactions. Serializability in HDDBS represents the 

strongest type of consistency in that it treats an HDDBS as 

a strongly coupled homogeneous distributed database 

system because GCC ensures that the concurrent execution 

of global sub-transactions should be equivalent to the 

serial execution. There is no difference between local and 

global transactions and between local and global 

consistencies. The problem with serializability in HDDBS 

is that it is difficult to maintain, due to local autonomy of 

LDBs ([5], [1]). Since LCCs have the right to schedule 

local transaction and global sub-transactions independently, 

the only control the GCC has over local executions is the 

submission of global transactions. As mentioned before, it 

is generally impossible to maintain the global 

serializability by just controlling the submission of global 

transactions. 

 

2.4 Performance 
 

Degree of concurrency is the main measure of 

performance for concurrency control in database systems. 

The degree of concurrency refers to the number of 

transactions executing concurrently and provided by a 

concurrency control protocol and is measured by the 

possible interleaving of transactions it allows. In HDDBSs, 

we consider two kind of interleaving: that among global 

transactions and that among local transactions and global 

sub-transactions at a site. The latter is determined by LCCs. 

The GCC is responsible for providing a high degree of 

concurrency of global transactions. One way of achieving 

the goal is to impose few restrictions as possible on 

submission and execution of global transactions. 

Another important issue affecting performance is 

abort ratio (i.e. the number of transactions selected as 

victim to terminate from the system) of global transactions. 

In HDDBSs, global transactions are aborted not only 

because of the conflicts in a local execution, but also 

because of the inconsistency of serialization orders 

between local executions. Consider two global transactions 

G1 and G2 which access two local databases L1 and L2 

respectively. Suppose that they are submitted at about the 

same time t1. Due to the different scheduling policies of 

two LDBSs use, it is possible that the two global 

transactions are scheduled in different orders at two sites 

L1 and L2. Generally, the more common sites two global 

transactions access, the more likely that they will be 

scheduled inconsistently. Due to the same submission time 

of global transactions G1 and G2, one of the global 

transactions may be abort to ensure the consistency of the 

database.  

Another reason that abort ratio of global transactions 

is important in HDDBSs is that the execution of a global 

transaction is usually expensive. The abort of a global 

transaction implies that all its sub-transactions must be 

aborted. This is very difficult at some sites due to local 

autonomy.  

Therefore, it is very important for a concurrency 

control strategy to abort as few global transactions as 

possible. This can be done in two ways. First, it should try 

not to abort global transactions because of local conflicts. 

In other words, the abort of a sub-transaction should not 

result in the abort of the global transaction. Second, it 

should reduce the possibility of inconsistency between 

local executions, and in case an inconsistency occurs, 

aborts no more global transactions than necessary.  

Providing the high degrees of concurrency and 

minimizing the number of global transactions aborted is an 

important decision in designing a global concurrency 

control algorithm, and results in two different approaches 

of global concurrency control.  

 

2.5 Classification of Strategies  
 

A global concurrency control strategy in HDDBSs can be 

classified as pessimistic and optimistic. The optimistic 

approaches try to provide a high degree of concurrency, 

while the pessimistic approaches are concerned with the 

abort ratio of global transactions.  

Generally, pessimistic approaches attempt to prevent 

inconsistency by imposing restrictions on the submission 

of global transactions. The GCC assumes that there are 

conflicts among global transactions whenever such 

conflicts possibly exist. The strategies in this group differ 

in the restrictions imposed on the submission of global 

transactions to guarantee a specific (serialization or quasi 
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serialization) order. GCCs based on this approach do not 

abort global transactions due to inconsistency between 

executions. On the other hand, they allow low degrees of 

concurrency because before submitting the global 

transactions it ensures the serialization or quasi 

serialization. In addition, they are usually unable to make 

use of dynamic information about local executions because 

it is impossible to predict in advance whether the 

information is available.  

In contrast to pessimistic approaches, optimistic 

approaches do not control the submission of global 

transactions. Instead, they detect and resolve inconsistency 

after the execution of global transactions. The approaches 

are based on the assumptions that not every pair of global 

operations could conflict arbitrarily. The strategies in this 

group differ in how they detect and resolve inconsistency.  

 

3. Pessimistic Approaches  
 

In this section, we discuss four pessimistic approaches of 

global concurrency: altruistic locking, top-down, site 

graph and access graph. One property they all share is that 

no global transaction is aborted due to inconsistency 

among local executions. Therefore, the main measure of 

performance is the degree of concurrency of global 

transactions. 

 

3.1 Altruistic Locking  
 

The altruistic locking strategy was initially proposed for 

long-lived transactions and is also used as a concurrency 

control strategy in HDDBSs [6]. The basic idea of the 

strategy is to prevent inconsistency by not allowing two 

global transactions to access a local database concurrently. 

A global transaction must lock a site before it can access 

the site. Once its all requests have been processed, it can 

release the lock on the site. Releasing a lock is a 

conditional unlocking operation. Other global transactions 

waiting to lock the released site may be able to do so if 

they are willing to abide by the following rules. (1) No two 

global transactions hold locks on the same site 

simultaneously unless one of the transactions locked and 

released the site before the other locked it. In other words, 

the later lock-holder is in the wake of the releasing 

transaction. (2) If a transaction is in the wake of another 

transaction, it must be completely in the wake of the 

transaction. In other words, if G1 locks site A which has 

been released by G2, then anything currently locked by G1 

must have been released by G2 before it was locked by G1. 

(This requirement is relaxed once G2 finishes.) Note that 

the releasing operation is not two-phase, i.e. the global 

transaction is free to continue to lock new sites after it has 

released locks; while the unlocking operations is two-

phase and usually is done after global transactions 

complete.  

Example 1. Consider an HDDBS consisting of five 

LDBSs: A, B, C, D, and E. Let G1 be a global transaction 

which accesses sites A, C, D, and E in that order, G2 

accesses sites A and C, and G3 accesses sites A and B. 

Suppose that at current state, G1 hold the locks on sites A, 

C and D. The sites A, C and D constitute the current wake 

of G1. After G1 released the locks, G2 is allowed to access 

sites A and C, since they are in the wake of G1.G3, 

however, can only access site A, and has to wait until G2 

completes and unlocks all its locks before it can access site 

B, which is outside the wake of G1. 

 
The execution order of global transactions is decided 

in the following way. If a global transaction is in the wake 

of other global transactions, then its order is after those 

global transactions. For global transactions which are not 

in the wake of each other, their order is decided by the 

order they lock the conflict sites. It is shown that the 

altruistic locking maintains the same execution order 

among global transactions at all sites.  

The main advantage of this strategy is that it exercises 

no control over and requires no information about local 

executions. In other words, it preserves local autonomy of 

LDBSs. However, the strategy provides no concurrency 

among global transactions because they are executed in 

serial manner at each site. The benefit of doing this is that 

the execution orders of global transactions at local sites are 

always consistent. Another problem is that it maintains 

global serializability only if all LCCs maintain strict 

serializability of local executions. 

In other words, serialization order of global sub-

transactions is compatible with their execution order. This 

is however not true for concurrency control protocols (e.g., 

serialization graph testing). On the other hand, it has been 

shown in [7] that it maintains quasi serializability 

regardless of concurrency control protocols LCCs use.  

 

3.2 Top-down 
 

As discussed in [4], one way of performing global 

concurrency control in HDDBSs is the top-down approach. 

In top-down approach, the GCC determines the execution 

order of global transactions before their submission to 

a 

b 
c 

d 
e 

f 

h g 

Figure 2: A Rooted tree interconnected HDDBS 
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local sites which is then enforced at each site. There are 

two basic steps in a top-down approach of concurrency 

control: (1) determining an order at global level, and (2) 

enforcing the order at local level.  

The non-two-phase locking protocol proposed in [8] 

gives a solution in the first step. It provides a way of 

dynamically determining the order as global transactions 

are executed. This approach is adapted from the well 

known non-two-phase locking protocol for the traditional 

concurrency control problem [9].  

The protocol applies to those HDDBSs that are 

formed as a rooted tree. The sub-transaction of a global 

transaction is treated as an atomic transaction step, and 

each LDBS is treated as a distinct data item. The GCC 

issues the sub-transactions of a global transaction to the 

individual LDBSs according to the tree protocol. The 

following is a simple example illustrating the idea.  

Example 2.Consider an HDDBS which is interconnected 

as a rooted tree in Figure 2. Let G be a. global transaction 

and Gx, be its sub transaction executed at site X. Suppose 

that sub-transactions of G are to be executed at sites B, E, 

F and H. It first "locks" B and send sub- transaction Gb to 

site B. Then it locks E and F. After that, and after the 

execution of Gb completes, it may release the lock on B. 

Likewise, on completion of the execution of Ge, and after 

locking H, it can release the lock on E. While the locks on 

sites are acquired in the tree order, it can be released in any 

order.  

 
In [10], various techniques of enforcing the global 

execution order at local sites are discussed. One way of 

doing this is to control the submission order of global sub 

transactions. The task is performed by server processes at 

local sites (called stub processes in [10] and site queue in 

[11]). The server process guarantees that the LCC 

schedules global sub-transactions in the order they are 

submitted. More specifically, the server process submits a 

global transaction to the LCC only if the serialization 

orders of all previously submitted global transactions have 

been determined by the LCC. The technique works for 

those LCCs that determine the serialization order of a 

transaction according to an event which can be identified 

before the termination of the transaction. An LCC with 

this property is said to be static [11].Both two phase 

locking and time-stamp ordering protocols are static. For 

example, in two-phase locking protocols, the serialization 

order of a transaction is determined once it reaches its lock 

point.  

Unfortunately, not all concurrency control protocols 

are static, e.g., serialization graph testing. It is generally 

impossible to guarantee a specific serialization order using 

the above technique. On the other hand, the technique can 

always be used to impose a quasi serialization order. The 

degree of concurrency provided by the algorithm depends 

on local concurrency control strategies. For example, if 

two-phase locking protocol is used, global sub-transactions 

at the site are executed almost sequentially. A higher 

degree of concurrency is possible if timestamp ordering 

protocol is used. The price is, however, possible conflicts 

between global sub-transactions, and therefore aborts of 

some sub-transactions.  

 

3.3 Site Graph  
 

Site graph algorithm proposed in [12] is an attempt to 

maintain global serializability without imposing any 

restriction on LCCs. In this algorithm, the GCC maintains 

an undirected graph, called site graph, in which the nodes 

are sites and the edges are global transactions. When a 

global transaction T is received, the GCC first determines 

the sites that contain copies of data accessed by the global 

transaction and connects them to form a linear link in the 

graph. The following example illustrates the notions of site 

graphs: 

Example 3. Consider an HDDBS that contains data item x 

at sites 1 and 2, y at sites 1 and 3, and z at sites 2 and 3. 

Let G1 and G2 be two global transactions:  

G1:r1(x) w1(y) G2:r2(y) w2 (z)  

Since the data are replicated, the GCC may generate one of 

the following sequences of local operations for each global 

transaction:  

G1:r1(x1) w1 (y1) w1 (y3)  G2:r2 (y3) w2 (z2) w2 (z3) or  

G1:r1(x1) w1 (y1) w1 (y3)  G2:r2 (y1) w2 (z2) w2 (z3) 

The site graphs for the sequences are shown in Figure 4. 

(a) and 4. (b).  

In Figure 4, site graph 4. (a) is acyclic, while site graph 

4.(b) contains a cycle. That a site graph is cyclic means 

that the execution of the global and local transactions may 

be non-serializable. For instance, the following non-

serializable execution may occur if the second sequence is 

submitted for execution.  

Site 1:  r1(x1) w1 (y1) r2 (y1) 

Lock1 

Lock3 

Lock4 

Lock2 

a 

b c 

d e 
f 

g h 

Figure 3: Top-Down locking in rooted tree 

interconnected HDDBS 
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Site 2: w2 (z2)  

Site 3: r1 (y3) w1 (y3) w2 (z3) w1 (z3) 

In this execution, local transaction L introduces an indirect 

order between G1 and G2 at site 3, which is different from 

their order of conflicting operations at site 1. While for the 

first sequence, the local transaction can not introduce 

indirect orders and therefore is guaranteed to result in a 

serializable execution.  

The algorithm is the only pessimistic strategy that 

both maintains global serializability and does not violate 

local autonomy. However, it allows a lower degree of 

concurrency among global transactions. The reason is that 

the edges in a site graph cannot be purged even after the 

completion of the corresponding transaction, as illustrated 

by the fo1lowing execution.  

El: 

r1(a)wg1(a)wg2(b)w11(b)r12(c)wg2(c)wg3(d)w12(d)….r1n(y)wg

n(y)wgn+1(z)w1n(z) 

In this execution, G1 executes entirely before G2, 

which executes entirely before G3 and so on. The 

serialization order, however, is the reverse: 

Gn+1→Gn→…..G2→G1.In other words, a global 

transaction (e.g., Gn+l) may effectively precedes another 

global transaction (e.g., G1) which executed arbitrarily 

long before.  

 

3.4 Access Graph 
 

The basic idea of the access graph algorithm proposed in 

[13] is similar to the site graph algorithm. The algorithm 

provides a higher degree of concurrency than the site 

graph algorithm. More specifically, it only guarantees 

quasi serializability in general.  

The algorithm is based on the following property of 

quasi serializable executions. The quasi serialization order 

of two global transactions is compatible with their 

execution order if they do not interleave with each other. 

We say that two transactions interleave with each other if 

either they are executed concurrently (direct interleaving) 

or a third transaction directly interleave with both of them 

(indirect interleaving). The algorithm ensures the quasi 

serializability of a global execution by maintaining the 

acyclicity of the access graph of the execution. An access 

graph characterizes the current execution environment 

from a single global transaction's point of view. More 

specifically, the access graph of an execution with respect 

to a global transaction is a sub-graph of its site graph. The 

sub-graph consists of only those edges that are introduced 

by global transactions who interleave (either directly or 

indirectly) with the global transaction. It has been shown 

that the quasi serializability of an execution is assured if its 

access graphs are acyclic with respect to all global 

transactions. 

The algorithm works by grouping global transactions. 

The transactions in each group form an acyclic access 

graph and therefore can be submitted to local sites without 

any control. Transactions at different groups, however, 

must be executed separately.  

Example 4. Consider an HDDBS consisting of five 

LDBSs: A, B, C,D, and E. Let G1, G2 and G3 be three 

global transactions where G1 accesses A, B and C, G2 

accesses A and C, and G3 accesses B, D and E. Suppose 

that they are submitted to the GCC in the order: GI,G2and 

G3. The GCC directs G1 to the local sites immediately. G2, 

however, cannot be submitted until G1 finished because 

they form a cyclic access graph. Since G1 and G3 do not 

form a cyclic access graph, G3 is submitted to local sites 

and executed concurrently with G1 at site B. After both G1 

and G3 have finished, G2 will be submitted. 

  
The main advantage of using quasi serializability as 

the correctness condition is that the GCC only needs to 

consider those global transactions that are in the same 

group. Therefore, edges in an access graph are purged after 

all global transactions in the corresponding group have 

completed. As a result, it provides a higher degree of 

concurrency than the other three algorithms. In addition, it 

does not violate local autonomy. On the other hand, it is 

only suited to those HDDDS applications where quasi 

serializability is appropriate as a correctness criterion. 

 

3.5 Discussion 
 

The basic idea of pessimistic approaches is to prevent 

inconsistency between local executions from occurring. 

There are two ways of doing this. The first is to control the 

order in which global sub-transactions are submitted, and 

the second is to control possible interactions among global 

G2 G2 G2 

G1 

1 3 

2 

1 3 

2 

G1 

(a) (b) 

Figure 4: The Site Graph of G1 and G2 

G3 G3 

G1 

G1 

G2 
G1 

G1 
A B 

C 

5. a Cyclic Access Graph 

A B 

C 

D E 

5. b Acyclic Access Graph 

 Figure 5 Access Graph 
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transactions. The altruistic locking and top-down 

algorithms follow the first approach, while the site graph 

algorithm follows the second. The access graph algorithm 

combines the two approaches and it controls interactions 

among global transactions in a group and controls 

submission order of global transactions in different groups.  

The main advantage of the first approach is the 

relatively high degree of concurrency (comparing to the 

second one), due to making use of static information of 

LCCs (i.e., when and how an LCC determines the 

serialization order of a transaction). For example, the 

altruistic locking algorithm allows a global transaction to 

access a site which is still locked by other transactions as 

long as they request no more work at the site. Similarly, 

the top-down algorithm allows a global transaction to 

access a site after the previous transactions serialization 

orders have been determined. So a basic assumption 

behind the approach is that LCCs serialize global sub-

transactions in an order compatible with their submission 

order. This, generally, implies violation of static autonomy.  

The second approach (controlling possible 

interactions) makes no assumption on LCCs in 

maintaining global serializability. Therefore, it can be 

applied to all HDDBS applications. As mentioned before, 

the approach suffers from low degree of concurrency.  

The problems with both approaches may be solved if 

global serializability is not required. For example, if quasi 

serializability is used as the correctness criterion, the 

assumption of compatibility of submission order and 

serialization order is not necessary in the first approach, 

and the degree of concurrency in the second approach can 

also be greatly improved. 

 

4. Optimistic Approaches  
 

The three algorithms discussed in this section share a 

common property of imposing no restriction on 

submission of global transactions. Theoretically, they can 

provide a very high degree of concurrency among global 

transactions. In this approach the aborts of global 

transactions is possible. Due to the difficulties of detecting 

inconsistency, they may abort more global transactions 

than necessary. All three approaches use serializability as 

the standard.  

 

4.1 Decentralized Global Concurrency Control  
 

A decentralized global concurrency control algorithm for 

HDDBSs is proposed in [14] where each LDBS uses two-

phase locking strategy. The basic idea of the algorithm is 

to maintain global serializability by synchronizing release 

of locks held by sub-transactions of a global transaction. A 

global sub-transaction will not release locks until it 

receives an "end-of-transaction" message issued by the 

GCC. The message is issued only if the global transaction 

finishes its execution at all local sites. Semantically, the 

"end-of-transaction" is equivalent to the "commit" 

message in two-phase commit protocol. It has been shown 

that global serializability is assured if all global 

transactions follow this protocol.  

On the other hand, global deadlocks may occur, due to 

inconsistency among local executions. Consider two 

conflicting global transactions G1 and G2 that both access 

sites 1and 2. Suppose that G1 is scheduled before G2 at 

Site 1, but after G2 at Site 2. Then G2 waits for locks held 

by G1 at Site 1, which in turn waits for locks held by G2 at 

Site 2. The algorithm is optimistic in the sense that it 

detects inconsistencies (global deadlocks in this case) after 

the execution. Two algorithms have been proposed for 

deadlock detection. The first is a time-out based 

mechanism which checks the acyclicity of the potential 

conflict graph (PCG) of an execution. A PCG is a directed 

graph G = (V, E), where V consists of a set of global 

transactions and E consists of edges Gi→Gj such that Gi is 

in the waiting state and Gj in the active state at a local site. 

The acyclicity of PCGs guarantees there is no global 

deadlock. The cyclicity of PCGs, on the other hand, there 

may or may not be deadlocks. The second algorithm is 

based on the concept of value date [15]. The GCC 

associates a value date (timestamp) with each global 

transaction which denotes when the transaction is 

supposed to finish. Global transactions that pass their 

value date are aborted by the GCC, regardless of whether 

they are still running. Global deadlocks, therefore, are 

always broken after some of global transactions reach their 

value dates.  

The algorithm makes a practical assumption in that it 

requires all LDBSs to use two-phase locking. This, from a 

strict sense, violates design autonomy of LDBSs. No 

LDBS is allowed to join the HDDBS unless it uses two-

phase locking as the concurrency control strategy.  

In addition, both deadlock detection algorithms may 

detect global deadlocks that do not exist, resulting aborts 

of more global transactions than required. On the other 

hand, it maintains global serializability and provides a high 

degree of concurrency.  

 

4.2 Super Database 
 

An optimistic approach has been proposed in [16] called 

the Super Databases. The basic idea behind this approach 

is as follows. Each LCC executes the sub-transactions as 

an ordinary local transaction. When a sub-transaction is 

completed, the corresponding LCC reports to the GCC the 

serialization order called 0-element. The GCC then 

constructs for each global transaction an order-vector (0-

vector) as the concatenation of all 0-elements of the sub-

transactions of the global transaction. The order on the 0-

vectors is defined in a strict sense. 0-vector (T1) →0-

vector (T2) if and only if for all LDBSj, 0-element (T1, j) 
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→0-element (T2, j). If a global transaction does not have a 

sub-transaction at a particular site, a wild-card 0-element, 

denoted by * (star) is used for the corresponding 

component of the 0-vector. The order of this component 

does not matter and, by definition, 0-element (any) →*, 

and, * →0-element (any). A certification is done for a 

global transaction when it tries to commit. It is done by 

comparing the 0-vector of the committing global 

transaction against the 0-vectors of the recently committed 

global transactions. If the new 0-vector can find a place in 

the total order of the recently committed global 

transactions 0-vectors, it is committed; otherwise, it is 

aborted.  

It is not hard to see that the algorithm maintains global 

serializability. It also provides a high degree of 

concurrency because it aborts only those global 

transactions that introduce inconsistency. In addition, it 

preserves static autonomy in the sense that it imposes no 

restriction on local concurrency control strategies that 

LDBSs use.  

However, two minor issues must be addressed before 

this algorithm can be widely used. The first problem is that 

the LCC may not be able to determine the serialization 

order of a transaction even after the completion of the 

transaction. Generally, the serialization order of a 

transaction depends not only on the execution of 

previously executed transactions but also on the execution 

of those executed later. The second problem is that it is not 

clear how the GCC can get 0-elements of global sub-

transactions from LDBSs.  

 

4.3 Optimistic Timestamp  
 

The optimistic Timestamp approach proposed in [17] is 

motivated by the observation that it is generally easier to 

predict serialization order between global transactions that 

directly conflicts with each other. The approach introduces 

a synchronization object called timestamp in each site, and 

requires each sub-transaction to access the timestamp on 

its site. Each access to the timestamp consists of the 

following two operations: reading the current value and 

incrementing it by one. These two operations must be 

included in the code of each sub-transaction and are 

synchronized along with other database read/write 

operations (so that access to these two operations is 

atomic). It is assumed that each LCC maintains the 

serializability of its local execution. According to the 

serializability theory, two conflict transactions are ordered 

in accordance with the order of their conflicting operations. 

Since the timestamp accessing operations are conflicting 

operations, the serialization order of the sub-transactions is 

the same as the order that their timestamp accessing 

operations are performed. Furthermore, the timestamp are 

monotonously increased when it is accessed. Therefore, 

the timestamp value accessed reflects the order that the 

timestamp accessing operation is executed, and therefore 

reflects the serialization order of the sub-transaction. The 

serialization order, after being obtained, can be used by the 

GCC to validate the execution of the global transactions. 

The timestamp accessing operations are embedded in the 

code of the sub-transactions. No explicit serialization order 

is needed from the LCC; therefore, no modification of the 

LCC is required.  

The algorithm is interesting and unique in sense it 

maintains the global serializability, provides a high degree 

of concurrency and does not violate local autonomy. The 

algorithm addresses the problem of how to effectively 

obtain the serializations orders of global transactions. A 

minor problem with this algorithm is that it may abort 

more global transactions than required, due to conflicts 

introduced by timestamp. Since every two global 

transactions directly conflict with each other at each site 

they access, it is very likely that there is a cycle in the 

global serialization graph, unless some restrictions are 

imposed on their submission.  

 

5. Conclusion 
 

5.1 Summary and Results  
 

A brief summary of seven algorithms discussed in the 

paper is given in the following table.  
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Altruistic locking 

 
SR/QSR Design/√ 6 1 

Top-Down SR/QSR Design/√ 5 1 

Site Graph SR √ 7 1 

Access Graph SR/QSR Design/√ 4 1 

O
p

ti
m

is
ti

c Decentralized GCC SR Static 1 6 

Super Database 
 

SR Dynamic 1 5 

Optimistic Ticket SR √ 1 7 

Table 5.1 

In the Table 5.1, an SR entry in the third column indicates 

that the algorithm maintains global serializability, while an 

SR/QSR entry indicates that the algorithm maintains 

global serializability in some environments, and maintains 

quasi serializability in general. A check mark √ in the 

fourth column means that the algorithm preserves local 

autonomy, while Static (or Dynamic) means that the 

algorithm may violate static (or dynamic) autonomy. A 

Design / √ entry means that the algorithm may violate 

design autonomy if serializability is used as the 
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correctness criterion, but preserves local autonomy if quasi 

serializability is used as the criterion. The concurrency 

degree and transaction abort ratio are numbered in order: 

1for the best and 7 for the worst.  

Generally, optimistic approaches are superior to 

pessimistic approaches in concurrency degree, but inferior 

to in transaction abort ratio. In most HDDBSs applications, 

the number of global transactions is small in comparison to 

that of local transactions. Therefore, a low degree of 

concurrency among global transactions does not affect the 

overall concurrency very much. On the other hand, a high 

global transaction abort ratio is usually unacceptable in 

most HDDBS applications.  

One problem with most pessimistic approaches is that 

they maintain global serializability only if the LDBSs use 

specific concurrency control strategies. The problem, 

however, is not that bad in practice. The reason is that the 

algorithms work for most practically used strategies (e.g., 

two-phase locking and timestamp ordering protocols).  

The key point in success of optimistic approaches is to 

detect inconsistency between local executions precisely. 

Although it is very likely that global transactions are 

scheduled inconsistently at different sites, they usually do 

not conflict with each other. If the real conflicts can be 

detected precisely, the approaches will provide good 

performance. Unfortunately, this is difficult, due to local 

autonomy. 

 

5.2 Future Work  
 

Global concurrency control is still an active research area. 

The following are some research directions that we think 

for future. 

Pessimistic and optimistic approaches each have 

advantages over the other in some aspects. An interesting 

problem is therefore how to combine them together to 

develop an algorithm that not only provides a high degree 

of concurrency but also aborts a small number of global 

transactions.  

As in many other research areas, one deficiency in our 

discussion of global concurrency control is the lack of 

performance data. Little work has been done in this 

important area. 

Another problem with the existing concurrency 

control strategies is that most of them are designed 

independently of other transaction management issues, e.g., 

commitment and recovery. Clearly, more attention should 

be devoted to these issues, as well as the integration with 

concurrency control strategies.  
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