
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

297

Manuscript received March 5, 2010

Manuscript revised March 20, 2010

QoS Routing using Active Networks in IXP 2400 Network

Processor

N.Saravana Selvam
†
 and Dr.S.Radhakrishnan

††
,

†
Professor/CSE, Sree Sowdambika College of Engineering, Aruppukottai,

††
Senior Professor & Head/CSE, Arulmigu Kalasalingam College of Engineering, Krishnankoil .

Summary
As technology is moving towards high computing environments

with billions of users, devices, and services, the Quality of

Service (QoS) becomes a necessity and an essential element for

end-to-end real time applications. Since the Internet is becoming

a converged network that can support emerging voice, video, and

data applications in a unified manner. One of the key issues in

such a converged network is how to identify feasible paths that

can satisfy the quality-of-service (QoS) requirements of different

real-time applications. This problem is commonly known as QoS

routing (QoSR). In general, the main objective for a QoSR

algorithm is to find feasible paths that can satisfy the given QoS

requirements. While searching for a feasible path, it is necessary

to be highly responsive to routing requests. The concept of active

network has been recently adopted in order to provide a

framework in which executable code within data packets

executes upon intermediate network nodes and to facilitate delay

services in the network. This paper describes the combination of

the active network concepts with QoS routing provided by the

Intel IXP2400. The information embodied in the transmitted

packets is used by the microengines of the IXP to fulfill the QoS

demands issued by various real time applications. Thorough

examination is made for the performance and reliability of the

Active QoS routing scheme for different traffic measures and for

the corresponding QoS offered in terms of the end-to-end delay,

jitter and packet loss.

Key words:
QoS, QoSRouting, Network Processor, IXP2400, Active

Networks

1. Introduction

Routing mechanism is a key to the success of large-scale,

distributed communication and heterogeneous networks.

The increase in real-time applications such as Voice over

IP, audio and video streaming in the public Internet has

warranted QoS based routing. These applications have

stringent performance requirements in terms of delay,

delay jitter and loss rate. In real-time quality-of-service,

delay variation is generally more critical than delay as long

as the delay is not too high. Clearly, voice-based

applications cannot tolerate more than a certain level of

delay. The condition of varying delays may be expected to

a greater degree in a shared medium environment with

datagram, than in a network implemented over a switched

substrate. Routing a real-time flow therefore reduces to an

exercise in allocating the required network resources while

minimizing fragmentation of bandwidth.

When network dimensions increase, traditional routing

algorithms and resource allocation methods [1] do not

scale well particularly in the presence of frequent traffic

flow changes and the flow of prioritized packets. In

topologically complicated networks, the lack of

adaptability of routing and resource allocation algorithm

could become disastrous for the offered Quality of Service

(QoS). Routing and specifically resource allocation

algorithms must have the ability to adapt in any network

changes and cope in anytime network state changes

(capacity of nodes and links, traffic within paths, load

changes etc.).

QoS routing attempts to improve network utilization by

diverting traffic to paths that would have not been

discovered by traditional, non QoS sensitive routing. We

believe that QoS routing in NP based router will be more

useful and more effective in environments where traffic

and network capacity are mismatched and alternate paths

with lower load exist.

Present Routers are mainly based on Application Specific

Integrated Circuits (ASICs) that are custom made and are

not flexible enough to support diversified services.

General Purpose Processors (GPP) offer flexibility in

supporting new features by simply upgrading the software,

but have difficulties in supporting higher bandwidth.

Network Processors have emerged to provide both the

performance of ASICs and the programmability of GPPs.

Network Processors allow multitasking and multithreaded

programming. Multithreading provides a means for hiding

latencies of various operations of an NP by allowing a

Processor Engine (PE) to proceed with processing of

alternate packets when processing of the current packet

stalls for some reason such as a memory access.

Multithreading can increase the utilization of PEs and can

improve the overall performance of an NP. Here we are

using all the eight threads present in the IXP2400, and the

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

298

performance are measured with and without executing the

threads in strict order.

2. Active Networks

Active and programmable networks increase the flexibility

of the network infrastructure by giving users and service

providers the opportunity to customize network elements

to meet their own specific needs. Active networking will

require more intelligent services from intermediate

network nodes rather than just simple routing. In this

paradigm packets could carry code within or refer to

executables to build dynamically a service path between

nodes on demand. Router needs to keep state regarding the

service and expose it to the code. These codes travel inside

network packets and are executed in intermediate nodes

resulting in the modification of their state and behavior

[2][3]. This new approach to dynamic routing based on

active networking technologies, allows route allocation to

respond to current factors in the network and subsequently

ensures that network resources are used efficiently whilst

also meeting QoS demands of the traffic.

3. QoS Routing

QoS routing is the process of selecting the path to be used

by the packets of a flow based on its QoS requirements,

e.g., bandwidth or delay. The exact definition of a flow is

not important as long as it involves the same ingress and

egress points from the network. The motivation for using a

path selection that is sensitive to these requirements is the

hope that it will help improve both the service received by

users and the overall network efficiency. The improvement

to the service received by users is in the form of an

increased likelihood of finding a path that meets their QoS

requirements.

A major problem with multimedia services is that their

traffic demands are highly variable and modern high speed

communication networks are rapidly becoming more

dynamic and complex (changing the global state

representation).This along with the increasing range of

QoS requirements highlights the need for QoS routing to

be able to dynamically adapt to changing demands.

3.1. Path Selection

The arriving traffic is identified as belonging to one of a

number of categories such as video conferencing, ftp, e-

mail, streaming audio and video and voice. In order to

differentiate or categorize these different types of traffic

flows, we can label or tag the packets so that when these

packets arrive at a node, the label will be read by the

microengine threads and the packet/stream type identified.

Also for every traffic type each metric is weighed since it

will hold differing levels of importance to each traffic type.

After paths are pre-computed, the path selection phase

picks a path for routing a particular request. Bandwidth

however is the exception, since in all cases if the level of

residual bandwidth if not sufficient to meet QoS

requirements then that link is not feasible.

3.2. QoS Determination & Resource Reservation

To determine whether the QoS requirements of a flow can

be accommodated on a link, a router must be able to

determine the QoS available on the link. If there are

critical flows that must be accorded higher priority than

other types of flows, a mechanism to route such prioritized

flows must be implemented in the network router. For a

given network load, a high priority flow should be more

likely to get a certain QoS from the network than a lower

priority flow requesting the same QoS.

4. Background on Network processors

NPs are microprocessors designed specifically to build

packet switches. NP provides the speed of an ASIC and at

the same time is programmable. An NP consists of a

number of on chip processors that can provide high

throughput for network packet processing and application

level tasks. The work presented in this paper is based on

the fully programmable Intel ® IXP 2400 processor. Each

processing element (PE) has eight hardware thread

contexts that enable thread context switches that have zero

or minimal overhead. It can examine and forward packets

independently without using the host processor, bus, or

memory. The non-preemptive nature of the threads

simplifies synchronization within a microengine.

NPs use multiple execution engines each of which is a

multithreaded processor core to hide DRAM latency to

increase their overall computing power. NPs may also

contain hardware support for hashing, CRC calculation,

etc., not found in typical microprocessors. Figure 1 shows

a schematic of an NP. Additional storage is also present in

the form of SRAM and DRAM to store program data. In

general, processing engines are intended to carry out data-

plane functions. Control plane functions could be

implemented in a co-processor, or a host processor.

An NPs operation can be explained in terms of a

representative application:

(1) A thread on one of the processing engines finds that a

new packet has arrived in the receive buffer of one of the

input ports. (2) It reads the packet’s header into its

registers. (3) Based on the header fields, it looks up a

forwarding table to determine which output queue the

packet needs to go. Forwarding tables are organized

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

299

carefully for fast lookups , and are typically stored in the

high-speed SRAM. (4) The thread moves the rest of the

packet from the input interface to packet buffer. It also

writes a modified packet header in the buffer. (5) A

descriptor to the packet is placed in the target output queue,

which is another data structure stored in SRAM. (6) One

or more threads monitor the output ports and examine the

output queues. When a packet is scheduled to be sent out,

a thread transfers it from the packet buffer to the ports’

transmit buffer.

Fig. 1: Schematic diagram of a typical NP

5. Packet Filters

Simplifying, packet filtering is the process of examining a

network packet’s headers and deciding its fate. Examining

a packet involves using bit-map-based comparisons of

headers at well-known bit positions for information needed

to make the decisions. Packet operations may also involve

changes to the packets for routing or other network

operations. After a packet has been looked at or modified,

the information gathered leads to additional actions.

Examples of actions are: dropping the packet, forwarding

to the next stage for further processing, routing to an exit

point or dealing with an anomaly.

6. Implementation design

The programming environment provided with the IXP

2400, called the Intel IXA Software Development Kit

(IXA SDK) , supports a programming framework called an

Active Computing Element (ACE) that encapsulates the

tasks that perform independent packet processing

functions. Associated with an ACE may be a piece of code

that runs on a microengine, which is called a MicroACE.

Code that runs on the microengines in a MicroACE is

frequently called a microblock. More than one microblock

may be assigned to a microengine.

Fig. 2: Packet processing in NP

As shown in figure 2 the Ingress Micro ACE or the

Receive driver handles the tasks associated with packet

arrival. The Egress Micro ACE or the Transmit driver

handles the tasks associated with packet transmission. The

Forwarder MicroACE performs level 3 (dataplane level)

forwarding of packets.

 The Forwarder microblock does lookups for next hops in

a forwarding table that is maintained in SRAM. With this

microblock there are many possible exception conditions,

such as the absence of routes for a particular destination,

or the packet is an ARP or ICMP packet. In all such cases

the Forwarder microblock routes the packets to its core

component. The function of the Stack MicroACE is to take

an incoming packet and present it to the protocol stack.

The Stack MicroACE is used for packets that are destined

for the Strong ARM.

The Packet Filter MicroACE encapsulates the packet

filtering functionality, including the microblock that has

the packet filter algorithms implemented in microblock

code and filter table management in the C language,

implemented as the core component. The API is used by

the core user interface implementation to manipulate the

filter table.

On the IXP2400 processor, the first decision in our

application design is the division of work between

microengines and the Intel XScale core. Microengines

handle all, or most of the per packet processing. The Intel

XScale core typically handles infrequently arriving packet

types that require more complicated processing.

 The simulator is configured to send various types of

packet streams with two input ports and five output ports,

each with a data rate of 1000 Mbps with receive/transmit

buffer sizes of 65536 and 16384 respectively are chosen

for this application.

Multimedia streams are artificially simulated and packets

are injected into the Network Processor from the network

through the Media Switch Fabric Interface. Traffic

generated in this work consists of RTP/UDP packets, UDP

packets and TCP packets. All these packets are uniformly

distributed in the traffic. Then the packet data and its meta

data are kept in DRAM and SRAM respectively. The

packets are then forwarded to the MicroEngines for

processing.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

300

Fig. 3: Architecture of NP

Each incoming packet needs to be assigned to one of the

available processors. But it is usually desirable to deliver

packets of each flow in order. The main reason for doing

so is to prevent fast-retransmit feature of TCP from

resending the packets which are delivered to the

destination out-of-order. When the source of a TCP flow

receives acknowledgments with out-of-order sequence

number, it assumes that the packets are lost in the network.

But this might have simply happened because of out-of-

order acknowledgement by the receiver. These unneeded

retransmits can lead to significant bandwidth loss unless

the router guarantees in-order routing of each flow’s

packets.

To do so, the router needs to identify the active flows and

track them by keeping some sort of flow state. Normally

this packet flow needs to be shared among different

threads/NPs requiring synchronization between processing

elements. Flow identification is a classification problem

which can be handled by assigning a hash key to each flow

using unique flow identifiers like source and destination

IPs, port numbers and transport ID. Then all packets of

each flow will be assigned to a fixed network processor for

the lifetime of the flow. Here high priority packets are

always routed to the output port 0.subsequent output ports

are used for other priority flows.

Main subsequent advantage of this approach is that no

longer the flow state information needs to be shared

between different competing NPs/threads so

synchronization will not be necessary. After processing the

input stream, processed packets are driven into the

network through the switch fabric, and scheduled in egress

for output.

Two programming models exist for running the same

series of packet processing components on multiple

threads. When multiple microengines are used to

collectively execute the same set of microblocks, the

threads in these microengines can execute in an ordered or

unordered fashion. Intel IXA framework supports both

models of execution. Unordered thread execution means

each thread retrieves a packet and process it as quickly as

possible. The processing is independent of the other

threads in the pool. Figure 4a & 4b shows that the Ordered

thread utilization under-utilizes the processing power of

the IXP micro engines by increasing the delay and jitter

level when maximum load is given, so running our packet

processing code on multiple threads does much to address

the utilization problem. Here unordered thread utilization

give us lot more computing power allowing packets to

process much faster.(Figure 4a). Separate port for QoS

packets with unordered execution of thread provides a

good performance result.

0

20

40

60

80

100

120

680 750 850 900 850 900 950 1000 1050

T ra ffic in Mbps

%
 o

f
Q

o
s

 A
c

h
e

iv
e

d S eparate P ort -
Thread
execution -No
order
A ll P ort- Thread
execution -No
order

A ll P ort- Thread
execution -
S tric t order

Fig. 4 a: Order of thread execution

L oad Vs D elay

0

50

100

150

200

250

300

100 110 120 130 140 150 160 170 180

Ma x . L oa d in %

A
v

e
ra

g
e

 d
e

la
y

(m
s

e
c

)

All P orts

In P ort 0

Fig. 4 b Load VS delay

L oad Vs J itter

0

1000

2000

3000

4000

5000

6000

100 110 120 130 140 150 160 170 180

Ma x . loa d in %

M
a

x
 J

it
te

r
in

 m
s

e
c

All P orts

In P ort 0

Figure 4 c

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010

301

7. Summary and Conclusion

This paper shows how the end-to-end quality of service

can be improved with active networks. Based on existing

QoS capabilities, the active networking approach proposed

here provides the necessary tools for dynamic translation

between different QoS schemes and, therewith, enables

efficient linkage of QoS parameters to build end-to-end

services

References
[1] A. Chavez, A.Moukas, P.Maes, Challenger: A Multi-agent

System for Distributed Resource Allocation Proceedings of

the First International Conference on Autonomous Agents

(1997), pp. 323–331. 228.

[2] Psounis K. Active Networks; Applications, Security,

Safety and Architectures, IEEE Communications

Surveys, Vol. 2, No. 1, First Quarter 1999

[3] Calvert, K.L.; Bhattacharjee, S.; Zegura, E.; Sterbenz, J.

Directions in Active Networks. IEEE Communications

Magazine, October 1998

[4] Werner Bux, et al. Technologies and building blocks for fast

packet forwarding. IEEE Communications Magazine, pages

70–77, January 2001.

[5] Mark Kohler. NP complete. Embedded Systems

Programming, page 45, November 2000.

[6] E.Johnson and A.Kunze, “IXP Programming – The

Microengine coding guide for the Intel IXP1200 Network

Processor family”, Intel Press.

[7] Andreas Kind. The Role of Network Processors in Active

Networks. IBM Zurich Research Lab, 2003.

[8] Intel, “lntel IXP2800 network processor,”

[9] http://www.intel.com/design/network/products/npfarmly/ixp

2800.htm.

N. Saravanaselvam is working as a

Professor in Department of Computer

Science and Engineering at Sree

Sowdambika College of Engineering,

Aruppukottai, Tamilnadu, India. He has

completed his B.E. Electronics and

Communication Engineering and M.E.

Computer Science and Engineering in

Arulmigu Kalasalingam College of Engineering , Krishnankoil

Under Madurai Kamaraj University, Madurai. Now he is a

research scholar of Anna University, Chennai. He has guided

more than 25 B.E./M.E. Projects. His field of interest is Network

Engineering.

Dr.S.Radhakrishnan is presently

working as Senior Professor and Head,

Department of Computer Science and

Engineering at Arulmigu

Kalasalingam.College of Engineering,

Krishnankoil, TamilNadu. He has

completed his M.Tech. and Ph.D., in

Biomedical Engineering from Institute of

Technology, Banaras Hindu University. He has guided more than

50 M.E./M.Tech. Projects and 10 M.Phil. Thesis. Currently ten

candidates are working for Ph.D. under his guidance. His fields

of interests are Network Engineering. Computer Applications in

medicine and evolutionary computing. He is also serving as

Project Director (Network technologies) in TIFAC CORE in

Network Engineering at Arulmigu Kalasalingam College of

Engineering. He has more than 20 publications to his credit.

http://www.intel.com/design/network/pro

