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Abstract 
Machine learning is an important field of artificial intelligence in 
which models are generated by extracting rules and functions 
from large datasets. Machine learning includes a diversity of 
methods and algorithms such as decision trees, lazy learning, k-
nearest neighbors, Bayesian methods, Gaussian processes, 
artificial neural networks, support vector machines, kernel 
algorithms, and artificial immune systems (AIS). AIS are 
computation tools that emulate processes and mechanisms of the 
biological immune system. AIS use the learning, memory, and 
optimization capabilities of the immune system to develop 
computational algorithms for function optimization, pattern 
recognition, novelty detection, and process control, and 
classification. There are four main sub fields of research that 
have emerged in AIS cantered on prominent immunological 
theories; negative selection algorithms, immune network 
algorithms, danger theory algorithms, and clonal selection 
algorithms. In this paper, we will analyze API call sequence of a 
process to classify it as benign or malicious. We have collected 
API call traces of real malware and benign processes running on 
Windows operating system. We will employ eight commonly 
used clonal selection algorithms: AIRS1, AIRS2, AIRS2 Parallel, 
CLONALG, CSCA, IMMUNOS-1, IMMUNOS -81, and 
IMMUNOS -99. We evaluate the accuracy of these algorithms 
for classifying between malware and benign processes using API 
call sequences. 
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1. Introduction 

The sophisticated computer malware is becoming a serious 
threat to the information technology infrastructure, which 
is the backbone of modern e-commerce systems [1]. 
Among other malwares, computer worm is a self-
replicating computer program. Computer worm is a fully 
stand-alone program that does not need to be a part of 
other program in order to propagate. The fact that worms 
propagate very fast on networks makes them one of the 
most challenging malwares to intercept. Fast detection of 
computers infected with worms is critically important on 
local networks. A recent outbreak of Conficker malware 
affected more than 9 million computers including those of 
Ministry of Defence, United Kingdom [2]. This incident 
has proved that commercial anti-virus software, even with 
updated malware definitions, are incapable of safeguarding 

our information technology infrastructure [3]. In [4], the 
authors have shown that commercial anti-virus software 
are easily befooled using evasion attempts, such as code 
obfuscation, encryption and polymorphic transformations. 
Therefore, security experts are now focusing their 
attention to robust run-time malware detection techniques 
that analyze API call sequence of a process to classify it as 
benign or malicious [3]. We focus on the application of 
clonal selection algorithms in the task of worm detection 
within the environment of Microsoft Windows® operating 
system. 

The clonal selection theory quickly attracted the attention 
of computer scientists, since it appeared as a more flexible 
alternative to genetic and evolutionary algorithms. The 
clonal selection theory was originally proposed by Burnet, 
in order to explain the reinforcement learning of the 
immune system of mammals. According to Burnet’s 
theory, mammals acquire immunity through mutation, 
selection, and proliferation of the mature B-lymphocytes. 
The clonal selection theory is used to explain the basic 
features of an adaptive immune response to an antigenic 
stimulus. It establishes the idea that only those cells that 
recognize the antigens are selected to proliferate. The 
selected cells are subject to an affinity maturation process, 
which improves their affinity to the selective antigens. 

Inspired by the clonal selection theory, De Castro 
pioneered the clonal selection algorithm [5] in 2000. After 
that, many clonal selection based artificial immune 
algorithms have been proposed. The dynamic CSA 
(DynamiCS) constructed by Kim in 2002 [6] and 
polyclonal strategy proposed by Licheng Jiao in 2003 [7] 
are two of the most outstanding contributions. Lei Wang 
and Licheng Jiao introduced immune concepts and 
methods into evolutionary algorithm to form immune 
evolutionary algorithms [8]. The clonal selection algorithm 
is with a colony search mechanism in nature, which 
enables it not easily to get into the trap of local 
optimization, it can thus converge to the global 
optimization with a higher probability and higher speed. 
[9]. We used Weka [10] machine-learning workbench in 
our analysis.  
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In this paper, we will analyze API call sequence of a 
process to classify it as benign or malicious. We have 
collected API call traces of real malware and benign 
processes running on Windows operating system. We will 
employ eight commonly used clonal selection algorithms: 
AIRS1, AIRS2, AIRS2 Parallel, CLONALG, CSCA, 
IMMUNOS-1, IMMUNOS -81, and IMMUNOS -99. We 
evaluate the accuracy of these algorithms for classifying 
between malware and benign processes using API call 
sequences. 

The remainder of this paper is organized as follows. 
Section 2 provides basic principles of clonal selection 
theory. Section 3 provides basic principles of clonal 
selection algorithm. Section 4 reports on the set up of the 
benchmarking experiments and the results using the eight 
AIS algorithms. Section 5 discusses the feature selection 
and extraction approach used, and section 6 concludes the 
paper. 

2. Clonal Selection Theory 

The role of the biological immune system is to provide the 
organisms with an effective mechanism against pathogenic 
infections. The biological immune system mainly consists 
of two defensive lines, one is the innate immune system, 
and the other is the adaptive immune system. These two 
systems perform the defensive tasks complementarily. The 
core of the adaptive immune response is the clonal 
selection theory. When B-lymphocytes encounter antigens, 
they will activate B-lymphocytes to produce antibody 
molecules. Because antibody molecules are attached to the 
B-lymphocytes, sometimes we do not make any distinction 
between them. Each B-lymphocyte can produce only one 
kind of specific antibody molecules capable of recognizing 
and .binding to this specific antigen. And it is this binding 
that will stimulate the B-lymphocyte to reproduce a cell or 
cells and later differentiate into plasma cells. This asexual 
proliferation generates daughter cell or cells named a clone. 

The first encountering and response to the antigen is 
named the primary immune response. After the primary 
immune response, the immune system can remember the 
antigens that it has responded and this is called the 
immune memory. The immune memory can guarantee that 
the immune system can provide a more effective and rapid 
response to the antigens that have been detected before. 
And this is the basis of the vaccination, which makes us 
get rid of many diseases. The immune memory also 
implies the learning mechanism during the clonal selection 
process. When antigens are from the inside of the 
individual organism, the recognizing B-lymphocytes will 
be discarded or this will cause autoimmunity. This 
phenomenon is called immune toleration or self-tolerance. 
[11]  

The main property of the clonal selection theory can be 
summarized as follows [12]: 

1) Negative selection: elimination of self-antigens; 
2) Clonal expansion: proliferation and 

differentiation; 
3) Monospecificity: phenotypic restriction; 
4) Somatic hypermutation: new random genetic 

changes; 
5) Autoimmunity. 

3. The Clonal Selection Algorithm (CSA) 

In the CSA, a candidate solution for the specific problem 
is called an antigen, which is recognized by the antibody. 
Each antibody represents a point in the search space, i.e., a 
possible solution to the problem. A population consists of 
a finite number of antibodies. Every antibody is evaluated 
by the evaluation mechanism to obtain its affinity. Based 
on this affinity and undergoing immune operators, a new 
population is generated iteratively with each successive 
population, referred to as a generation. 

The CSA has two main computational mechanisms: 
selection and mutation. In the algorithm proposed by de 
Castro & Von Zuben, these two mechanisms were fulfilled 
by taking into account the immune properties: the 
proliferation and mutation rate are proportional to the 
antigenic affinity. That is to say, the higher the antigenic 
affinity, the higher the number of clones generated for 
each antibody. In the hypermutation operation, the cloned 
population is subject to an affinity mutation process 
inversely proportional to the antigenic affinity. The 
receptor editing includes two steps. In the first step, a 
given number of new antibodies are generated randomly. 
In the second step, the generated antibodies are used to 
refresh the whole population by replacing those antibodies 
with the lowest antigenic affinity. 

The CSA uses three immune operators, i.e., cloning, 
hypermutation, and receptor editing, to refresh the 
composition of populations. The cloning operator explores 
the neighborhood of each point of the search space. 

3.1. CSA and Learning 

One of the most important characteristics of the immune 
system is learning. The learning ability of the immune 
system lies primarily in the clonal expansion [13]. The 
immune system learns in the clonal selection by the 
mechanism as follows: the immune system is repeatedly 
exposure to the antigen, which will activate a mechanism 
called hypermutation. The hypermutation sometimes will 
increase the diversity of the antibody molecules. And B-
lymphocytes with higher affinity antibodies will have 
more chances to perform clonal selection. The repeating 
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mutation and selection make the immune system learn to 
produce higher affinity antibodies binding with the antigen. 

3.2. CSA and Evolution 

From the perspective of the Darwin’s evolution theory, the 
clonal selection can be explained as a microevolution in 
the immune system. During the process of the clonal 
selection, there have three main features: selection, 
mutation and diversity. Selection occurs only when the 
antibody molecules can recognize and bind effectively 
with the antigen; the reproduction can activate the 
hypermutation, which will increase the diversity of the 
antibody molecules. The diversity can ensure the immune 
system against antigens that the organisms have never seen 
nor have some correlation with the antigens that have met 
before. And receptor editing is another important 
mechanism to realize the receptor diversity. Recent work 
and studies suggest that editing plays a central role in the 
B-lymphocyte and T-lymphocyte repertoire development 
[14]. 

4. Clonal Selection Classification Algorithms 

One of the goals of this study was to pinpoint the 
classification algorithm that provides the highest level of 
detection accuracy. We employed eight commonly used 
artificial immune classification algorithms: AIRS1, AIRS2, 
AIRS2 Parallel, CLONALG, CSCA, Immunos-1, 
Immunos-81, Immunos-99 using Weka [10] machine-
learning workbench. 

4.1. AIRS - Artificial Immune Recognition 
System [15] 

A resource limited artificial immune system (AIS) for 
supervised classification, using clonal selection, affinity 
maturation, and affinity recognition balls (ARBs). The 
AIRS algorithm has been shown to be a successful 
classification algorithm for a broad range of machine 
learning problems.  From a data mining point of view, 
AIRS is a cluster-based approach to classification. It first 
learns the structure of the input space by mapping a 
codebook of cluster centers to it and then uses k-nearest 
neighbor on the cluster centers for classification. The 
attractive point of AIRS is its supervised procedure for 
discovering both the optimal number and position of the 
cluster centers. In AIRS, there are two different 
populations, the Artificial Recognition Balls (ARBs) and 
the memory cells. If a training antigen is presented, ARBs 
(lymphocytes) matching the antigen are activated and 
awarded more resources. Through this process of 
stimulation, mutation and selection a candidate memory 
cell is selected and it is inserted to the memory cell pool if 
it gives enough information. This process is repeated for 

all training instances and finally classification takes place 
by performing a nearest neighbor search on the memory 
cell population. 

AIRS algorithm has features which are listed as follows 
[16]: 
• Generalization: The algorithm does not need all the 

dataset for generalization and it has data reduction 
capability. 

• Parameter stability: Even though user-defined 
parameters are not optimized for the problem, the 
decline of its performance is very small. 

• Performance: There has been demonstrated that its 
performance is excellent for some datasets and totally 
remarkable. 

• Self-regulatory: There is no need to choose a topology 
before training. 

 
AIRS algorithm has five steps: Initialization, antigen 
training, competition for limited resource, memory cell 
selection and classification. The first step and the last step 
are applied only once, but steps 2, 3, 4 are used for each 
sample in the dataset. 
The classification performance of the AIRS algorithm 
depends on eight user defined parameters: affinity 
threshold scalar ATS, clonal rate CR, hypermutation rate 
HR, number of nearest neighbors kNN, initial memory cell 
pool size IMPS, number of instances to compute the 
affinity threshold NIAT, stimulation threshold ST, and 
total resources TR.  

In the AIRS experiments reported here we investigated the 
effect of the affinity threshold scalar ATS for 25 values 
between 0.01 and 0.95. The remaining parameters were 
kept constant, with the following values: CR = 10, HR = 2, 
kNN = 3, IMPS = 50, NIAT = all, ST = 0.5, and TR = 150. 
ATS is used to compute a cutoff value for memory cell 
replacement, and takes values between 0 and 1. A 
candidate ARB replaces a memory cell if the affinity 
between a candidate ARB and the best matching memory 
cell is lower that a threshold. A low ATS value results in a 
low replacement rate, whereas a high ATS value 
corresponds to a high replacement rate. Selected results for 
the AIRS simulations are shown in Table 1, 2, and 3. The 
best classification are obtained for ATS = 0.4. The AIRS 
models are stable for the entire range of ATS values 
examined, with better predictions obtained for small ATS 
values.  

 

Table 1. AIRS1 
AIRS1 [15] 

Classifier Memory Cells 

Correctly Classified Instances 215 
(93.4783%) 
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Incorrectly Classified Instances 15 
(6.5217%) 

Root mean squared error 0.3489 
Detailed Accuracy By Class 

(Worm | Benign) 
 Worm Benign 

TP Rate 0.993 0.854 
FP Rate 0.146 0.007 

Precision 0.905 0.988 
Recall 0.993 0.854 

F-
Measure 0.947 0.916 

 
The classification performance of the AIRS2 algorithm 
[17] depends on eight user defined parameters: affinity 
threshold scalar ATS, clonal rate CR, hypermutation rate 
HR, number of nearest neighbors kNN, initial memory cell 
pool size IMPS, number of instances to compute the 
affinity threshold NIAT, stimulation threshold ST, and 
total resources TR. In the AIRS experiments reported here 
we investigated the effect of the affinity threshold scalar 
ATS for 25 values between 0.01 and 0.95. The remaining 
parameters were kept constant, with the following values: 
CR = 10, HR = 2, kNN = 3, IMPS = 50, NIAT = all, ST = 
0.5, and TR = 150. ATS is used to compute a cutoff value 
for memory cell replacement, and takes values between 0 
and 1. A candidate ARB replaces a memory cell if the 
affinity between a candidate ARB and the best matching 
memory cell is lower that a threshold. A low ATS value 
results in a low replacement rate, whereas a high ATS 
value corresponds to a high replacement rate. Selected 
results for the AIRS simulations are shown in Table 1, 2, 
and 3. The best classification are obtained for ATS = 0.2.  

Table 2. AIRS2 
AIRS2 [17] 

Classifier Memory Cells 

Correctly Classified Instances 220 
(95.6522%) 

Incorrectly Classified Instances 10 
(4.3478%) 

Detailed Accuracy By Class 
(Worm | Benign) 

 Worm Benign 
TP Rate 0.985 0.917 
FP Rate 0.083 0.015 

Precision 0.943 0.978 
Recall 0.985 0.917 

F-
Measure 0.964 0.946 

 
The classification performance of the AIRS2-Parallel 
algorithm [18] depends on eight user defined parameters: 
affinity threshold scalar ATS, clonal rate CR, 
hypermutation rate HR, number of nearest neighbors kNN, 
initial memory cell pool size IMPS, number of instances to 

compute the affinity threshold NIAT, stimulation threshold 
ST, and total resources TR.  

In the AIRS experiments reported here we investigated the 
effect of the affinity threshold scalar ATS for 25 values 
between 0.01 and 0.95. The remaining parameters were 
kept constant, with the following values: CR = 10, HR = 2, 
kNN = 3, IMPS = 50, NIAT = all, ST = 0.5, and TR = 150. 
ATS is used to compute a cutoff value for memory cell 
replacement, and takes values between 0 and 1. A 
candidate ARB replaces a memory cell if the affinity 
between a candidate ARB and the best matching memory 
cell is lower that a threshold. A low ATS value results in a 
low replacement rate, whereas a high ATS value 
corresponds to a high replacement rate. Selected results for 
the AIRS simulations are shown in Table 1, 2, and 3. The 
best classification are obtained for ATS = 0.2. The AIRS 
models are stable for the entire range of ATS values 
examined, with better predictions obtained for small ATS 
values.  

Table 3. AIRS2 – Parallel 
AIRS2-Parallel [18] 

Classifier Memory Cells 

Correctly Classified Instances 220 
(95.6522%)

Incorrectly Classified Instances 10 
(4.3478%) 

Root mean squared error 0.3093 
Detailed Accuracy By Class 

(Worm | Benign) 
 Worm Benign 

TP Rate 0.985 0.917 
FP Rate 0.083 0.015 

Precision 0.943 0.978 
Recall 0.985 0.917 

F-
Measure 0.964 0.946 

4.2. Clonal Selection Algorithm (CLONALG)  
[19] 

The CLONALG is an AIS algorithm that gives a central 
role to the clonal selection theory as proposed by de Castro 
and Von Zuben. Several mechanisms of the clonal 
selection are implemented in CLONALG, namely training 
of a group of memory cells, identification and cloning of 
the antibodies with the highest recognition power, death of 
the antibodies with low recognition power, cloning and 
hypermutation of the antibodies with high recognition 
power, evaluation and replacement of the clones, 
generation and preservation of antibody diversity. 
CLONALG is inspired from the following elements: [16] 

• Maintenance of a specific memory set. 
• Selection and cloning of most stimulated antibodies. 
• Death of non-stimulated antibodies. 
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• Affinity maturation. 
• Re-selection of clones proportional to affinity with 

antigen. 
• Generation and maintenance of diversity. 

 
The classification performance of the CLONALG 
algorithm depends on six user defined parameters: clonal 
factor CF, antibody pool size APS, number of generations 
NG, remainder pool ratio RPR, selection pool size SPS, 
and total replacements TR. To illustrate the effect of the 
user defined parameters on the classification performance 
of CLONALG, we show the influence of the clonal factor 
CF on the classification. The clonal factor is a scaling 
factor, with values between 0 and 1, which determines the 
number of clones generated for each selected antibody. 
Low values for CF result in a local search, whereas for 
high values the algorithm generates a larger number of 
clones that may explore a wider region and result in a 
higher diversity. The CLONALG experiments for 
classification were computed for 20 CF values between 
0.01 and 0.95. The remaining parameters were kept 
constant, with the following values: APS = 50, NG = 10, 
RPR = 0.1, SPS = 20, and TR = 2. The best classification 
are obtained for CF = 0.9.  

Table 4. CLONALG 
CLONALG [19] 

Classifier Memory Cells 

Correctly Classified Instances 210 
(91.3043%) 

Incorrectly Classified Instances 20 (8.6957 %)
Detailed Accuracy By Class 

(Worm | Benign) 
 Worm Benign 

TP Rate 0.985 0.813 
FP Rate 0.188 0.015 

Precision 0.88 0.975 
Recall 0.985 0.813 

F-
Measure 0.93 0.886 

4.3. Clonal Selection Classification Algorithm 
(CSCA) [20] 

The CSCA was developed by Brownlee, and is formulated 
as a function optimization procedure that maximizes the 
number of patterns correctly classified and minimizes the 
number of patterns incorrectly classified [20-twenty]. 
CSCA is trained for several generations, and during each 
generation the entire set of antibodies is exposed to all 
antigens. 

The classification performance of the CSCA immune 
system depends on six parameters that are set by the user: 
clonal scale factor CSF, number of nearest neighbors kNN, 
initial population size IPS, minimum fitness threshold 

MFT, number of partitions NP, and total generations TG. 
To demonstrate the influence of the user defined 
parameters on the CSCA predictions, we evaluate the 
influence of the clonal scale factor CSF on the 
classification. CSF is used to increase or decrease the 
number of clones generated for each antibody, and has a 
default value of one. Low values for CSF promote a low 
diversity of solutions, whereas high CSF values increase 
the diversity of the recognition cells. The CSCA 
experiments for classification were computed for 16 CSF 
values between 0.1 and 4. The remaining parameters were 
kept constant, with the following values: kNN = 3, IPS = 
50, MFT = 1.0, NP = 1, and TG = 5. Selected results 
obtained in the CSCA simulations are shown in Table 5. 
The best predictions are obtained for CSF = 2. 
 

Table 5. CSCA 
CSCA [20] 

Classifier Memory Cells 

Correctly Classified Instances 219 
(95.2174%)

Incorrectly Classified Instances 11 
(4.7826%) 

Detailed Accuracy By Class 
(Worm | Benign) 

 Worm Benign 
TP Rate 0.97 0.927 
FP Rate 0.073 0.03 

Precision 0.949 0.957 
Recall 0.97 0.927 

F-
Measure 0.959 0.942 

4.4. Immunos [21] 

IMMUNOS -81 algorithm is the first AIS-based 
classification algorithm. IMMUNOS-81 used the artificial 
T cells to control the production of B-cells. The B-cells 
would then in turn compete for the recognition of the 
‘‘unknowns”. The amino-acid library acts as a library of 
epitopes (or variables) currently in the system. When a 
new antigen is introduced into the system, its variables are 
entered into this library. The T- cells then use the library to 
create their receptors that are used to identify the new 
antigen. During the recognition stage of the algorithm T-
cell paratopes are matched against the epitopes of the 
antigen, and then it is created a B-cell that has paratopes 
that match the epitopes of the antigen [16-6666]. The 
IMMUNOS -81 represents an instance-based classifier 
with some similarity to k-nearest neighbor classifiers. 

Table 6. IMMUNOS-1 
Immunos-1 [21] 

Classifier Memory Cells 
Correctly Classified Instances 214 
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(93.0435%)

Incorrectly Classified Instances 16   
(6.9565 %) 

Detailed Accuracy By Class 
(Worm | Benign) 

 Worm Benign 
TP Rate 0.985 0.854 
FP Rate 0.146 0.015 

Precision 0.904 0.976 
Recall 0.985 0.854 

F-
Measure 0.943 0.911 

 

Table 7. IMMUNOS-81 
Immunos-81 [21] 

Classifier Memory Cells 

Correctly Classified Instances 166 
(72.1739%) 

Incorrectly Classified Instances 64 
(27.8261%) 

Detailed Accuracy By Class 
(Worm | Benign) 

 Worm Benign 
TP Rate 1 0.333 
FP Rate 0.667 0 

Precision 0.677 1 
Recall 0.1 0.333 

F-
Measure 0.807 0.5 

 
Brownlee improved Immunos-81 algorithm by 
incorporating elements from other AIS classifiers, such as 
cloning and hypermutation, to obtain Immunos-99. 
Immunos-99 has three parameters that control the 
classification performance: seed population percentage 
SPP, minimum fitness threshold MFT, and total 
generations TG. The experiments presented here 
investigate the influence of the seed population percentage. 

SPP represents the percentage of the antigen population 
from each class that is used as seed for the B-cell 
population. If SPP = 100% then the initial B-cell 
population is identical with the antigen population in the 
same class. The Immunos-99 classifier was trained for 19 
values of the SPP parameter, between 0.05 and 0.95, with 
MFT = 0.5 and TG = 2. Overall, the classifications are 
lower than those obtained with AIRS, CLONALG, and 
CSCA, as shown by the selected results presented in Table 
8. The best classification are obtained for SPP = 0.6, but 
such low values are not useful for classification. 

 

Table 8. IMMUNOS-99 
Immunos-99 [21] 

Classifier Memory Cells 

Correctly Classified Instances 113 
(49.1304%) 

Incorrectly Classified Instances 117 
(50.8696%) 

Detailed Accuracy By Class 
(Worm | Benign) 

 Worm Benign 
TP Rate 0.843 0 
FP Rate 1 0.157 

Precision 0.541 0 
Recall 0.843 0 

F-
Measure 0.659 0 

 
Figure -1- below shows the classification accuracy of the 
eight AIS algorithms  

 

Figure 1. Classification Accuracy 

Figure -2- below shows the TP Rate and FP Rate of worm 
using the eight AIS algorithms  

 

Figure 2 – TP Rate and FP Rate for Worm 

Figure -3- below shows the TP Rate and FP Rate of benign 
using the eight AIS algorithms  
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Figure 3 – TP Rate and FP Rate for Benign 

5. Feature Selection and Extraction  

We used Portable Executable (PE) feature extraction 
approach. We collected a set of 100 worm and 100 benign 
Windows executables. All of them are in Win32 portable 
executable (PE) format. The benign executables are 
obtained from a freshly installed copy of Windows XP and 
application installers. The malware executables are 
obtained from VX Heavens virus collection which is 
publicly available [22]. 

API Monitor 1.5 is used to log only the API call sequences 
of Windows system-wide processes because some 
malware in our study use Windows processes like 
explorer.exe to carry out malicious activities. Therefore, it 
is not possible for us to exactly pin-point a set of processes 
for monitoring [3]. 

API Monitor 1.5 captures these API calls and stores them 
in apm file format [22]. It has an API and a process filter. 
The API filter gives us the option of filtering unnecessary 
API calls by category. In the API filter, we can select the 
calls of following categories:  

• Dynamic-Link Libraries 
• Processes and Threads  
• Memory Management  
• Network Management 
• Registry 
• Socket 

 
Feature selection is the process of identifying relevant 
features in the dataset and discarding everything else as 
irrelevant and redundant, it enables the classification 
algorithms to operate more effectively and rapidly.  

We use n-gram analysis for feature extraction. n-gram of a 
sequence is the normalized frequency histogram of n 
successive elements of the sequence [23]. 

In this study we chose a value of n=4 to get sufficient 
information from the n-grams while incurring reasonable 
processing overheads.. Each API function is mapped to a 
unique random variable. We extract the most informative 
4-grams from all dataset files by ranking them according 
to their information gain. The information gain of a feature 
i is defined as [24]: 

I(Y ; X) = H(Y) - H(Y | X),                       (1) 

where X is an input attribute, Y is a class attribute, H(Y) is 
the entropy of the class attribute variable Y and H(Y|X) is 
the conditional entropy of Y with respect to X. 

For feature extraction, we check the log file of each 
executable file for presence or absence of the selected 
feature. We place 1 if the feature is present and 0 
otherwise. Each executable log is mapped to a 500-
dimensional binary string. 

6. Conclusion 

In this paper we explored the feasibility of detecting 
unknown worm activity in individual computers, at a high 
level of accuracy using the following algorithms: AIRS1, 
AIRS2, AIRS2 Parallel, CLONALG, CSCA, IMMUNOS-
1, IMMUNOS-81, IMMUNOS-99. Additionally, they all 
were performed by using 10-fold cross-validation. 
Experiments were repeated 10 times to produce 
statistically reliable results.  

To examine the possibility of classifying unknown worms, 
two classes were defined, a worm type consisting of the 
API call sequence samples and benign API call sequence 
samples. The training sets had 100 worms. We found that 
the level of detection accuracy varied within each 
algorithm as follows: AIRS1=93.4783%, 
AIRS2=95.6522%, AIRS2-Parallel=95.6522%, 
CLONALG=91.3043%, CSCA=95.2174%, IMMUNOS-
1=93.0435%, IMMUNOS-81=72.1739%, IMMUNOS-
99=49.1304%. 

In conclusion it can be seen from our study that it is 
possible to detect malicious activity of worms by looking 
at the attributes derived from the computer operation 
parameters derived from API call sequence of a process 
using AIRS1, AIRS2, AIRS-Parallel, CLONALG, CSCA. 
On the other hand the place of misclassification and FP 
rates that are still significantly high in IMMUNOS-1, 
IMMUNOS-81, and IMMUNOS-99suggests that there are 
still difficulties related to the detection of the worms using 
these algorithms. 
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