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Summary 

This paper presents a possible solution for accelerating IEEE 

802.11i. First, it offloads the process of AES-CCMP encryption 

from the master CPU onto a co-processor, which frees the master 

CPU resources for other uses. Second, its implementation on 

FPGA offers the possibility of using many threads to run the 

AES-CCMP encryption.  

Different optimizations have been applied on the hardware 

architecture of AES and on the basic unit of AES-CCMP, in 

order to satisfy different constraints in terms of latency, area 

occupation and speed. Performance measurement of the hardware 

solution is compared to AES software implemented on a NIOS II 

processor. A strong focus is devoted to the achievement of high 

throughput, which is required to support security requirements 

for current and future high bandwidth applications.  
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1. Introduction 

ENCRYPTION is becoming a fundamental building 

block to achieve security in data and telecommunication 

networks. It makes electronic commerce, payment systems 

and transactions over networks possible. It has become one 

of the main tools for privacy, trust, access control, 

corporate security and countless other areas [1].  

    Effective implementations of cryptographic 

algorithms are essential for the realization of many real 

time communication systems. Performance has always 

been one of the most critical issues of a cryptographic 

function, which determines its effectiveness. It is evaluated 

by many metrics like latency, size and power consumption. 

Cryptographic computations are intensive and therefore 

they influence the performance of the whole system.  

Wi-Fi (IEEE 802.11) is a common example of 

wireless communication. Schools, hospitals and public 

buildings are becoming the major applications fields. 

However, the major drawback of current wireless LAN 

technology is the weak security measures in the standard 

802.11 protocols (Wired Equivalent Privacy -WEP) [2].  

The solutions for WLAN security are delivered in 

two stages:   

   The first is the Wi-Fi Protected Access (WPA), 

which has been designed to allow software upgrade for 

existing WLAN systems. The second is the standard IEEE 

802.11i, which provides the best available security, but 

requires hardware support [2]  

The AES protocol requires complex algorithms for 

encryption/decryption processes, which makes them 

computationally extensive (AES requires about 350 lines 

of code, WEP implement RC4 algorithm that require 50 

lines of code [4]). At backbone communication channels 

or heavily loaded servers, it is possible to lose processing 

speed. This drops the efficiency of the overall system 

while running cryptography algorithms.  

Moreover, the 802.11i standard specifies that AES 

should have its own coprocessor in order to speed up the 

encryption/decryption process [5]. This implies that older 

existing wireless hardware cannot be upgraded via 

firmware to support IEEE 802.11i.  

IEEE 802.11i (also known as WPA2) is an 

enhancement of the 802.11 standard specifying security 

mechanisms of wireless networks. The draft standard was 

ratified on June 24, 2004, and supersedes the previous 

security specifications. In addition to the introduction of 

key management and establishment, it defines encryption 

and authentication improvement [6]. AES-CCMP is a 

mandatory implementation of 802.11i. It was designed by 

D. Whiting, N. Ferguson and R. Housley. AES may be 

implemented in sizes of 128 bits, 192 bits or 256 bits, but 

802.11i supports 128 bit AES only.  

There are several AES implementation on FPGA’s 

available on the literature [8-23]. Its ASIC counterpart was 

also widely studied [24 - 31]. These implementations 

feature high speed and high costs suitable for high end 

applications only. Early AES designs featured pipelined 

architectures and limited resource utilization [14-18]. Later 

FPGA and ASIC implementations showed better 

optimization, using dedicated on-chip memories 

implementing S-Boxes [19-29].  

   The goal of this work is to design and evaluate an 

embedded coprocessor based on the NIOS II processor. It 

implements an efficient, cost-effective solution and 

optimized WiFi NIC. Different optimizations will be 

applied on the hardware architecture in order to satisfy 

different constrains in terms of latency, area occupation 

and security. This design uses Cyclone II FPGA using 

Quartus foundation series.  
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From this section, input the body of your manuscript 

according to the constitution that you had. For detailed 

information for authors, please refer to [1]. 

2. IEEE 802.11i NIC Architecture 

2.1 WIFI Adapter Card IEEE 802.11  

There are essentially four parts in a Wi-Fi LAN card 

shown in figure 1:   

 
Figure1: NIC components in IEEE 802.11   

 

1. Radio Frequency (RF) deals with the 

transmission and reception of the signal through the 

antenna. 

2. MODEM extracts data from the received signal  

3. Medium Access Control (MAC) is the heart of 

IEEE802.11 protocol. It has many functions like 

encryption/decryption of data, retransmission of lost data 

and data acknowledgement.  

4. Host Interface is used to connect all the above to 

a computer like the USB or PCI bus.  

    Since IEEE 802.11i protocol is an enhancement to 

the MAC in terms of security, a closer look at the MAC 

components of IEEE802.11 is needed. Refer to figure 2. 

 

 
Figure 2: MAC Components [2] 

 

 

    MAC is made of a microprocessor who handles all 

the formatting and timing operations to control the 

protocol, the firmware is software that implements most 

functions and finally a hardware assist that speeds up the 

process of encryption/decryption of WEP. The hardware 

assist implemented in the existing NIC causes a critical 

problem for IEEE 802.11i; it cannot support AES-CCMP. 

 

2.2  WIFI Adapter Card IEEE 802.11i  

 

1.) WIFI Adapter Card IEEE 802.11i Block Diagram  

 

    The earlier NIC is static hardware and therefore its 

configuration could not be changed. The new design 

overcomes this issue and gives more flexibility for the 

longer term. FPGAs provide hardware reconfiguration 

possibility, i.e. flexible interconnect and short 

development time. They are very suitable as hardware 

accelerators for AES-CCMP. Another great improvement 

of the new WiFi adapter card is the network processor. It 

controls and processes all the network tasks so that the 

host CPU can be used for non-network related tasks such 

as video/audio processing. In this case, all networking 

tasks should be dropped into the FPGA (Encryption, 

Firewall, TCP|IP stack…). For evaluation purposes, NIOS 

II CPU from Altera Corporation was used as network 

processor.  

Figure 3 shows a block diagram of the WiFi adapter 

card 802.11i 

 

  
Figure 3: WiFi Adapter Card IEEE 802.11i 

 

    Avalon bus is an Altera’s interface bus, used in 

NIOS II CPU. RAM contains unencrypted or decrypted 

data ready to be processed by AES-CCMP coprocessor. 

ROM contains all instructions necessary for the FPGA to 

work. During the boot-up phase, instructions are fetched 

from ROM since FPGA is volatile. PCI Bridge provides 

transparency between the host CPU and the NIOS II 

network processor. MODEM and Radio Frequency are 

off-chip. 

 

 

2.) The Choice of Network Processor 

 

    It was shown that performance improvements made to 

general purpose processors do not translate necessarily 
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into improved network performance [32], because these 

processors are not optimized for network data processing. 

Recent processors incorporates several innovations in their 

architecture, like larger caches, out of order executions, 

deep pipelines, and super-scale executions, all of which 

cannot necessarily be exploited by networking code. It was 

also concluded that, even if the processor speed increases 

by Moore’s law, network system speed increases in much 

lower pace [32]. So it is necessary to develop an efficient 

co-processor dedicated for network tasks.  

 

3. AES Design And Implementation 
 

3.1 Key Scheduling 

    Key scheduling expands a 128-bit cipher key into a 

170 Byte key. It utilizes operations like word rotation, 

word substitution, and exclusive OR with round constant. 

Figure 4 shows AES key scheduling architecture. 

 
Figure 4: Key Scheduling Architecture. 

 

First, the 128 bit cipher is divided into 4 sub-keys 

Word[0] to Word[3]. Then the shown operations are done 

to produce four new sub-keys Word[4] to Word[7]. Then 

this cycle is repeated 10 times in order to produce 160 

Bytes. In total, a key of 176 Bytes is obtained.  

In order to produce the new four sub-keys, the 

previous values of sub-keys are needed. So with this 

architecture, parallel execution is not possible.  

In order to exploit the nature of parallelism offered by 

the hardware, an improved architecture is proposed using 

redundant computations. Refer to figure 5.   

 

 
Figure 5: Modified Key Scheduling Architecture   

 

3.2  AES Hardware Architecture: 

  

 
Figure 6: AES( ) Architecture 

 

    Control Unit: controls the components of the core 

(key registers bank and AES core). It also organizes the 

data flow by loading the specific data at the right round. 

After 10 rounds, the control unit will force the AES core to 

stop and output the cipher text.  

    Key registers bank: outputs the round keys. These 

sub-keys were computed offline.  

    AES Core: performs all the AES( ) modules. 

 

3.3  Round Component Optimizations  

  

    Four different hardware/software optimizations 

have been developed. The first is based on the basic 

AES( ) unit which implements one round and executes ten 

times. This optimization employs the minimum hardware. 

The second optimization uses two AES( ) units and 

executes 5 times. The third implementation uses five 

AES( ) unites and executes them two times. Finally, the 

fourth implementation uses ten AES( ) units and executes 

them only one time. This last optimization uses the 
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maximum hardware. Figure 6 shows the four different 

AES implementations. 

 

  
Figure 7: Four Different AES Implementations 

 

4. AES Testing and Evaluation 
 

    The code has been synthesized using Altera’s Quartus 

6.1 development system. And Altera’s Cyclone II chip was 

chosen for the implementation of the ciphers, because of 

its good performance among Altera’s family and low cost. 

 

4.1)  AES Modules Synthesis 

 

    Table 1 shows the synthesis of the main components of 

AES, which are MixColumns() ver1, MixColumns() ver2, 

ShiftRows(), SubBytes() and SubBytes that implements 

RAM.  
 

Table1: Synthesis of the Main Components Of AES 

 

There are two choices SubBytes() look-up table in the 

target device:  

RAM: The values of the S-Box are loaded at the 

embedded RAM at configuration time.  

Logic: S-Box can also be converted into logical 

representations and therefore implemented with logic 

elements. This option consumes chip area.  

Data from table1 shows that the implementation of 

SubBytes() with embedded RAM gives significant 

improvements in the area/delay performance. Each 8 bits 

require 2048 bit of RAM, so in order to process 128 bits, 

32768 bits for a 16x16 S-Box.   

 

4.2) AES Cores Synthesis 

Table 2 shows the synthesis results of AES key 

scheduling in Cyclone II 

 
Table2: Synthesis Results Of An Aes Key Scheduling With Cyclone Ii 

Implementation Total 

Logic Elements 1102 

Registers 269 

Clock Frequency (MHz) 167.81 

Clock Cycles per Block 11 

Period (ns) 5.96 

Throughput (Mbits/s) 1952.7 

 

Table 3 shows the synthesis results of AES without 

exploring the embedded RAM in Cyclone II 

 
 

Table 3: Synthesis Results of n AES Without Exploiting Embedded RAM 

In Cyclone II 

Implementations  1 

AES( ), 
10 

Iterations  

2 

AES( ), 
5 

Iterations  

5 

AES( ), 
2 

Iterations  

10 

AES(), 
1 

Iteration 

Logic Elements  4190  7385  17991  35624 

Registers  270  151  134  132 

Memory Bits  0  0  0  0 

Clock Frequency 

(MHz)  
61.69  56.30  21.67  10.47 

 

Clock Cycles per 

block  
12  7  4  3 

 

Period (ns)  16.69  17.762  46.157  95.51 

Throughput 
Mbits/sec  

658.07  1029.48  693.44  446.72 

Throughput/Area 

(Mbps/TLE)  

0.157  0.139  0.038  0.012 
 

     

Table 3 shows that having 2 AES( ) units and 

executing them 5 times yields the highest throughput of 

1029.48 Mbits/sec.  

    In order to exploit the RAM blocks that exist in 

FPGA, the four implementations were re-synthesized by 

allowing the tool to use the embedded RAM. This reduces 

the total logic elements used in the four implementations. 

Table 4 shows the synthesis results of AES that exploits 

the embedded RAM in Cyclone II 

 

Total  MixColumns() 
ver1 

MixColumns() 
ver2  

SubBytes()  SybBytes() 
RAM  

Logic 

Elements  

212  196  196  0  

Registers  0  0  0  0  

Memory 

bits  

0  0  0  2048  

Cell Delay 

(ns)  

4.275  4.446  5.777  4.292  

Interconnect 

Delay (ns)  

11.263  11.394  9.090  7.955  

Worst Case 

tpd (ns)  

15.538  15.840  14.867  14.04  
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Table4: Synthesis Results of an AES Exploiting Embedded RAM 

In Cyclone II 

Implementati
ons  

1 
AES( ), 

10 

Iteratio
ns  

2 
AES( ), 

5 

Iteratio
ns  

5 
AES( ), 

2 

Iteratio
ns  

10 
AES()

, 1 

Iterati
on 
 

Logic 

Elements  
828  4156  14754  32322 

 

Registers  270  151  134  134 
 

Memory Bits  32768  32768  32768  32768 
 

Clock 

Frequency 
(MHz)  

62.83  61.32  23.01  11.17 
 

Clock Cycles 

per block  
12  7  4  3 

 

Period (ns)  15.92  16.32  43.457  89.526 
 

Throughput 

Mbits/sec  
670.19  1121.2

8  

736.32  476.58 
 

 

 

    Since each S-Box needs 2K bits, 32768 bits are 

needed for 16 S-Boxes. Also, 16 blocks of RAM is exactly 

32768 memory bits. Inferring S-Box as RAM blocks saves 

chip area in FPGA and improves the speed of the overall 

architecture. 

 

5. AES-CCMP Accelerator: Architecture, 

Implementation & Results 
 

5.1) Hardware Encryption of AES-CCM 

 

    CCMP computes the message authentication code 

and performs encryption in a single pass. That is 

encryption and authentication work in parallel. 

Figure 7 shows the AES-CCMP algorithm used in the 

802.11i security protocol. It is responsible for the 

authentication that produces a 64-bit long MIC (Message 

Integrity Check). IV in the Initialization Vector, it contains 

the source address, the length of packet during the session 

and other fields. PN: Packet Number. 

 
Figure 8: AES-CCMP Algorithm [13] 

 

 

5.2) AES-CCMP Results 

    In order to implement the AES-CCMP core, the 

design that meets the lowest area with the highest 

throughput must be selected. The lowest area achieves a 

throughput of 670.19 Mbps (1 AES( ), 10 executions), 

while the second design (2 AES( ), 5 executions) achieves 

1121.28 Mbps. Therefore these two different designs have 

been used to implement AES-CCMP algorithm.  

Table 5 shows the performance and the cost 

comparison of these 2 implementations. 
 

Table5: Performance and Cost Comparison of AES-CMP 

Implementations 

 

 

6. Conclusion 
 

This project shows that Altera’s Cyclone II series FPGA 

and NIOS II CPU make a low-cost and compact solution 

that adds high-speed features at lower cost and high degree 

of flexibility. Various architectures of AES unit and AES-

CCMP were implemented with strong emphasis on high 

speed performance. FPGA technology has matured to the 

point where high throughput can be easily obtained. The 

most interesting result achieved in this paper is a data rate 

of 688.16 Mbits/sec by using the standard and low cost 

Cyclon II FPGA chip of Altera. This encryption rate meets 

the performance requirements of the emerging 

cryptographic applications such as the high speed standard 

IEEE 802.11n which supports a data rate of 600 Mbps [32]. 
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