
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

71

A Novel Method for Representing XML DOM Data

Puspha rani Suria , Neetu Sardanab.

 a: Computer Science & Application Department, Kurukshetra University, Kurukshetra
b: Apeejay School Of Management, Sector-8, Institutional area, Dwarka, New Delhi

Summary
XML is an acceptable standard for data representation and exchange on the World Wide Web. In the XML (Extensible Markup
Language) based web applications like time series analysis, risk analysis, share marketing, forecasting system where data is
homogeneous in nature, complex calculations are being done to analyze the data. We can’t compromise with large processing time of
mathematical processing system due to preparing data set for processing. That’s why time efficient buffer creation is primary goal, so that
total time taken in processing and generating pattern should be significantly less. This paper emphasis is to store XML data after DOM
parsing in proposed way to get best response time if we are dealing with homogeneous data.
An investigation is being conducted in simulated environment for getting XML data from database and parses it to store in proposed way
then after processing was done on data set. It is being found that while parsing XML data if tag and structure both are stored in a
presented architecture of single buffer then it will give high performance in time for parsing and responding result of computation.
Keywords: XML, DOM, DTD.

1. Introduction

Extensible Markup Language (XML) is gaining
acceptance in the global market as the standard format
for storing structured and unstructured electronic
documents on large database. Response time for
retrieving or storing information from large database is
always a challenge. Most of the work reported in
literature is dealing with this issue [1-6].
But often we would like to do manipulation or analysis
on XML data in applications like weather forecasting,
financial modeling risk analysis etc and explore the data.
For such type of activity we need an environment where
we can retrieve data quickly from the large data set in
XML format and further complex mathematical
processing can be done.
In order to analyze XML data, XML has to be
represented in some standard format via DOM
(Document object model). DOM is a platform- and
language-neutral interface that allows programs and
scripts to dynamically access or update the content,
structure and style of XML documents. Programming
solutions using DOM are quite convoluted, even for such
a simple task. DOM programmers have accepted that
their code as tedious, hard to read and maintain, and thus
prone to errors [7]. In DOM complete XML document
exists in memory and it can be easily processed and
manipulated but if documents are large then it imposes a
large memory requirement. As the size of a DOM tree
created from an XML document is as large as 10 times of
the size of the original document [8]. This is the reason
we have to port XML via DOM in some platform like
C++, JAVA, OCTAVE or Matlab®.

This paper emphasis is on how to port the XML data
onto some platform quickly so that further manipulation
can be done on that data. Proposed methodology is using
single buffer storage technique for preparing XML data
for further processing in place of existing generic
multiple data storage technique. It is being found that in
most of XML based web applications, data used is
homogeneous in comparison to normal data. So in place
of using existing generic XML storage technique, a new
proposed methodology that suits requirement for data
analysis, is presented for reading these types of XML
data and makes it usable for further processing.
The proposed method is simulated for gold price data
using Matlab® platform.
Entire Paper is divided in following sections:
Section 2 describes the problem, section 3 introduces
some preliminaries concerning XML, section 4 describes
the storage structure for porting XML data in Multiple
array system, section 5 introduces the storage structure
for porting XML data using proposed Single array
system, section 6 describes Time complexity using both
methods, section 7 discusses a case study, section 8
concludes this paper.

2. Problem definition

We are developing a system that can take raw XML data
so that the data can be used for analysis like forecasting
future expected behavior / or future possible pattern.
For porting XML data is taken as an input and is parsed.
Parsed XML data is stored in temporary buffer storage
and finally complex processing is being done on the data,
and output patterns are generated.
Currently we are using DOM parser for reading XML
data as XML DOM defines a standard way for accessing

Manuscript received April 5, 2010
Manuscript revised April 20, 2010

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

72

and manipulating XML documents and it presents an
XML document as a tree-structure [9].
In tree structure XML data consists of nodes and edges
that represent elements attributes, text. Parsing of XML
data is done using DOM parser, in which all nodes of
data are parsed according to node type. This node type
determines the characteristics and functionality of the
node. The various node types in XML DOM are
Document, DocumentType, DocumentFragment,
Entityreference, Element, Attr, ProcessingInstruction,
Comment, text, CDATAsection, Entity, Notation etc [10].
For parsing data, complete scanning of XML document
is done. We have to process this tree structure for pattern
generation of forecasting and it’s not feasible to use this
raw tree directly as all data stored there are in object
form. In order to use it we need temporary buffer where
we can store data of XML file result of we are parsing
this tree and we are selecting node then recursively
looking for its children.
In the following section we provide a brief introduction
to the XML language, the related Document Type
Definition language and Document Object Model using
an example for better understanding. Further same
example is used to elaborate existing and proposed
storage system.

3. Working with XML documents

3.1 Extensible Markup Language:

XML is a data description language standardized by
W3C (World Wide Web Consortium). XML is a
sophisticated subset of SGML (Standard Generalized
Markup Language: ISO 8879), and designed to describe
document content using arbitrary tags. As its name
implies, the extensibility is a key feature of XML; users
or applications are free to declare and use their own tags
and attributes. Therefore, XML ensures both the logical
structure and content of semantics-rich information is
retained. XML emphasizes description of information
structure and content as distinct from its presentation.
That is the reason it has become a standard for data
representation and exchange on the Internet. It is
expected that XML will become a universal format for
data exchange on the Web [11][12].
An XML document has a logical structure. The logical
structure allows the document to be divided into units
called elements. These elements can contain other
elements in turn thus allowing for a complex logical
structure to be defined.
For example, to describe a gold price we need a date in
terms of year and month element,
a format element and price element. Also, gold will have
a exchange name that could be stored as an attribute.

Here is how this Gold.xml an XML document can be
expressed as [13].

- <DailyGoldPrice>
- <Gold exchange="Kitco">

 <Year>2008</Year>
 <Month>01</Month>
 <Format>USD</Format>
 <price>200</price>

 </Gold>
- <Gold exchange="Kitco">

<Year>2008</Year>
<Month>02</Month>
<Format>USD</Format>
<price>230</price>

</Gold>
- <Gold exchange="Kitco">

 <Year>2008</Year>
 <Month>03</Month>
 <Format>USD</Format>
 <price>240</price>

</Gold>
- <Gold exchange="Kitco">

 <Year>2008</Year>
 <Month>04</Month>
 <Format>USD</Format>
 <price>250</price>

</Gold>
</DailyGoldPrice>

Figure1: Gold.xml

3.2 DTD (Document Type Definition):

DTD describes the grammar for XML. A DTD defines
the document structure with a list of legal building
blocks of XML. It defines elements and attributes of an
XML document. DTD is basically used to validate an
XML document. Document should conform to DTD
specification. The following is a sample DTD that can be
used to enforce the logical structure of the example
presented previously in the XML section.

<?xml version="1.0" encoding="UTF-8"
standalone="no" ?>
<!DOCTYPE DailyGoldPrice [
 <!ELEMENT Gold (Exchange)>
 <!ELEMENT Gold (Year)>
 <!ELEMENT Gold (Month)>
 <!ELEMENT Gold (Format)>
<!ELEMENT Gold (Price)>
]>

Figure2: DTD for Gold.xml

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

73

3.3 DOM (Document Object Model):

The W3C has defined a standard interface for accessing
XML files called Document Object Model (DOM) [8].
The DOM defines a language- and platform-neutral API
that allows accessing, navigating, querying and
manipulating XML documents. Methods for
manipulating the tree or its components are provided by
the specific parser implementation.
DOM consists of variety of nodes such that every node
provided with its type that determines its functionality.
The DOM tree for the XML document is shown in figure

Figure 3: Sample DOM tree for Gold.xml

3.4 XML DOM API

The XML DOM (XML Document Object Model)
defines a standard way for accessing and manipulating
XML documents. It contains methods to traverse XML
trees. It views XML documents as a tree-structure. All
elements can be accessed through the DOM tree using its
node.
The Node interface is the primary datatype for the entire
Document Object Model. It represents a single node in
the document tree. While all objects implementing the
Node interface expose methods for dealing with children,
not all objects implementing the Node interface may
have children. For example, Text nodes may not have
children and adding children to such nodes results in a
DOMException being raised.
The attributes nodeName, nodeValue and attributes are
included as a mechanism to get at node information
without casting down to the specific derived interface. In
cases where there is no obvious mapping of these
attributes for a specific nodeType (e.g., nodeValue for an
Element or attributes for a Comment), this returns null.
Note that the specialized interfaces may contain

additional and more convenient mechanisms to get and
set the relevant information. [14]
 FIELD SUMMARY

ATTRIBUTE_NODE
 The node is an Attr.
CDATA_SECTION_NODE
 The node is a CDATASection.
COMMENT_NODE
 The node is a Comment.
DOCUMENT_FRAGMENT_NODE
 The node is a DocumentFragment.
DOCUMENT_NODE
 The node is a Document.
DOCUMENT_TYPE_NODE
 The node is a DocumentType.
ELEMENT_NODE
 The node is an Element.
ENTITY_NODE
 The node is an Entity.
ENTITY_REFERENCE_NODE
 The node is an EntityReference.
NOTATION_NODE
 The node is a Notation.
PROCESSING_INSTRUCTION_NODE
 The node is a ProcessingInstruction.
TEXT_NODE
 The node is a Text node

METHOD SUMMERY

getAttributes()
 A NamedNodeMap containing the
attributes of this node (if it is an Element) or
null otherwise.
 NodeList getChildNodes()
 A NodeList that contains all children of
this node.
 Node getFirstChild()
 The first child of this node.
 Node getLastChild()
 The last child of this node.
String getLocalName()
 Returns the local part of the qualified
name of this node.
 String getNamespaceURI()
 The namespace URI of this node, or null
if it is unspecified.
 Node getNextSibling()
 The node immediately following this
node.
 String getNodeName()
 The name of this node, depending on its
type; see the table above.
 short getNodeType()
 A code representing the type of the
underlying object, as defined above.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

74

String getNodeValue()
 The value of this node, depending on its
type; see the table above.
boolean hasAttributes()
 Returns whether this node (if it is an
element) has any attributes.
 boolean hasChildNodes()
 Returns whether this node has any
children.

4. Storage structure for Multiple buffer system:

In Multiple buffer system, each type of node is stored in
separate array depending upon its node types, which is
linked to one another with some index value. In the
output data structure field names are based on XML tags
[15].
Here two buffers are used to store complete XML data.
We are calling them as element buffer and data buffer.
Element buffer is used to store element, attribute etc. of
XML and data buffer is used to store actual data. Figure
4 shows structure of both types of buffer.
Element buffer consists Element Lable , AttribType, data
count and number of child in node. In this system root
node, data count will be null and child count will set
equivalent to certain number depending upon the child it
has. Node other then root node will have data count and
child count value. Same logic is applied for other types
of node. Data buffer will accommodate only data.

Figure 4: Multiple Buffer System:

To explain it again we are using same gold.xml example.

Element <Daily Gold Price> is root node and it have data
count value as null and It has single child <gold> so
child count value for it is one.
Field in data buffer is not required for root node.
Another element is gold and it has no data but have for
child so data count is set to zero and child count is set to
4.
Element Year has data as year but no child so its data
count is set as 1 and no value is set for child count.
Data for this node is filled in data buffer. In same way
each node will be parse and both element and data buffer
will be update as per there element type.
Step 1: Pass XML file as input
Step 2: Read XML file in memory using DOM
Step 3: Read entire tree represented by DOM by one by
one node
Step 4: Check Node and its element type.
Step 5: Set Element label field of Element structure in
Element buffer
Step 6: Set Element attrib field of element structure in
Element buffer
Step 5: If node is root node set Element data count as
null
Step 6: Set Element child count field as no of child.
Step 7: If node is not root node then set data count and
child count.
Step 8: Set Data buffer index as 0 and next index for
another root set as number of child count.
Step 9: If node are having leaf then fill data in Data
buffer.
Step 10: Data for this leaf will be stored at index set but
element buffer.
Step 11: Data for next leaf will store at next location in
data buffer.

At the end of this process, entire XML document will be
stored in element and data buffer. In this buffer complete
data of single node will be stored in continuous memory
and data for next node will start from index set by
previous node that will be equal to number of child in
previous child. This data buffer can be use for further
processing depending query.

Now if we want to process this data based on some
processing then first we need to search full element
buffer and then we need to search complete data buffer.
Searching to satisfy query in element and data buffer can
we done by using any search algorithm, but minimum
two full search loop required in this type of arrangement.
Time complexity for search operation will come n2 in
this type of data storage arrangement [16][17].

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

75

5. Storage structure for Single Buffer System:

Figure 5: Single buffer system

In this work, primary goal is time efficient buffer
creation so that this buffer can be further used for
processing of XML data. Generic multiple buffer
solution is efficient for other XML based application
where we have data of heterogeneous type [18] but is not
suitable for the application where we are using
homogeneous data so this paper is presenting, a simple
and straight forward method that takes less time in
comparison with existing multiple buffer solution.

Here in place of creating separate buffer for element and
data of XML tree we are creating single buffer that
accommodate both data and element.
Storage structure of single buffer:
Our buffer consists of elementlabel, element attrib, child
count and offset and array of continuous memory to store
all data in a node of XML tree.
Now taking same gold example to show how our data
will be represented in proposed single buffer solution.
Again we are reading XML file using DOM. first it will
give us root node and our root node will have only one
child. Root node have no data. Element label will be set
as daily Gold price. Attrib type will set as root. In our
given gold example only one child is there so child count
will be set as 1. Root node has no data so data count will
be set as 1. Our root node have one child so next time we
will read this child and fill our buffer accordingly. In
presented example element label for first child is ‘gold’,
its attrib type is ‘kitco’. First child itself have 4 child in
tree so child count will be set as 4, same way full file
will be parsed and structure in buffer will be update as
per node / leaf of DOM tree. End of this we, will get
single buffer that is having full xml document stored in it.
Step 1: Pass XML file as input
Step 2: Read XML file in memory using DOM

Step 3: Read entire tree represented by DOM by one by
one node
Step 4: Check Node and its element type.
Step 5: Set Element label field of Element structure in
Element buffer
Step 6: Set Element attrib field of element structure in
Element buffer
Step 5: If node is root node set Element data count as
null
Step 6: Set Element child count field as no of child.
Step 7: If node is not root node then set data count and
child count.
Step 8: If node are having leaf then fill data in Data
buffer.
Step 9: Data for this leaf will be stored at index same
place with its element

This way full node will be stored in single buffer along
with it data. In next section we will explain time
complexity in single buffer in comparison to double
buffer.

6. Time Complexity in XML DOM data parsing

6.1 Multiple buffer system:
 Parsing of XML data is done using DOM parser,
in which all nodes of data are parsed according to its
node type. For parsing data complete scanning of
document is being done and elements are stored as a
node of tree and data is stored as a leaf of tree. All
elements (node) of same DOM structure type are stored
in a one array and leaf (data) is stored in another array.
This is one of the common methods used for storing and
parsing XML data in a buffer. Here we are using two
buffers, one for storing element and another for data. By
using simple mapping algorithm both element and data
can be retrieved and saved.
For storing and retrieving data, we need two indexes one
to get element type and another to get actual data. Here
we require two loops to get actual data from node. In
worst case time complexity will increase.
A discrete amount of time will be taken to execute each
of the instructions involved with carrying out this
algorithm.

Pseudo algorithm based on some query will come as
following
Step-1 Read XML file and create Element and data
buffer
Step -2 for (int i=0; i<N; i++) N is total size of buffer
after processing XML file
Step -3 if (A[i] == "Query Condition") Element Query
{
Step-4 for (int j=index; j<N; j++) Data Buffer(index got
from first loop)

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

76

Step-5 if (B[j] == “condition”)// Some query based
condition in Data buffer
Retrive data for math processing

}
Step-6 fun() //pass data to do mathematical processing

The action carried out in step 1 are considered to
consume time T, step 2 uses time T, and so forth.
In this pseudocode step, 1, 3, 5 and 6 will execute only
once. Step 2 will take n+1 time to evaluate (note that an
extra step is required to terminate the ‘for loop’, hence n
+ 1 and not n executions). Total time taken by inner loop
will be control by other loop and it will take (n+1)*(n)
time.
Total time for running this procedure in worst case will
come as ~ n2+n.
One can assume that the highest-order term in any given
function dominates its rate of growth and thus defines its
run-time order. Here it is n2.Our function will come as
F(n) = n2.
Big O notation for this algorithm will come in order of
n2.

6.2 Reference Architecture using Single buffer:
 Storing data in multiple buffer is good approach
if data is heterogeneous in nature. In applications where
we are dealing with time series data most of data will be
homogeneous in nature there we will have data with
similar type of element tag. We are proposing a new
algorithm of single buffer that is faster than multiple
buffer approach.
Here all DOM element and data are stored in a single
buffer and using element search in same buffer
corresponding data can be retrieved.

Pseudo algorithm for operation on single buffer based on
some query will come as following

Step-1 Read XML file and create single data buffer
Step -2 for (int i=0; i<N; i++) N is total size of buffer
after processing XML file
Step -3 if (A[i] == "Query Condition") Element section
in a buffer
{
Step-5 if (A[i+offset] == “condition”)// Some query
based condition in Data section of same buffer
 Retrive data
}
Step-6 fun() //pass data to do mathematical processing

In this case we are eliminating inner loop as storing data
at single buffer. Our query based data retrieval is
controlled by single loop. In worst case computation time
for this also will come as n.

Big O notation for this algorithm will come in order of n.

7. Case Study

We implemented two different algorithms and tested
them on several sets of test data. The processing times
you obtained are in shown in given table, Test results are
for generated for large XML pages with homogeneous
data that in gold.xml [19]. For reading XML file we are
using DOM structure. Entire simulation was done on
Matlab® environment as Matlab® provides rich library
to do lots of mathematical computation [20]. We are
using same logic for mathematical processing difference
is only in reading XML file in generalize method vs.
reading XML file and create data set for further
processing so we can also proof our logic on actual
environment

No of time
parsing

Table 1: Comparative study between Generalize
Method and Proposed Method

8. Conclusion

This paper has presented a methodology to port XML
data onto Matlab® platform using single buffer solution
that proved to be better then existing double buffer
solution as it takes less time if we are dealing with data
which is homogeneous in nature.

References:

[1] Ronald Bourret, “XML and databases”, 2001.
[2] D. Florescu and D. Kossmann, Storing and querying

XML data using an RDBMS, IEEE Data Engineering
Bulletin, Vol. 22(3), pp. 27 – 34 (1999).

[3] J.Shanmugasundaram et al., Efficiently Publishing
Relational Data as XML Document, VLDB, 2000.

[4] Irena Mlynkova and Jaroslav Pokornya , XML in the
world of (object-) Relational database systems, pp 1 –
14.

done

Generalize
Method(sec)

Proposed
Method(sec)

1000 1.44e+002 7.13e+001

1500 2.12e+002 1.10e+002

2000 2.85e+002 1.15e+002

2500 3.61e+002 1.79e+002

3000 4.12e+002 2.14e+002

5000 6.89e+002 3.89e+002

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

77

[5] Carl-Christian Kanne, Guido Moerkotte, Efficient
storage of XML data, Technical Report, university of
Mannheim, 1999.

[6] R. Goldman, J. McHugh, and J. Widom. Lore : A
Database Management System for XML. Dr. Dobbs
Journal, 25(4):76-80. April 2000

[7] Lauren Wood, Programming the Web: The Web: The
W3C DOM Specification at URL:
http://computer.org/internet/, IEEE Internet
Computing, January. February1999.

[8] Fangju Wang, Jing Li, Hooman Homayounfar, A
space efficient XML DOM parser, Data &
Knowledge Engineering 60 (2007) 185–207.

[9] xmlread at URL: http://www.mathworks.com/access
/helpdesk/help/techdoc/ref/ xmlread.html.

[10] World Wide Web Consortium,”Document Object
Model (DOM) Level 1 Specification Version 1 .0” at
URL: http://www.w3.org/DOM, October1998.

[11] N. Bradley,”The XML Companion”, Addison-
Wesley, 1998.

[12] Bray, T et.al. (ed.). Extensible Markup Language
(XML) 1.0. W3C Recommendation, February 1998.

[13] Extensible Markup Language (XML) Commutation
on non-linear data using conventional and soft
computing method.(Accepted for publication in
Serial Publication Journal International Journal of
Computing and Application).

[14] DOM API at URL: http://xerces.apache.org/xerces-
j/apiDocs/org/w3c/dom.

[15] xml_io_tools at URL:
http://www.mathworks.fr/matlabcentral/fileexchange/
loadFile.do?objectId=12907&objectType=file#.

[16] Lecture Notes on Computational Complexity, Luca
Trevisan1,2004 at URL:
http://www.cs.berkeley.edu/~luca/notes/complexityn
otes02.pdf

[17] R.M. Karp. Reducibility among combinatorial
problems. In R.E. Miller and J.W. Thatcher, editors,
Complexity of Computer Computations, pages
85{103.Plenum Press, 197.

[18] Ngamnij Arch-int and Peraphon Sophatsathit, “A
semantic information gathering approach for
heterogeneous information sources on WWW”,
Journal of Information Science, Vol. 29, No. 5, 2003,
pp. 357-374.

[19] Live chart, historical chart & data for gold price at
URL: www.kitco.com.

[20] Matlab 7.0 at URL: http://www.mathworks.com.

Dr. Pushpa.Rani Suri is a Reader in the department of
computer science and application at Kurukshetra University,
Haryana, India. She has supervised number of Ph.d students.
She had published number of papers in national and
International Journals and conference proceedings.

 Ms. Neetu Sardana is Lecturer(Sr.
grade) in Apeejay School of
Management, Delhi, India. She has
Master’s degree in Computer Science.
At present she is pursuing her Ph.d in
Computer Science. Her area of research
is XML data analysis.

http://www.kitco.com/
http://www.mathworks.com/

