
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

24

Artificial Immune Clonal Selection Algorithms: A Comparative
Study of CLONALG, opt-IA, and BCA with Numerical

Optimization Problems

Khaled A. Al-Sheshtawi
Information Technology Dept., King

AbdulAziz University, Jeddah,
Kingdom of Saudi Arabia.

H. M. Abdul-Kader
Information System Dept., Faculty of
Computers & Information, Menoufia

University, Egypt.

Nabil A. Ismail
Computer Science Dept., Faculty of
Computers & Information, Menoufia

University, Egypt.

Abstract
This paper presents a comparative study the performance of three
important Clonal Selection Algorithms (CSAs): CLONALG, opt-
IA, and BCA with numerical optimization problems. Four
possible versions of CLONALG have been tested. The
experimental results show a global better performance of BCA
with respect to CLONALG and opt-IA.
Key words:
Clonal Selection Algorithms, CLONALG, opt-IA, BCA,
numerical optimization

1. Introduction

Clonal Selection Algorithms (CSAs) are a special class of
Immune algorithms (IA) which are inspired by the Clonal
Selection Principle [8] of the human immune system to
produce effective methods for search and optimization. In
this paper three CSAs are analyzed: CLONal selection
ALGorithm (CLONALG) [3], optimization Immune
Algorithm (opt-IA) [9], and B-Cell Algorithm (BCA) [7]
which use a simplified model of the Clonal Selection
Principle. To analyze experimentally the overall
performance of those three algorithms, we will test them
on a robust set of problems belonging to numerical
optimization problems. Each individual of the population
is a candidate solution belonging to the fitness landscape
of a given computational problem. Using the cloning
operator, an immune algorithm produces individuals with
higher affinities (higher fitness function values), by
introducing blind perturbation (by means of a
hypermutation operator) and selecting their improved
mature progenies. [2]

1.1. CLONALG

CLONALG is characterized by two populations: a
population of antigens, Ag, and a population of antibodies,
Ab (denoted with P(t)). The individual antibody and
antigen are represented by string attributes m = mL,...,m1,
that is, a point in a L—dimensional shape space S, m ∈SL.

The Ab population is the set of current candidate solutions,
and the Ag is the environment to be recognized. After a
random initialization of the first population P P

(0) the
algorithm loops for a predefined
maximum number of generations (Ngen). In the first step, it
determines the fitness function values of all Abs with
respect to the Ag (the given objective function). Next,
cloning operator selects n Abs that will be cloned
independently and proportionally to their antigenic
affinities, generating the clone
population PP

cl°. Hence, the higher the fitness, the higher
the number of clones generated for each of the n Abs. The
hypermutation operator performs an affinity maturation
process inversely proportional to the fitness values
generating the matured clone population Phyp

P . After
computing the antigenic affinity of the population phyp
CLONALG creates randomly d new antibodies that will
replace the d lowest fit Abs in the current population. [2]

In this paper we use the CLONALG version for
optimization tasks with respect to the following two
equations:

 (1)

where a represents the mutation rate, and is the fitness
function value normalized in [0.1]. The number of
mutations of a clone with fitness function value is equal
to where L is the length of the clone receptor. The
first potential mutation has been proposed in [3], the
original mutation law used by CLONALG; while the
second potential mutation has been introduced in [4]. The
setting the mutation rates and the parameter p is crucial for
the algorithm performance [2]. In the optimization version
of CLONALG the affinity proportionate cloning is not
useful [2]; we use the same law defined in [3]:

where Nc represents the total number of clones created at
each generation, in this way, each antibody (or B cell)

Manuscript received April 5, 2010
Manuscript revised April 20, 2010

mailto:kshesh@kau.edu.sa
mailto:hatem6803@yahoo.com
mailto:nabil_a_ismail@yahoo.com

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

25

produces the same number of clones. Moreover, we assign
N = n, so all Abs from the population will be selected for
cloning in step 1.4 of the algorithm.

The experimental study was conducted using two versions
of CLONALG, CLONALG1 and CLONALG2, with
different selection scheme in step 1.8 of the algorithm and
using the two potential mutations above defined
(equations 1):

CLONALG1: at generation (t), each Ab will be substituted
by the best individual of its set of mutated clones.
CLONALG2: the population at the next generation (t + 1)
will be formed by the n best Ab's of the mutated clones at
time step t. The pseudo code of CLONALG for
optimization [3] is outlined as follows:

Input: Ab, Ngen, n, d, L, β
Output: Ab, f
1. for t = 1 to Ngen,

1.1 f := decode(Ab);
1.2 Abn := select(Ab, f, n);
1.3 C := clone(Abn, β, f);
1.4 C* := hypermut (C, f);
1.5 f* := decode(C*);
1.6 Abn := select(C*, f*, n);
1.7 Ab := insert (Ab, Abn);
1.8 Abd := generate(d, L); Randomly generate d
antibodies of length L
1.9 Ab := replace(Ab, Abd, f);

end;
 2. f := decode(Ab); Function decode is supposed to
decode and evaluate for these decoded values.

1.2. Opt-IA Algorithm

The opt-IA algorithm [2] uses only two entities: antigens
(Ag) and B cells (or Ab) like CLONALG. At each time
step t, we have a population P(t) of size d. The initial
population of candidate solutions,
time t = 0, is generated randomly. The function Evaluate
(P) computes the fitness function value of each B cell .
The implemented IA uses three immune operators, cloning,
hypermutation, and aging. The cloning operator, simply,
clones each B cell dup times producing an intermediate
population PP

clo of size , where each cloned B cell
has the same age of its parent. The pseudo code of opt-IA
[2] is outlined as follows:

1.
Initialise Fitness Function Evaluations (FFE) with 0
2. ;
Nc represents the total number of clones created at each
generation

3.
Initialise the time with 0
4.

Initialise the population of size d
5. Evaluate
Evaluate(P) computes the fitness function value of each B
cell x � P.
6.
Initialise FFE with population size d and FFE
7. while (FFE < TMAX) do
The evolution cycle ends if a maximum number of Fitness
Function Evaluations (FFE) is reached.
8.
The cloning operator, simply, clones each B cell dup times
producing an intermediate population

 of size d × dup = Nc.

9.
The hypermutation operator acts on the B cell receptor of

. The number of mutations M is determined by
mutation potential. Opt- IA uses an Inversely Proportional
Hypermutation operator, where the number of mutations is
inversely proportional to the fitness value, that is, it
decreases as the fitness function of the current B cell
increases.

The first potential mutation was proposed in [3], while
the second potential mutation was introduced in [7].

Two different mutation potential are used, they are
defined by the following equations:

where α represents the mutation rate, and f is the fitness
function value normalized in [0, 1]. The number of
mutations of a clone with fitness function value f is equal
to where L is the length of the clone receptor, that
is L = l × n, with l being the number of bits used to code
each variable and n the dimension of the function.
10. Evaluate
Evaluate the population
11.
Increase FFE with the total number of clones created at
each generation
12.
The aging operator eliminates old B cells, in the
populations and to avoid premature
convergence and to increase diversity in the current
population. This operator is the main difference between
opt-IA algorithm and the other Immune and Evolutionary
Algorithms. The parameter τB is the maximum number of

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

26

generations B cells are allowed to remain in the population.
When a B cell is τB + 1 old it is erased from the current
population, no matter what its fitness value is. During the
cloning expansion, a cloned B cell takes the age of its
parent. After the hypermutation phase, a cloned B cell
which successfully mutates, will be considered to have age
equal to 0. In this way, new B cells are given an equal
opportunity to effectively explore the given computational
landscape. The best B cells which “survived” the aging
operator, are selected from the populations d and

. In this way, we obtain the new population
 , of d B cells, for the next generation t + 1.

13.

If d’ < d B cells survived, the
creates d – d’ new B

cells (Birth phase).
14. The next generation.

1.3. BCA Algorithm

Work in [6] proposed the B-cell algorithm (BCA) which is
inspired by the clonal selection process. An important
feature of the BCA is its use of a unique mutation operator,
called a contiguous somatic hypermutation. The
representation employed in the BCA is binary shape space,
with each cell employing this encoding representing a
candidate solution. Each B-cell within the population is
evaluated by the objective function, g(x). After evaluation
by the objective function, the vector within a B-cell v is
cloned to produce a clonal pool, C. for each B-cell there
exists a clonal pool C within the population all the
adaptation takes place within C. The size of C is typically
the same size as the population P (population size) (but
this does not have to be the case). In order to maintain
diversity within the search, a single clone is selected at
random and each element in the vector undergoes a
random change: subject to a certain probability. This is
likened by the authors to the metadynamics of the immune
system (a technique also employed in aiNET [8]), but
within the BCA a separate random clone is produced,
rather than utilising an existing one. Each B-cell v' ∈ C is
then subjected to a novel contiguous somatic
hypermutation mechanism. The BCA uses a distance
function as its stopping criterion: when it is within a
certain prescribed distance from the optimum, the
algorithm is considered to have converged. If the optimum
is unknown, then a measure of how far the optimum
located so far is employed, and if no progress is made over
a certain number of iterations, the search is terminated [7].
The BCA pseudo code [7] is outlined as follows:
1. Initialisation: create an initial random population of

individuals P.

2. Antigenic Presentation: for v ∈ P:
2.1. Clonal Selection and Expansion:

evaluate g(v);
clone each B-cell;
clone v and place in clonal pool C;

2.2. Metadynamics:
randomly select a clone c in C;
randomise the vector;

2.3. Affinity Maturation:
For all c in C, apply the contiguous somatic
hypermutation operator;
evaluate each clone by applying g(v);

 if a clone has higher affinity than its parent B-
cell v,
 then v = c;

3. Cycle: repeat until a certain stopping
criterion is met.

Table 1: The 16 Benchmark Functions Used in Our
Experimental Study; n is the Dimension of the Function;

is the Minimum Value of the Function; are the
Variable Bounds (For Complete Description of All the

Functions and Their Related Parameters Involved see [1])

Test Function

Sphere Model

 30, , 0

Schwefel’s Problem 2.22

 30, , 0

Schwefel’s Problem 1.2

 30, , 0

Schwefel’s Problem 2.21

 30, , 0
Generalised Rosenbrock

 30, , 0
Step

 30, , 0

Quartic Function i.e. Noise

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

27

 30, , 0

Generalised Rastrigin’s Function

 30, 0
Ackley’s Function

 30, , 0
Generalised Griewank Function

 30, , 0
Generalised Schwefel’s 2.26

 30, , -12569.5

Generalised Penalised Function

 30, 0
Six-Hump Camel-Back Function

 30, , 0
Branin Function

 30, , 0
Goldstein-Price Function

 2, , 3
Shekel’s Foxholes Function

 2, , 1

2. Numerical Optimization

Numerical optimization problems are fundamental for
every field of engineering, science, and business. The task
is that of global optimization of a generic objective
function. However, often, the objective function is
difficult to optimize because the function possesses
numerous local optima which could trap the algorithm.
Moreover this difficulty increases with the increase of the
problem dimension. In this paper we consider the
following numerical minimization problem:

min(f (x)), L ≤ x ≤ U (5)

where x = (x1, x2, ..., xn) is the variable vector in ℜn, f(x)
denotes the objective function to minimize, and L = (l1,
l2, ..., ln), U = (u1, u2, ..., un) represent, respectively, the
lower and the upper bound of the variables, such that xi
∈[ln , un] .
Test Functions. Sixteen functions from three categories are
selected [1], covering a broader range. Table I lists the 16
functions and their key properties (for a complete
description of all the functions and the parameters
involved see [1]). These functions can be divided into
three categories of different complexities:

• unimodal functions (f1— f7), which are relatively
easy to optimize, but the difficulty increases as the
problem dimension increases;
• multimodal functions (f8— f11), with many local
minima, they represent the most difficult class of
problems for many optimization algorithms;
• multimodal functions which contain only a few
local optima (f13 and f14).

Some functions possess unique features: f6 is a
discontinuous step function having a single optimum; f7 is
a noisy quartic function involving a uniformly distributed
random variable within [0, 1]. Optimizing unimodal
functions is not a major issue, so in this case the
convergence rate is of main interest. However, for
multimodal function the quality of the final results is more
important since it reflects the algorithm's ability in
escaping from local optima.

3. Experimental Results

In table 2 below, we report results obtained with
CLONALG, opt-IA, and B-Cell. In the experiments of this
section, B-Cell uses the same mutation potentials above
defined for CLONALG (equation 1) for the inversely
proportional hypermutation operator. Parameters for
CLONALG, opt-IA, and B-Cell are set respectively as
follow: For CLONALG, N = n = 50, d = 0, β = 0.1; for
opt-IA d = 20, dup = 2, TB = 20; and for BCA dup =2,, n

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

28

= 50, mutation factor = 0.5. If we compare the two
versions of CLONALG, we can see that for unimodal
functions (f1— f7) CLONALG2 is in general more effective
than CLONALG1. Otherwise, for multimodal functions (f8
–f16), CLONALG1 has a better performance. This is in
agreement with the type of selection scheme used by the
two versions. Since CLONALG1 at each generation
replaces each Ab by the best individual of its set of β � N

mutated clones, it is able to maintain more diversity in the
population. On the other hand, CLONALG2 focuses the
search on the global optimum, with the consequence of a
higher probability to be trapped in a local optimum.
Considering the two versions of opt-IA, the version of B-
Cell, the four versions of CLONALG, and the results

obtained by FEP [1], opt-IA outperforms CLONALG, B-
Cell, and FEP on 8 functions over 16, analogously to FEP,
while CLONALG performs better only in 3 functions
(results reported in boldface in table II). By inspecting the
entries on the table II in, we note that, opt-IA outperforms
CLONALG on 11 functions over 16 benchmark functions
while CLONALG obtains the best results on 7 functions
only (results reported in italic in table II below). By
inspecting the entries on the table II below, we note that,
BCA outperforms opt-IA on 13 functions over 16
benchmark functions while opt-IA obtains the best results
on only 3 functions (results are reported in underline in
table 2).

Table 2: the Best Results Among FEP [1], CLONALG1, CLONALG2, Opt-IA, and B-Cell on 16 Functions. Results Have Been Averaged Over 30
Independent Runs, “Mean Best” Indicates the Mean Best Function Values Found in the Last Generation, “Std. Dev.” Stands for Standard Deviation, and

Tmax is the Maximum Number of Fitness Function Evaluation Allowed. In boldface Overall Better Results for Each Function, in italics.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

29

4. Conclusions

In this experimental work we made a comparative study of
three Clonal Selection Algorithms, CLONALG, opt-IA,
and BCA, on significant test bed, numerical optimization
(16 functions). Two possible versions of CLONALG have
been tested, coupled with two possible mutation potential
for the hypermutation operator. The experimental results
show a deep influence of the mutation potential for each
problem and the setting of the respective parameter.
Parameter tuning was made for both algorithms, and an
overall better performance of BCA was found on all
problems tackled. In particular, simulation results on
numerical optimization problems show how CSAs (in
particular BCA) are effective methods for numerical
optimization problems, obtaining comparable results
respect to one of the most effective method in literature,
Fast Evolutionary Programming.
Obviously, the presented clonal selection algorithms can
be applied to any other combinatorial and numerical
optimization problem using suitable representations and
variable operators [10]

References
[1] Yao X., Liu Y., Lin G.M., “Evolutionary programming

made faster”, IEEE Trans. on Evolutionary Computation,
vol. 3, pp. 82-102, 1999.

[2] V. Cutello, G. Narzisi, G. Nicosia, M. Pavone, “Clonal
Selection Algorithms: A Comparative Case Study using
Effective Mutation Potentials”, 4th Int. Conference on
Artificial Immune Systems, ICARIS 2005, August 14-17,
2005, Banff, Canada. Springer, LNCS 3627:13-28, 2005.

[3] De Castro L.N., Von Zuben F.J., “Learning and
optimization using the clonal selection principle”, IEEE
Trans. on Evolutionary Computation, vol. 6, no. 3, pp.239-
251, 2002.

[4] De Castro L. N., Timmis J., “An Artificial Immune Network
for Multimodal Function Optimization”, CEC’02,
Proceeding of IEEE Congress on Evolutionary Computation,
IEEE Press, 2002.

[5] V. Cutello, G. Narzisi, G. Nicosia, M. Pavone, "An
Immunological Algorithm for Global Numerical
Optimization", Artificial Evolution: 7th Int. Conference,
Evolution Artificielle, EA 2005, October 26-28, 2005, Lille,
France. Springer, LNCS 3871:284-295, 2005.

[6] Kelsey, J and Timmis, “Immune Inspired Somatic
Contiguous Hypermutation”, In E. Cantú-Paz et al, editor,
Genetic and Evolutionary Computation Conference -
GECCO 2003, volume 2723 of Lecture Notes in Computer
Science, Springer-Verlag, Chicago, USA., July 2003.

[7] Timmis, J., Edmonds, C., and Kelsey, J. “Assessing the
Performance of Two Immune Inspired Algorithms and a
Hybrid Genetic Algorithm for Function Optimisation”, In
Proceedings of the Congress on Evolutionary Computation,
vol. 1, pp. 1044-1051, 2004.

[8] De Castro, L.N and Timmis, J. “Artificial Immune Systems:
A New Computational Intelligence Approach”, Springer-
Verlag. 2002.

[9] Cutello V., Nicosia G., Pavone M.: “Exploring the
capability of immune algorithms: A characterization of
hypermutation operators” in Proc. of the Third Int. Conf. on
Artificial Immune Systems (ICARIS’04), pp. 263-276, 2004.

[10] Cutello V. , Nicosia G.: “An Immunological Approach to
Combinatorial Optimization Problems”. Proc. of 8th Ibero-
American Conference on Artificial Intelligence
(IBERAMIA’02), 2002.

http://www.dmi.unict.it/nicosia/papers/conferences/Nicosia-ICARIS05-optIAvsCLONALG.pdf
http://www.dmi.unict.it/nicosia/papers/conferences/Nicosia-ICARIS05-optIAvsCLONALG.pdf
http://www.dmi.unict.it/nicosia/papers/conferences/Nicosia-ICARIS05-optIAvsCLONALG.pdf

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

30

Khaled AbdElKhalek Al-
Sheshtawi obtained his B.Sc. in
Computer Science from King
AbdulAziz University, Faculty of
Science, Saudi Arabia in 1991 and
M.Sc. with Distinction in
Computer-based Information
Systems from University of
Sunderland, School of Computing
and Information Systems, United
Kingdom in 1998. He is currently a
Lecturer in King AbdulAziz

University, Information Technology Department since 1999.

Hatem Mohamed Abdul-Kader
obtained his B.S. and M.SC. (by
research) both in Electrical
Engineering from the Alexandria
University , Faculty of
Engineering , Egypt in 1990 and
1995 respectively. He obtained his
Ph.D. degree in Electrical
Engineering also from Alexandria
University, Faculty of Engineering,
Egypt in 2001 specializing in

neural networks and its applications. He is currently a
Associative professor in Information systems department,
Faculty of Computers and Information, Minufiya University,
Egypt since 2004. He has worked on a number of research topics
and consulted for a number of organizations. He has contributed
more than 35+ technical papers in the areas of neural networks,
Database applications, Information security and Internet
applications.

Nabil A. Ismail is a professor of
Computer Science and Engineering.
He used to be the Dean of the
Faculty of Computers and
Information, University of
Menoufia, Egypt (2006-2008). Prof.
Ismail has obtained his PhD from
Durham University, England, in
1983. He is now working as a
Professor at the Faculty of
Electronic Engineering, Egypt and
Al-Baha College of Computer

Science, KSA. Prof. Nabil Ismail research interests including
computer security, image reconstruction, computer architecture,
and constrained-resource ECP.

	 Test Function

