
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

31

Artificial Immune Clonal Selection Classification Algorithms for
Classifying Malware and Benign Processes Using API Call Sequences

Khaled A. Al-Sheshtawi
Information Technology Dept., King

AbdulAziz University, Jeddah,
Kingdom of Saudi Arabia.

H. M. Abdul-Kader
Information System Dept., Faculty of
Computers & Information, Menoufia

University, Egypt.

Nabil A. Ismail
Computer Science Dept., Faculty of
Computers & Information, Menoufia

University, Egypt.

Abstract
Machine learning is an important field of artificial intelligence in
which models are generated by extracting rules and functions
from large datasets. Machine learning includes a diversity of
methods and algorithms such as decision trees, lazy learning, k-
nearest neighbors, Bayesian methods, Gaussian processes,
artificial neural networks, support vector machines, kernel
algorithms, and artificial immune systems (AIS). AIS are
computation tools that emulate processes and mechanisms of the
biological immune system. AIS use the learning, memory, and
optimization capabilities of the immune system to develop
computational algorithms for function optimization, pattern
recognition, novelty detection, and process control, and
classification. There are four main sub fields of research that
have emerged in AIS cantered on prominent immunological
theories; negative selection algorithms, immune network
algorithms, danger theory algorithms, and clonal selection
algorithms. In this paper, we will analyze API call sequence of a
process to classify it as benign or malicious. We have collected
API call traces of real malware and benign processes running on
Windows operating system. We will employ eight commonly
used clonal selection algorithms: AIRS1, AIRS2, AIRS2 Parallel,
CLONALG, CSCA, IMMUNOS-1, IMMUNOS -81, and
IMMUNOS -99. We evaluate the accuracy of these algorithms
for classifying between malware and benign processes using API
call sequences.
Key words:
Artificial immune clonal selection, API call sequence, malware.

1. Introduction

The sophisticated computer malware is becoming a serious
threat to the information technology infrastructure, which
is the backbone of modern e-commerce systems [1].
Among other malwares, computer worm is a self-
replicating computer program. Computer worm is a fully
stand-alone program that does not need to be a part of
other program in order to propagate. The fact that worms
propagate very fast on networks makes them one of the
most challenging malwares to intercept. Fast detection of
computers infected with worms is critically important on
local networks. A recent outbreak of Conficker malware
affected more than 9 million computers including those of
Ministry of Defence, United Kingdom [2]. This incident
has proved that commercial anti-virus software, even with
updated malware definitions, are incapable of safeguarding

our information technology infrastructure [3]. In [4], the
authors have shown that commercial anti-virus software
are easily befooled using evasion attempts, such as code
obfuscation, encryption and polymorphic transformations.
Therefore, security experts are now focusing their
attention to robust run-time malware detection techniques
that analyze API call sequence of a process to classify it as
benign or malicious [3]. We focus on the application of
clonal selection algorithms in the task of worm detection
within the environment of Microsoft Windows® operating
system.

The clonal selection theory quickly attracted the attention
of computer scientists, since it appeared as a more flexible
alternative to genetic and evolutionary algorithms. The
clonal selection theory was originally proposed by Burnet,
in order to explain the reinforcement learning of the
immune system of mammals. According to Burnet’s
theory, mammals acquire immunity through mutation,
selection, and proliferation of the mature B-lymphocytes.
The clonal selection theory is used to explain the basic
features of an adaptive immune response to an antigenic
stimulus. It establishes the idea that only those cells that
recognize the antigens are selected to proliferate. The
selected cells are subject to an affinity maturation process,
which improves their affinity to the selective antigens.

Inspired by the clonal selection theory, De Castro
pioneered the clonal selection algorithm [5] in 2000. After
that, many clonal selection based artificial immune
algorithms have been proposed. The dynamic CSA
(DynamiCS) constructed by Kim in 2002 [6] and
polyclonal strategy proposed by Licheng Jiao in 2003 [7]
are two of the most outstanding contributions. Lei Wang
and Licheng Jiao introduced immune concepts and
methods into evolutionary algorithm to form immune
evolutionary algorithms [8]. The clonal selection algorithm
is with a colony search mechanism in nature, which
enables it not easily to get into the trap of local
optimization, it can thus converge to the global
optimization with a higher probability and higher speed.
[9]. We used Weka [10] machine-learning workbench in
our analysis.

Manuscript received April 5, 2010
Manuscript revised April 20, 2010

mailto:kshesh@kau.edu.sa
mailto:hatem6803@yahoo.com
mailto:nabil_a_ismail@yahoo.com

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

32

In this paper, we will analyze API call sequence of a
process to classify it as benign or malicious. We have
collected API call traces of real malware and benign
processes running on Windows operating system. We will
employ eight commonly used clonal selection algorithms:
AIRS1, AIRS2, AIRS2 Parallel, CLONALG, CSCA,
IMMUNOS-1, IMMUNOS -81, and IMMUNOS -99. We
evaluate the accuracy of these algorithms for classifying
between malware and benign processes using API call
sequences.

The remainder of this paper is organized as follows.
Section 2 provides basic principles of clonal selection
theory. Section 3 provides basic principles of clonal
selection algorithm. Section 4 reports on the set up of the
benchmarking experiments and the results using the eight
AIS algorithms. Section 5 discusses the feature selection
and extraction approach used, and section 6 concludes the
paper.

2. Clonal Selection Theory

The role of the biological immune system is to provide the
organisms with an effective mechanism against pathogenic
infections. The biological immune system mainly consists
of two defensive lines, one is the innate immune system,
and the other is the adaptive immune system. These two
systems perform the defensive tasks complementarily. The
core of the adaptive immune response is the clonal
selection theory. When B-lymphocytes encounter antigens,
they will activate B-lymphocytes to produce antibody
molecules. Because antibody molecules are attached to the
B-lymphocytes, sometimes we do not make any distinction
between them. Each B-lymphocyte can produce only one
kind of specific antibody molecules capable of recognizing
and .binding to this specific antigen. And it is this binding
that will stimulate the B-lymphocyte to reproduce a cell or
cells and later differentiate into plasma cells. This asexual
proliferation generates daughter cell or cells named a clone.

The first encountering and response to the antigen is
named the primary immune response. After the primary
immune response, the immune system can remember the
antigens that it has responded and this is called the
immune memory. The immune memory can guarantee that
the immune system can provide a more effective and rapid
response to the antigens that have been detected before.
And this is the basis of the vaccination, which makes us
get rid of many diseases. The immune memory also
implies the learning mechanism during the clonal selection
process. When antigens are from the inside of the
individual organism, the recognizing B-lymphocytes will
be discarded or this will cause autoimmunity. This
phenomenon is called immune toleration or self-tolerance.
[11]

The main property of the clonal selection theory can be
summarized as follows [12]:

1) Negative selection: elimination of self-antigens;
2) Clonal expansion: proliferation and

differentiation;
3) Monospecificity: phenotypic restriction;
4) Somatic hypermutation: new random genetic

changes;
5) Autoimmunity.

3. The Clonal Selection Algorithm (CSA)

In the CSA, a candidate solution for the specific problem
is called an antigen, which is recognized by the antibody.
Each antibody represents a point in the search space, i.e., a
possible solution to the problem. A population consists of
a finite number of antibodies. Every antibody is evaluated
by the evaluation mechanism to obtain its affinity. Based
on this affinity and undergoing immune operators, a new
population is generated iteratively with each successive
population, referred to as a generation.

The CSA has two main computational mechanisms:
selection and mutation. In the algorithm proposed by de
Castro & Von Zuben, these two mechanisms were fulfilled
by taking into account the immune properties: the
proliferation and mutation rate are proportional to the
antigenic affinity. That is to say, the higher the antigenic
affinity, the higher the number of clones generated for
each antibody. In the hypermutation operation, the cloned
population is subject to an affinity mutation process
inversely proportional to the antigenic affinity. The
receptor editing includes two steps. In the first step, a
given number of new antibodies are generated randomly.
In the second step, the generated antibodies are used to
refresh the whole population by replacing those antibodies
with the lowest antigenic affinity.

The CSA uses three immune operators, i.e., cloning,
hypermutation, and receptor editing, to refresh the
composition of populations. The cloning operator explores
the neighborhood of each point of the search space.

3.1. CSA and Learning

One of the most important characteristics of the immune
system is learning. The learning ability of the immune
system lies primarily in the clonal expansion [13]. The
immune system learns in the clonal selection by the
mechanism as follows: the immune system is repeatedly
exposure to the antigen, which will activate a mechanism
called hypermutation. The hypermutation sometimes will
increase the diversity of the antibody molecules. And B-
lymphocytes with higher affinity antibodies will have
more chances to perform clonal selection. The repeating

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

33

mutation and selection make the immune system learn to
produce higher affinity antibodies binding with the antigen.

3.2. CSA and Evolution

From the perspective of the Darwin’s evolution theory, the
clonal selection can be explained as a microevolution in
the immune system. During the process of the clonal
selection, there have three main features: selection,
mutation and diversity. Selection occurs only when the
antibody molecules can recognize and bind effectively
with the antigen; the reproduction can activate the
hypermutation, which will increase the diversity of the
antibody molecules. The diversity can ensure the immune
system against antigens that the organisms have never seen
nor have some correlation with the antigens that have met
before. And receptor editing is another important
mechanism to realize the receptor diversity. Recent work
and studies suggest that editing plays a central role in the
B-lymphocyte and T-lymphocyte repertoire development
[14].

4. Clonal Selection Classification Algorithms

One of the goals of this study was to pinpoint the
classification algorithm that provides the highest level of
detection accuracy. We employed eight commonly used
artificial immune classification algorithms: AIRS1, AIRS2,
AIRS2 Parallel, CLONALG, CSCA, Immunos-1,
Immunos-81, Immunos-99 using Weka [10] machine-
learning workbench.

4.1. AIRS - Artificial Immune Recognition
System [15]

A resource limited artificial immune system (AIS) for
supervised classification, using clonal selection, affinity
maturation, and affinity recognition balls (ARBs). The
AIRS algorithm has been shown to be a successful
classification algorithm for a broad range of machine
learning problems. From a data mining point of view,
AIRS is a cluster-based approach to classification. It first
learns the structure of the input space by mapping a
codebook of cluster centers to it and then uses k-nearest
neighbor on the cluster centers for classification. The
attractive point of AIRS is its supervised procedure for
discovering both the optimal number and position of the
cluster centers. In AIRS, there are two different
populations, the Artificial Recognition Balls (ARBs) and
the memory cells. If a training antigen is presented, ARBs
(lymphocytes) matching the antigen are activated and
awarded more resources. Through this process of
stimulation, mutation and selection a candidate memory
cell is selected and it is inserted to the memory cell pool if
it gives enough information. This process is repeated for

all training instances and finally classification takes place
by performing a nearest neighbor search on the memory
cell population.

AIRS algorithm has features which are listed as follows
[16]:
• Generalization: The algorithm does not need all the

dataset for generalization and it has data reduction
capability.

• Parameter stability: Even though user-defined
parameters are not optimized for the problem, the
decline of its performance is very small.

• Performance: There has been demonstrated that its
performance is excellent for some datasets and totally
remarkable.

• Self-regulatory: There is no need to choose a topology
before training.

AIRS algorithm has five steps: Initialization, antigen
training, competition for limited resource, memory cell
selection and classification. The first step and the last step
are applied only once, but steps 2, 3, 4 are used for each
sample in the dataset.
The classification performance of the AIRS algorithm
depends on eight user defined parameters: affinity
threshold scalar ATS, clonal rate CR, hypermutation rate
HR, number of nearest neighbors kNN, initial memory cell
pool size IMPS, number of instances to compute the
affinity threshold NIAT, stimulation threshold ST, and
total resources TR.

In the AIRS experiments reported here we investigated the
effect of the affinity threshold scalar ATS for 25 values
between 0.01 and 0.95. The remaining parameters were
kept constant, with the following values: CR = 10, HR = 2,
kNN = 3, IMPS = 50, NIAT = all, ST = 0.5, and TR = 150.
ATS is used to compute a cutoff value for memory cell
replacement, and takes values between 0 and 1. A
candidate ARB replaces a memory cell if the affinity
between a candidate ARB and the best matching memory
cell is lower that a threshold. A low ATS value results in a
low replacement rate, whereas a high ATS value
corresponds to a high replacement rate. Selected results for
the AIRS simulations are shown in Table 1, 2, and 3. The
best classification are obtained for ATS = 0.4. The AIRS
models are stable for the entire range of ATS values
examined, with better predictions obtained for small ATS
values.

Table 1. AIRS1
AIRS1 [15]

Classifier Memory Cells

Correctly Classified Instances 215
(93.4783%)

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

34

Incorrectly Classified Instances 15
(6.5217%)

Root mean squared error 0.3489
Detailed Accuracy By Class

(Worm | Benign)
 Worm Benign

TP Rate 0.993 0.854
FP Rate 0.146 0.007

Precision 0.905 0.988
Recall 0.993 0.854

F-
Measure 0.947 0.916

The classification performance of the AIRS2 algorithm
[17] depends on eight user defined parameters: affinity
threshold scalar ATS, clonal rate CR, hypermutation rate
HR, number of nearest neighbors kNN, initial memory cell
pool size IMPS, number of instances to compute the
affinity threshold NIAT, stimulation threshold ST, and
total resources TR. In the AIRS experiments reported here
we investigated the effect of the affinity threshold scalar
ATS for 25 values between 0.01 and 0.95. The remaining
parameters were kept constant, with the following values:
CR = 10, HR = 2, kNN = 3, IMPS = 50, NIAT = all, ST =
0.5, and TR = 150. ATS is used to compute a cutoff value
for memory cell replacement, and takes values between 0
and 1. A candidate ARB replaces a memory cell if the
affinity between a candidate ARB and the best matching
memory cell is lower that a threshold. A low ATS value
results in a low replacement rate, whereas a high ATS
value corresponds to a high replacement rate. Selected
results for the AIRS simulations are shown in Table 1, 2,
and 3. The best classification are obtained for ATS = 0.2.

Table 2. AIRS2
AIRS2 [17]

Classifier Memory Cells

Correctly Classified Instances 220
(95.6522%)

Incorrectly Classified Instances 10
(4.3478%)

Detailed Accuracy By Class
(Worm | Benign)

 Worm Benign
TP Rate 0.985 0.917
FP Rate 0.083 0.015

Precision 0.943 0.978
Recall 0.985 0.917

F-
Measure 0.964 0.946

The classification performance of the AIRS2-Parallel
algorithm [18] depends on eight user defined parameters:
affinity threshold scalar ATS, clonal rate CR,
hypermutation rate HR, number of nearest neighbors kNN,
initial memory cell pool size IMPS, number of instances to

compute the affinity threshold NIAT, stimulation threshold
ST, and total resources TR.

In the AIRS experiments reported here we investigated the
effect of the affinity threshold scalar ATS for 25 values
between 0.01 and 0.95. The remaining parameters were
kept constant, with the following values: CR = 10, HR = 2,
kNN = 3, IMPS = 50, NIAT = all, ST = 0.5, and TR = 150.
ATS is used to compute a cutoff value for memory cell
replacement, and takes values between 0 and 1. A
candidate ARB replaces a memory cell if the affinity
between a candidate ARB and the best matching memory
cell is lower that a threshold. A low ATS value results in a
low replacement rate, whereas a high ATS value
corresponds to a high replacement rate. Selected results for
the AIRS simulations are shown in Table 1, 2, and 3. The
best classification are obtained for ATS = 0.2. The AIRS
models are stable for the entire range of ATS values
examined, with better predictions obtained for small ATS
values.

Table 3. AIRS2 – Parallel
AIRS2-Parallel [18]

Classifier Memory Cells

Correctly Classified Instances 220
(95.6522%)

Incorrectly Classified Instances 10
(4.3478%)

Root mean squared error 0.3093
Detailed Accuracy By Class

(Worm | Benign)
 Worm Benign

TP Rate 0.985 0.917
FP Rate 0.083 0.015

Precision 0.943 0.978
Recall 0.985 0.917

F-
Measure 0.964 0.946

4.2. Clonal Selection Algorithm (CLONALG)
[19]

The CLONALG is an AIS algorithm that gives a central
role to the clonal selection theory as proposed by de Castro
and Von Zuben. Several mechanisms of the clonal
selection are implemented in CLONALG, namely training
of a group of memory cells, identification and cloning of
the antibodies with the highest recognition power, death of
the antibodies with low recognition power, cloning and
hypermutation of the antibodies with high recognition
power, evaluation and replacement of the clones,
generation and preservation of antibody diversity.
CLONALG is inspired from the following elements: [16]

• Maintenance of a specific memory set.
• Selection and cloning of most stimulated antibodies.
• Death of non-stimulated antibodies.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

35

• Affinity maturation.
• Re-selection of clones proportional to affinity with

antigen.
• Generation and maintenance of diversity.

The classification performance of the CLONALG
algorithm depends on six user defined parameters: clonal
factor CF, antibody pool size APS, number of generations
NG, remainder pool ratio RPR, selection pool size SPS,
and total replacements TR. To illustrate the effect of the
user defined parameters on the classification performance
of CLONALG, we show the influence of the clonal factor
CF on the classification. The clonal factor is a scaling
factor, with values between 0 and 1, which determines the
number of clones generated for each selected antibody.
Low values for CF result in a local search, whereas for
high values the algorithm generates a larger number of
clones that may explore a wider region and result in a
higher diversity. The CLONALG experiments for
classification were computed for 20 CF values between
0.01 and 0.95. The remaining parameters were kept
constant, with the following values: APS = 50, NG = 10,
RPR = 0.1, SPS = 20, and TR = 2. The best classification
are obtained for CF = 0.9.

Table 4. CLONALG
CLONALG [19]

Classifier Memory Cells

Correctly Classified Instances 210
(91.3043%)

Incorrectly Classified Instances 20 (8.6957 %)
Detailed Accuracy By Class

(Worm | Benign)
 Worm Benign

TP Rate 0.985 0.813
FP Rate 0.188 0.015

Precision 0.88 0.975
Recall 0.985 0.813

F-
Measure 0.93 0.886

4.3. Clonal Selection Classification Algorithm
(CSCA) [20]

The CSCA was developed by Brownlee, and is formulated
as a function optimization procedure that maximizes the
number of patterns correctly classified and minimizes the
number of patterns incorrectly classified [20-twenty].
CSCA is trained for several generations, and during each
generation the entire set of antibodies is exposed to all
antigens.

The classification performance of the CSCA immune
system depends on six parameters that are set by the user:
clonal scale factor CSF, number of nearest neighbors kNN,
initial population size IPS, minimum fitness threshold

MFT, number of partitions NP, and total generations TG.
To demonstrate the influence of the user defined
parameters on the CSCA predictions, we evaluate the
influence of the clonal scale factor CSF on the
classification. CSF is used to increase or decrease the
number of clones generated for each antibody, and has a
default value of one. Low values for CSF promote a low
diversity of solutions, whereas high CSF values increase
the diversity of the recognition cells. The CSCA
experiments for classification were computed for 16 CSF
values between 0.1 and 4. The remaining parameters were
kept constant, with the following values: kNN = 3, IPS =
50, MFT = 1.0, NP = 1, and TG = 5. Selected results
obtained in the CSCA simulations are shown in Table 5.
The best predictions are obtained for CSF = 2.

Table 5. CSCA
CSCA [20]

Classifier Memory Cells

Correctly Classified Instances 219
(95.2174%)

Incorrectly Classified Instances 11
(4.7826%)

Detailed Accuracy By Class
(Worm | Benign)

 Worm Benign
TP Rate 0.97 0.927
FP Rate 0.073 0.03

Precision 0.949 0.957
Recall 0.97 0.927

F-
Measure 0.959 0.942

4.4. Immunos [21]

IMMUNOS -81 algorithm is the first AIS-based
classification algorithm. IMMUNOS-81 used the artificial
T cells to control the production of B-cells. The B-cells
would then in turn compete for the recognition of the
‘‘unknowns”. The amino-acid library acts as a library of
epitopes (or variables) currently in the system. When a
new antigen is introduced into the system, its variables are
entered into this library. The T- cells then use the library to
create their receptors that are used to identify the new
antigen. During the recognition stage of the algorithm T-
cell paratopes are matched against the epitopes of the
antigen, and then it is created a B-cell that has paratopes
that match the epitopes of the antigen [16-6666]. The
IMMUNOS -81 represents an instance-based classifier
with some similarity to k-nearest neighbor classifiers.

Table 6. IMMUNOS-1
Immunos-1 [21]

Classifier Memory Cells
Correctly Classified Instances 214

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

36

(93.0435%)

Incorrectly Classified Instances 16
(6.9565 %)

Detailed Accuracy By Class
(Worm | Benign)

 Worm Benign
TP Rate 0.985 0.854
FP Rate 0.146 0.015

Precision 0.904 0.976
Recall 0.985 0.854

F-
Measure 0.943 0.911

Table 7. IMMUNOS-81
Immunos-81 [21]

Classifier Memory Cells

Correctly Classified Instances 166
(72.1739%)

Incorrectly Classified Instances 64
(27.8261%)

Detailed Accuracy By Class
(Worm | Benign)

 Worm Benign
TP Rate 1 0.333
FP Rate 0.667 0

Precision 0.677 1
Recall 0.1 0.333

F-
Measure 0.807 0.5

Brownlee improved Immunos-81 algorithm by
incorporating elements from other AIS classifiers, such as
cloning and hypermutation, to obtain Immunos-99.
Immunos-99 has three parameters that control the
classification performance: seed population percentage
SPP, minimum fitness threshold MFT, and total
generations TG. The experiments presented here
investigate the influence of the seed population percentage.

SPP represents the percentage of the antigen population
from each class that is used as seed for the B-cell
population. If SPP = 100% then the initial B-cell
population is identical with the antigen population in the
same class. The Immunos-99 classifier was trained for 19
values of the SPP parameter, between 0.05 and 0.95, with
MFT = 0.5 and TG = 2. Overall, the classifications are
lower than those obtained with AIRS, CLONALG, and
CSCA, as shown by the selected results presented in Table
8. The best classification are obtained for SPP = 0.6, but
such low values are not useful for classification.

Table 8. IMMUNOS-99
Immunos-99 [21]

Classifier Memory Cells

Correctly Classified Instances 113
(49.1304%)

Incorrectly Classified Instances 117
(50.8696%)

Detailed Accuracy By Class
(Worm | Benign)

 Worm Benign
TP Rate 0.843 0
FP Rate 1 0.157

Precision 0.541 0
Recall 0.843 0

F-
Measure 0.659 0

Figure -1- below shows the classification accuracy of the
eight AIS algorithms

Figure 1. Classification Accuracy

Figure -2- below shows the TP Rate and FP Rate of worm
using the eight AIS algorithms

Figure 2 – TP Rate and FP Rate for Worm

Figure -3- below shows the TP Rate and FP Rate of benign
using the eight AIS algorithms

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

37

Figure 3 – TP Rate and FP Rate for Benign

5. Feature Selection and Extraction

We used Portable Executable (PE) feature extraction
approach. We collected a set of 100 worm and 100 benign
Windows executables. All of them are in Win32 portable
executable (PE) format. The benign executables are
obtained from a freshly installed copy of Windows XP and
application installers. The malware executables are
obtained from VX Heavens virus collection which is
publicly available [22].

API Monitor 1.5 is used to log only the API call sequences
of Windows system-wide processes because some
malware in our study use Windows processes like
explorer.exe to carry out malicious activities. Therefore, it
is not possible for us to exactly pin-point a set of processes
for monitoring [3].

API Monitor 1.5 captures these API calls and stores them
in apm file format [22]. It has an API and a process filter.
The API filter gives us the option of filtering unnecessary
API calls by category. In the API filter, we can select the
calls of following categories:

• Dynamic-Link Libraries
• Processes and Threads
• Memory Management
• Network Management
• Registry
• Socket

Feature selection is the process of identifying relevant
features in the dataset and discarding everything else as
irrelevant and redundant, it enables the classification
algorithms to operate more effectively and rapidly.

We use n-gram analysis for feature extraction. n-gram of a
sequence is the normalized frequency histogram of n
successive elements of the sequence [23].

In this study we chose a value of n=4 to get sufficient
information from the n-grams while incurring reasonable
processing overheads.. Each API function is mapped to a
unique random variable. We extract the most informative
4-grams from all dataset files by ranking them according
to their information gain. The information gain of a feature
i is defined as [24]:

I(Y ; X) = H(Y) - H(Y | X), (1)

where X is an input attribute, Y is a class attribute, H(Y) is
the entropy of the class attribute variable Y and H(Y|X) is
the conditional entropy of Y with respect to X.

For feature extraction, we check the log file of each
executable file for presence or absence of the selected
feature. We place 1 if the feature is present and 0
otherwise. Each executable log is mapped to a 500-
dimensional binary string.

6. Conclusion

In this paper we explored the feasibility of detecting
unknown worm activity in individual computers, at a high
level of accuracy using the following algorithms: AIRS1,
AIRS2, AIRS2 Parallel, CLONALG, CSCA, IMMUNOS-
1, IMMUNOS-81, IMMUNOS-99. Additionally, they all
were performed by using 10-fold cross-validation.
Experiments were repeated 10 times to produce
statistically reliable results.

To examine the possibility of classifying unknown worms,
two classes were defined, a worm type consisting of the
API call sequence samples and benign API call sequence
samples. The training sets had 100 worms. We found that
the level of detection accuracy varied within each
algorithm as follows: AIRS1=93.4783%,
AIRS2=95.6522%, AIRS2-Parallel=95.6522%,
CLONALG=91.3043%, CSCA=95.2174%, IMMUNOS-
1=93.0435%, IMMUNOS-81=72.1739%, IMMUNOS-
99=49.1304%.

In conclusion it can be seen from our study that it is
possible to detect malicious activity of worms by looking
at the attributes derived from the computer operation
parameters derived from API call sequence of a process
using AIRS1, AIRS2, AIRS-Parallel, CLONALG, CSCA.
On the other hand the place of misclassification and FP
rates that are still significantly high in IMMUNOS-1,
IMMUNOS-81, and IMMUNOS-99suggests that there are
still difficulties related to the detection of the worms using
these algorithms.

References
[1] F-Secure Corporation, “F-Secure Reports Amount of

Malware Grew by 100% during 2007", Press release, 2007.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

38

[2] Symantec, “Internet Security Threat Report", Vol. XIV,
2009.

[3] S. Manzoor, M. Z. Shafiq, S. M. Tabish, M. Farooq “A
Sense of `Danger' for Windows Processes”,
http://www.nextginrc.org/, 2008.

[4] M. Christodorescu, S. Jha, “Testing Malware Detectors",
ACM SIGSOFT Software Engineering Notes, 29(4), ACM
Press, pp. 34-44, 2004.

[5] L. N. De Castro, F. J. Von Zuben. “The Clonal Selection
Algorithm with Engineering Applications”, Proceedings of
Workshop on Artificial Immune Systems and Their
Applications, pp.36-37, 2000.

[6] J. Kim and P. J. Bentley, “Towards an Artificial Immune
System for Network Intrusion Detection: An Investigation
of Dynamic Clonal Selection”, Proceedings of Congress on
Evolutionary Computation, pp. 1015-1020, 2002

[7] R. Liu, H. Du, L. Jiao, “Immunity Clonal Strategies”,
Proceedings of the Fifth International Conference on
Computational Intelligence and Multimedia Applications,
2003:290.

[8] L. Wang, J. Pan, L. Jiao, “The Immune Programming”,
Chinese Journal of Computers. 23(8), pp. 806-812, 2000

[9] J. Xian, F. Lang., X. Tang, “A Novel Intrusion Detection
Method based on Clonal Selection Clustering Algorithm”,
Proceedings of the Fourth International Conference on
Machine Learning and Cybernetics, Guangzhou, pp. 3905-
3910, 18-21 August 2005.

[10] K. Liaskos, M. Roper, “Hybridizing Evolutionary Testing
with Artificial Immune Systems and Local Search”,
Conference on Software Testing Verification and Validation
Workshop, 2008. ICSTW '08. IEEE International, pp. 211-
220, 2008.

[11] Y. Ying, C. Z. Hou, “A Clonal election Algorithm By Using
Learning Operator”, Proceedings of the Third International
Conference on Machine Learning and Cybernetics,
Shanghai, pp. 26-29, August 2004.

[12] N. L. de Castro, J. Timmis, “Artificial immune systems: a
new computational intelligence approach”, New York:
Springer, London, 2002.

[13] D. Dasgupta, “Artificial Immune Systems and Their
Applications”, Germany: Springer-Verlag, Berlin, 1999.

[14] D. Nemazee, K. A. Hogquist, “Antigen receptor selection by
editing or downregulation of V(D)J recombination”, Current
Opinion in Immunology, Vol. 15, pp. 182-189, 2003.

[15] B. A. Watkins, “A resource limited artificial immune
classifier”, Mississippi State University, (Masters Thesis),
2001.

[16] C. Catal, B. Diri, “Investigating the effect of dataset size,
metrics sets, and feature selection techniques on software
fault prediction problem”, Elsevier, pp. 1040-1058, 2008.

[17] A. Watkins, J. Timmis, L. Boggess, “Artificial Immune
Recognition System (AIRS): An Immune-Inspired
Supervised Learning Algorithm”, Genetic Programming and
Evolvable Machines, vol. 5, pp. 291-317, Sep, 2004.

[18] A. Watkins, J. Timmis, “Exploiting Parallelism Inherent in
AIRS, an Artificial Immune Classifier", Proceedings of the
3rd International Conference on Artificial Immune Systems
(ICARIS2004), Catania, Italy, pp. 427-438, 2004.

[19] L. N. de Castro, J., V. Zuben, “Learning and Optimization
Using the Clonal Selection Principle”, IEEE Transactions on

Evolutionary Computation, Special Issue on Artificial
Immune Systems. 2002; 6(3): 239-251.

[20] J. Brownlee. [Technical Report], “Clonal Selection Theory
& CLONALG - The Clonal Selection Classification
Algorithm (CSCA)”, Victoria, Australia: Centre for
Intelligent Systems and Complex Processes (CISCP),
Faculty of Information and Communication Technologies
(ICT), Swinburne University of Technology, 2005 Jan,
Technical Report ID: 2-01.

[21] J. Brownlee. [Technical Report], “Immunos-81 - The
Misunderstood Artificial Immune System”, Victoria,
Australia: Centre for Intelligent Systems and Complex
Processes (CISCP), Faculty of Information and
Communication Technologies (ICT), Swinburne University
of Technology; 2005 Feb; Technical Report ID: 3-01.

[22] API Monitor, available at
http://www.rohitab.com/apimonitor.

[23] M. Damashek, “Gauging Similarity with n-Grams:
Language-Independent Categorization of Text", Vol. 267,
pp. 843-848, Science, 1995.

[24] J.Z. Kolter, M.A. Maloof, “Learning to detect malicious
executables in the wild", International Conference on
Knowledge Discovery and Data Mining, pp. 470-478, ACM
Press, USA, 2004.

http://www.nextginrc.org/
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4566983
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4566983
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4566983
http://www.rohitab.com/apimonitor

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

39

Khaled AbdElKhalek Al-
Sheshtawi obtained his B.Sc. in
Computer Science from King
AbdulAziz University, Faculty of
Science, Saudi Arabia in 1991 and
M.Sc. with Distinction in
Computer-based Information
Systems from University of
Sunderland, School of Computing
and Information Systems, United
Kingdom in 1998. He is currently a

Lecturer in King AbdulAziz University, Information Technology
Department since 1999.

Hatem Mohamed Abdul-Kader
obtained his B.S. and M.SC. (by
research) both in Electrical
Engineering from the Alexandria
University , Faculty of Engineering
, Egypt in 1990 and 1995
respectively. He obtained his Ph.D.
degree in Electrical Engineering
also from Alexandria University,
Faculty of Engineering, Egypt in
2001 specializing in neural
networks and its applications. He is

currently a Associative professor in Information systems
department, Faculty of Computers and Information, Minufiya
University, Egypt since 2004. He has worked on a number of
research topics and consulted for a number of organizations. He
has contributed more than 35+ technical papers in the areas of
neural networks, Database applications, Information security and
Internet applications.

Nabil A. Ismail is a professor of
Computer Science and Engineering.
He used to be the Dean of the
Faculty of Computers and
Information, University of
Menoufia, Egypt (2006-2008). Prof.
Ismail has obtained his PhD from
Durham University, England, in
1983. He is now working as a
Professor at the Faculty of
Electronic Engineering, Egypt and
Al-Baha College of Computer

Science, KSA. Prof. Nabil Ismail research interests including
computer security, image reconstruction, computer architecture,
and constrained-resource ECP.

