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Abstract 
This paper presents a comparative study the performance of three 
important Clonal Selection Algorithms (CSAs): CLONALG, opt-
IA, and BCA with numerical optimization problems. Four 
possible versions of CLONALG have been tested. The 
experimental results show a global better performance of BCA 
with respect to CLONALG and opt-IA. 
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1. Introduction 

Clonal Selection Algorithms (CSAs) are a special class of 
Immune algorithms (IA) which are inspired by the Clonal 
Selection Principle [8] of the human immune system to 
produce effective methods for search and optimization. In 
this paper three CSAs are analyzed: CLONal selection 
ALGorithm (CLONALG) [3], optimization Immune 
Algorithm (opt-IA) [9], and B-Cell Algorithm (BCA) [7] 
which use a simplified model of the Clonal Selection 
Principle. To analyze experimentally the overall 
performance of those three algorithms, we will test them 
on a robust set of problems belonging to numerical 
optimization problems. Each individual of the population 
is a candidate solution belonging to the fitness landscape 
of a given computational problem. Using the cloning 
operator, an  immune algorithm produces individuals with 
higher affinities (higher fitness function values), by 
introducing blind perturbation (by means of a 
hypermutation operator) and selecting their improved 
mature progenies. [2] 

1.1. CLONALG 

CLONALG is characterized by two populations: a 
population of antigens, Ag, and a population of antibodies, 
Ab (denoted with P(t)). The individual antibody and 
antigen are represented by string attributes m = mL,...,m1, 
that is, a point in a L—dimensional shape space S, m ∈SL. 

The Ab population is the set of current candidate solutions, 
and the Ag is the environment to be recognized. After a 
random initialization of the first population P P

(0) the 
algorithm loops for a predefined  
maximum number of generations (Ngen). In the first step, it 
determines the fitness function values of all Abs with 
respect to the Ag (the given objective function). Next, 
cloning operator selects n Abs that will be cloned 
independently and proportionally to their antigenic 
affinities, generating the clone 
population PP

cl°. Hence, the higher the fitness, the higher 
the number of clones generated for each of the n Abs. The 
hypermutation operator performs an affinity maturation 
process inversely proportional to the fitness values 
generating the matured clone population Phyp

P . After 
computing the antigenic affinity of the population phyp 
CLONALG creates randomly d new antibodies that will 
replace the d lowest fit Abs in the current population. [2] 

In this paper we use the CLONALG version for 
optimization tasks with respect to the following two 
equations: 

 

                        (1) 

where a represents the mutation rate, and  is the fitness 
function value normalized in [0.1]. The number of 
mutations of a clone with fitness function value  is equal 
to  where L is the length of the clone receptor. The 
first potential mutation has been proposed in [3], the 
original mutation law used by CLONALG; while the 
second potential mutation has been introduced in [4]. The 
setting the mutation rates and the parameter p is crucial for 
the algorithm performance [2]. In the optimization version 
of CLONALG the affinity proportionate cloning is not 
useful [2]; we use the same law defined in [3]:  
 

 

where Nc represents the total number of clones created at 
each generation, in this way, each antibody (or B cell) 
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produces the same number of clones. Moreover, we assign 
N = n, so all Abs from the population will be selected for 
cloning in step 1.4 of the algorithm.  

The experimental study was conducted using two versions 
of CLONALG, CLONALG1 and CLONALG2, with 
different selection scheme in step 1.8 of the algorithm and 
using the two potential mutations above defined 
(equations 1): 

CLONALG1: at generation (t), each Ab will be substituted 
by the best individual of its set of  mutated clones. 
CLONALG2: the population at the next generation (t + 1) 
will be formed by the n best Ab's of the mutated clones at 
time step t. The pseudo code of CLONALG for 
optimization [3] is outlined as follows: 

Input: Ab, Ngen, n, d, L, β 
Output: Ab, f 
1. for t = 1 to Ngen, 

1.1 f := decode(Ab); 
1.2 Abn := select(Ab, f, n);  
1.3 C := clone(Abn, β, f);  
1.4 C* := hypermut (C, f); 
1.5 f* := decode(C*);  
1.6 Abn := select(C*, f*, n);  
1.7 Ab := insert (Ab, Abn);  
1.8 Abd := generate(d, L); Randomly generate d 
antibodies of length L 
1.9 Ab := replace(Ab, Abd, f); 

end; 
 2. f := decode(Ab); Function decode is supposed to 
decode and evaluate for these decoded values. 

1.2. Opt-IA Algorithm 

The opt-IA algorithm [2] uses only two entities: antigens 
(Ag) and B cells (or Ab) like CLONALG. At each time 
step t, we have a population P(t) of size d. The initial 
population of candidate solutions,  
time t = 0, is generated randomly. The function Evaluate 
(P) computes the fitness function value of each B cell . 
The implemented IA uses three immune operators, cloning, 
hypermutation, and aging. The cloning operator, simply, 
clones each B cell dup times producing an intermediate 
population PP

clo of size , where each cloned B cell 
has the same age of its parent. The pseudo code of opt-IA 
[2] is outlined as follows: 

 
1.  
Initialise Fitness Function Evaluations (FFE) with 0 
2. ; 
Nc represents the total number of clones created at each 
generation 

3.  
Initialise the time with 0 
4.  

Initialise the population of size d 
5. Evaluate  
Evaluate(P) computes the fitness function value of each B 
cell x � P. 
6.  
Initialise FFE with population size d and FFE  
7. while (FFE < TMAX) do 
The evolution cycle ends if a maximum number of Fitness 
Function Evaluations (FFE) is reached. 
8.  
The cloning operator, simply, clones each B cell dup times 
producing an intermediate population 

 of size d × dup = Nc. 

9.  
The hypermutation operator acts on the B cell receptor of 

. The number of mutations M is determined by 
mutation potential. Opt- IA uses an Inversely Proportional 
Hypermutation operator, where the number of mutations is 
inversely proportional to the fitness value, that is, it 
decreases as the fitness function of the current B cell 
increases.  

The first potential mutation was proposed in [3], while 
the second potential mutation was introduced in [7]. 

Two different mutation potential are used, they are 
defined by the following equations: 

                                
 

where α represents the mutation rate, and f is the fitness 
function value normalized in [0, 1]. The number of 
mutations of a clone with fitness function value f  is equal 
to  where L is the length of the clone receptor, that 
is L = l × n, with l being the number of bits used to code 
each variable and n the dimension of the function. 
10. Evaluate  
Evaluate the population  
11.  
Increase FFE with the total number of clones created at 
each generation 
12.  
The aging operator eliminates old B cells, in the 
populations  and to avoid premature 
convergence and to increase diversity in the current 
population. This operator is the main difference between 
opt-IA algorithm and the other Immune and Evolutionary 
Algorithms. The parameter τB is  the maximum number of 
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generations B cells are allowed to remain in the population. 
When a B cell is τB + 1 old it is erased from the current 
population, no matter what its fitness value is. During the 
cloning expansion, a cloned B cell takes the age of its 
parent. After the hypermutation phase, a cloned B cell 
which successfully mutates, will be considered to have age 
equal to 0. In this way, new B cells are given an equal 
opportunity to effectively explore the given computational 
landscape. The best B cells which “survived” the aging 
operator, are selected from the populations d and 

. In this way, we obtain the new population 
 , of d B cells, for the next generation t + 1.  

13. 
 

If d’ < d B cells survived, the 
creates d – d’ new B 

cells (Birth phase).  
14.  The next generation. 

1.3. BCA Algorithm 

Work in [6] proposed the B-cell algorithm (BCA) which is 
inspired by the clonal selection process. An important 
feature of the BCA is its use of a unique mutation operator, 
called a contiguous somatic hypermutation. The 
representation employed in the BCA is binary shape space, 
with each cell employing this encoding representing a 
candidate solution. Each B-cell within the population is 
evaluated by the objective function, g(x). After evaluation 
by the objective function, the vector within a B-cell v is 
cloned to produce a clonal pool, C. for each B-cell there 
exists a clonal pool C within the population all the 
adaptation takes place within C. The size of C is typically 
the same size as the population P (population size) (but 
this does not have to be the case). In order to maintain 
diversity within the search, a single clone is selected at 
random and each element in the vector undergoes a 
random change: subject to a certain probability. This is 
likened by the authors to the metadynamics of the immune 
system (a technique also employed in aiNET [8]), but 
within the BCA a separate random clone is produced, 
rather than utilising an existing one. Each B-cell v' ∈ C is 
then subjected to a novel contiguous somatic 
hypermutation mechanism. The BCA uses a distance 
function as its stopping criterion: when it is within a 
certain prescribed distance from the optimum, the 
algorithm is considered to have converged. If the optimum 
is unknown, then a measure of how far the optimum 
located so far is employed, and if no progress is made over 
a certain number of iterations, the search is terminated [7].  
The BCA pseudo code [7] is outlined as follows: 
1. Initialisation: create an initial random population of 

individuals P. 

2.  Antigenic Presentation: for v ∈ P: 
2.1. Clonal Selection and Expansion: 

evaluate g(v); 
clone each B-cell; 
clone v and place in clonal pool C; 

2.2. Metadynamics:  
randomly select a clone c in C;  
randomise the vector; 

2.3.  Affinity Maturation: 
For all c in C, apply the contiguous somatic 
hypermutation operator; 
evaluate each clone by applying g(v); 

  if a clone has higher affinity than its parent B-
cell v,  
  then  v = c; 

3. Cycle: repeat until a certain stopping 
criterion is met. 

Table 1: The 16 Benchmark Functions Used in Our 
Experimental Study; n is the Dimension of the Function;  

is the Minimum Value of the Function;  are the 
Variable Bounds (For Complete Description of All the 

Functions and Their Related Parameters Involved see [1]) 

 

Test Function 

Sphere Model 

 
     30,      ,       0 

Schwefel’s Problem 2.22 

 
         30,          ,     0 

Schwefel’s Problem 1.2 

 
        30,  ,     0 

Schwefel’s Problem 2.21 
 

        30,         ,    0 
Generalised Rosenbrock  

        30,          ,     0 
Step 

 
        30,         ,    0 

Quartic Function i.e. Noise 
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        30,         ,    0 

Generalised Rastrigin’s Function 

            30,             0 
Ackley’s Function 

         30,           ,     0 
Generalised Griewank Function 

            30,        ,        0
Generalised Schwefel’s  2.26 

 
   30,     ,       -12569.5 

Generalised Penalised Function 

          30,                0 
Six-Hump Camel-Back Function 

            30,        ,        0 
Branin Function 

       30,   ,        0 
Goldstein-Price Function 

            2,             ,         3 
Shekel’s Foxholes Function 

     2,    ,        1 

2. Numerical Optimization 

Numerical optimization problems are fundamental for 
every field of engineering, science, and business. The task 
is that of global optimization of a generic objective 
function. However, often, the objective function is 
difficult to optimize because the function possesses 
numerous local optima which could trap the algorithm. 
Moreover this difficulty increases with the increase of the 
problem dimension. In this paper we consider the 
following numerical minimization problem: 

min(f (x)), L ≤ x ≤ U                                   (5) 

where x = (x1,  x2, ..., xn) is the variable vector in ℜn,  f(x) 
denotes the objective function to minimize, and L = (l1, 
l2,  ..., ln), U = (u1,  u2, ..., un) represent, respectively,  the 
lower and the upper bound of the variables, such that xi 
∈[ ln , un] .  
Test Functions. Sixteen functions from three categories are 
selected [1], covering a broader range. Table I lists the 16 
functions and their key properties (for a complete 
description of all the functions and the parameters 
involved see [1]). These functions can be divided into 
three categories of different complexities: 
 

• unimodal functions (f1— f7), which are relatively 
easy to optimize, but the difficulty increases as the 
problem dimension increases; 
• multimodal functions (f8— f11), with many local 
minima, they represent the most difficult class of 
problems for many optimization algorithms; 
• multimodal functions which contain only a few 
local optima (f13 and  f14). 

Some functions possess unique features: f6 is a 
discontinuous step function having a single optimum; f7 is 
a noisy quartic function involving a uniformly distributed 
random variable within [0, 1]. Optimizing unimodal 
functions is not a major issue, so in this case the 
convergence rate is of main interest. However, for 
multimodal function the quality of the final results is more 
important since it reflects the algorithm's ability in 
escaping from local optima. 

3. Experimental Results 

In table 2 below, we report results obtained with 
CLONALG, opt-IA, and B-Cell. In the experiments of this 
section, B-Cell uses the same mutation potentials above 
defined for CLONALG (equation 1) for the inversely 
proportional hypermutation operator. Parameters for 
CLONALG, opt-IA, and B-Cell are set respectively as 
follow: For CLONALG, N = n = 50, d = 0, β = 0.1; for 
opt-IA d = 20, dup = 2, TB = 20; and for BCA dup =2,, n 
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= 50, mutation factor = 0.5. If we compare the two 
versions of CLONALG, we can see that for unimodal 
functions (f1— f7) CLONALG2 is in general more effective 
than CLONALG1. Otherwise, for multimodal functions (f8 
–f16), CLONALG1 has a better performance. This is in 
agreement with the type of selection scheme used by the 
two versions. Since CLONALG1 at each generation 
replaces each Ab by the best individual of its set of β � N 

mutated clones, it is able to maintain more diversity in the 
population. On the other hand, CLONALG2 focuses the 
search on the global optimum, with the consequence of a 
higher probability to be trapped in a local optimum. 
Considering the two versions of opt-IA, the version of B-
Cell, the four versions of CLONALG, and the results 

obtained by FEP [1], opt-IA outperforms CLONALG, B-
Cell, and FEP on 8 functions over 16, analogously to FEP, 
while CLONALG performs better only in 3 functions 
(results reported in boldface in table II). By inspecting the 
entries on the table II in, we note that, opt-IA outperforms 
CLONALG on 11 functions over 16 benchmark functions 
while CLONALG obtains the best results on 7 functions 
only (results reported in italic in table II below). By 
inspecting the entries on the table II below, we note that, 
BCA outperforms opt-IA on 13 functions over 16 
benchmark functions while opt-IA obtains the best results 
on only 3 functions (results are reported in underline in 
table 2). 
 

Table 2: the Best Results Among FEP [1], CLONALG1, CLONALG2, Opt-IA, and B-Cell on 16 Functions. Results Have Been Averaged Over 30 
Independent Runs, “Mean Best” Indicates the Mean Best Function Values Found in the Last Generation, “Std. Dev.” Stands for Standard Deviation, and 

Tmax is the Maximum Number of Fitness Function Evaluation Allowed. In boldface Overall Better Results for Each Function, in italics.  
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4. Conclusions 

In this experimental work we made a comparative study of 
three Clonal Selection Algorithms, CLONALG, opt-IA, 
and BCA, on significant test bed, numerical optimization 
(16 functions). Two possible versions of CLONALG have 
been tested, coupled with two possible mutation potential 
for the hypermutation operator. The experimental results 
show a deep influence of the mutation potential for each 
problem and the setting of the respective parameter. 
Parameter tuning was made for both algorithms, and an 
overall better performance of BCA was found on all 
problems tackled. In particular, simulation results on 
numerical optimization problems show how CSAs (in 
particular BCA) are effective methods for numerical 
optimization problems, obtaining comparable results 
respect to one of the most effective method in literature, 
Fast Evolutionary Programming.  
Obviously, the presented clonal selection algorithms can 
be applied to any other combinatorial and numerical 
optimization problem using suitable representations and 
variable operators [10]  
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