
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

104

Query Processing using Dynamic Relational Structure for
Semistructured Data

B.M. Monjurul Alom, Frans Henskens and Michael Hannaford

School of Electrical Engineering. & Computer Science, University of Newcastle, AUSTRALIA

Summary
The most promising and dominant data format for data
processing and representation on the Internet is the
semistructured data form termed XML. XML data has no
fixed schema; it evolved and is self describing which results in
management difficulties compared to, for example, relational
data. It is therefore a major challenge for the database
community to design query processing techniques and storage
methods that can retrieve semistructured data efficiently. In
this paper, we present a querying scheme for semistructured
data views of relational form. The proposed technique stores
element-paths, attributes, contents of the element paths and
attributes, and XML processing instructions in a dynamic
relational structure termed as Multi-XML-Data-Structure
(MXDS).

The technique supports different kinds of queries
(such as structural-join, general path query, and twig query)
and the existence of attributes in the XML documents. We use
a secondary index on MXDS to reduce the search time. The
indexing is based on the (assigned) elementary-code value
(not encoded value). The proposed technique also supports
dynamic data manipulation. Experimental results show the
twig query execution time of our proposed technique
outperform than that of some other XML query processing
techniques (such as TwigStack, TwigStacklist). We performed
experiments for relational query using MySQL and ORACLE.
To compare with the XML query processing time we also
measured query execution time using the XQuery language.
We then we analysed the query performance between XML
and relational queries.
Key words:
TwigStack, Structural Join, XPath, XQuery, MySQL, Oracle.

1. Introduction

 Query processing is an essential part of any
type of databases as well as Semistructured (XML)
databases. The growth of XML repositories on the Web
has led to much research on storing and indexing for
efficient querying of XML data. XML query processing
is much more complicated than traditional query
processing methods because of the structure of XML [1].
A path expression specifies patterns of selection

predicates on multiple elements related by a tree
structure named Query Tree Pattern (QTP).
Consequently, In order to process an XML query, all
occurrences of its related QTP should be distinguished
in the XML document. This is an expensive task when
huge XML documents are attended.

By semistructured (XML), we mean that although
the data may have some structure, this structure is not
as rigid, regular, or complete as the structure required
by traditional database management systems [2]. XML
data is becoming more and more prevalent for use in
performing simple integration of data from multiple
sources.

XML is the dominant data exchange format for
Internet-based business applications. It is also used as
the data format for automated tasks such as information
extraction, natural language processing, and data mining
[3]. When in XML form, data is neither table-oriented
as in a relational database, nor is it strictly typed as in an
object database. Rather, XML data comprises
hierarchies that have no fixed schema. While XML form
supports Internet transport and certain data processing
tasks, it causes issues for other common activities such
as querying and updating.

One option for managing semistructured as well as
XML data is to build a specialized data manager that
contains an XML data repository at its core [4]. It is
difficult to achieve high query performance using XML
data repositories, since queries are answered by
traversing many individual element to element paths
requiring multiple index lookups [5]. In the case of
XML data, queries are even more complex because they
may contain regular path expressions [6]. Additional
flexibility is needed in order to traverse data whose
structure is irregular or partially unknown to the user.

Another option for managing semistructured data is
to store and query it with a relational database [4]. In the
database community many researchers argue that the
relational (and object-relational) model still is the best
option due to its maturity and widespread usage [7].

The well known query processing method
termed as Structural Join is described in [2]. In
Structural Join, query is decomposed into some binary

 Manuscript received April 5, 2010
Manuscript revised April 20, 2010

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

105

join operations. Thus, a huge volume of intermediate
results are produced in this method. The Holistic twig
join approach [8] do not decompose the query into its
binary Parent-Child (P-C) or Ancestor-Descendant (A-
D) relationships but they need to process all of the query
nodes in the document. The query processing method
termed TJFast [9] which only process elements which
belong to the leaves of QTP instead of processing all the
nodes in the XML document. But this method use a
structure named Finite State Transducer (FST) for
decoding the code of nodes into the same name of the
path traversed from the root for each node, so FST
waste a lot of time.

In this paper the presented querying scheme for
XML (semistructured) data views of relational form
stores element-paths, attributes, contents of the element
paths and attributes, and XML processing instructions in
a dynamic relational structure termed as Multi-XML-
Data-Structure (MXDS). The query processing
technique termed DRXQP which supports different
types of query (such as twig query, structural join query
and general path query) while maintaining the semantic
intent of XML data. The proposed technique is capable
of handling large XML data for representation in
dynamic relational structure.

Experimental results show the twig query execution
time of our proposed technique outperform than that of
some other query processing techniques (such as
TwigStack, TwigStacklist). We have done a large
number of experiments on the existing relational and
XML query processing techniques such as MySQL,
Oracle and XQuery language. Experimental results also
show the query execution time of our proposed
technique outperform than that of XQuery and Oracle;
although slightly slower than highly regarded MySQL.

The remainder of this paper is organized as
follows: related work is described in section 2.
Framework of the proposed technique is described in
section 3. The proposed query processing technique
and experimental results are presented in section 4 and 5.
The paper concludes with a discussion and final remarks
in section 6.

2. Related Work

Query processing techniques such as Holistic
Twig Join methods have been proposed in [10-13] to
process a twig query efficiently; however, they still
suffer from large number of redundant function calls. A
new approach termed TwigStack+ is proposed in [14] to
solve this problem, which based on holistic twig join
algorithm that greatly improve query processing
performance. The TwigStack+ technique is used to
reduce the query processing cost, simply because it can

check whether other elements can be processed together
with current one. The proposed technique also used to
check the usefulness of an element from both forward
and backward directions.

TSGeneric[10] made improvements on
TwigStack by using XR-Tree to skip some useless
elements which have Solution Extensions but cannot
participate in any path solution. TwigStackList [11]
handles the sub-optimal problem by attaching an
element list to each query node to cache some elements,
TJFast [9] improved the query processing performance
by scanning elements of leaf nodes in the query to
reduce the I/O cost. Although the existing methods
[Haifeng:2003] can guarantee the optimality of CPU
time and I/O when only AD edges involved in the twig
pattern, they all suffer from large number of redundant
function (getNext(root) calls.

A query processing and update processing
method termed EXEL (Efficient XML Encoding and
labeling) is presented in [15]. EXEL enables complete
avoidance of re-labeling for updates while providing
fairly reasonable query processing performance. The
labeling scheme is simple but effective to compute the
structural relationship. In this approach, a novel binary
encoding method is used to generate ordinal bit strings.

SIGOPT (schema information graph) to
optimize XML query processing is described in [16].
The presented technique explores the opportunities for
schema information to affect the query evaluation
performance. The main goal of the method is to develop
a practical solution that can perform well within the
constraints of an optimizer. For this purpose a simple
structure, called Schema Information Graph (SIG) is
used to store metadata knowledge. Multi-level operator
combination in XML query processing is described in
[17] which elaborates the importance to consider the
operations at each level. Specifically, the technique
considers the influence of projections and set operations
on pattern-based selections and containment joins.

There are some query language for
semistructured data such as Lorel [18], XML-QL [19],
XQL, XML-GL, XSL[20], XPath[21], XQuery [22],
UnQL[23], Quilt [7]; however these query languages
are complicated to use and have some limitations.
XQuery is the most standard, powerful query language
also easy and flexible to use. XQuery has the ability to
work with data without a predefined schema [7]. It is
also used to query several documents simultaneously.
But XQuery sometimes leads to unexpected query
results and prevents index exploitation [24]. XPath is
mainly understood as a language for selecting a subset
of the nodes of an XML document tree [25]. All major
XPath engines take exponential time on the size of the
input queries.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

106

The technique supports the existence of attributes in the
XML documents. We use a secondary index on MXDS
to reduce the search time. The indexing is based on the
(assigned) elementary-code value (not encoded value).
The overall structure of the proposed technique is
presented in Fig. 1. The XML document is parsed
through the parsing engine to store into a multi “XML-
stack-structure” which is the basis for encoding the
XML data. MXDS also maintains the elementary code
for each of the data types by assigned a prime code
value. The elementary code value is presented in Table
1. Multi stack structure can be thought of as a tree in the
sense that it maintains relationships such as parent-child,
ancestor-descendant etc. Each root-path of the
document and all of the child elements and attributes of
the root-path are stored in the initial (first) stack of the
multi-stack-structure. Similarly for all the descendants
of a root-element path, the (child) stacks are created
based on their parent relationship. This stack structure
formation continues until storing of the data values
(content of element tags, and attributes) is completed. A
multi stack structure for XML data is presented in Fig. 3
for the XML data in Fig. 2. An encoder is used to
produce value for the content of each stack entry and all
its descendants. We assume the encoded value for root
element is zero (0).

Query rewrite and optimization is more
complex for XML queries than for relational queries
[24]. XML-QL, XQL do not support update languages
[20]. XML-QL, XQL, XQuery, XPath, XSL do not
support reduction operations. XSL and XQL do not
support any join operations. XSL and XQL, Lorel,
XML-GL do not support schema order, but XML-QL
supports this [20].

 3. Framework of the Proposed Technique

The technique uses a dynamic structure termed “Multi
XML Data Structure” (MXDS) that complies with
relational structure, supporting the use of relational tools
such as query languages for dynamic data manipulation.
A Multi XML Stack is the basis for the dynamic MXDS
to store the parsed XML data. We use an elementary
code table to assign the code value for each type such as
element, attributes, data values and processing
instructions. MXDS stores the encoded value for each
type (root-element, others-element, attributes, data-
values, and processing instructions) with their assigned
preliminary code value. The encoded values are
calculated on the basis of their parent-child relationship
using a hash constant. The parent-child relationship is
maintained on the multi stack structure.

<Recipe name="bread" prep_time="5 mins">
 <title>Basic bread</title>
 <Ingredient_info>
 <Ingredient unit="dL">
 <Name>Flour </Name>
 <amount>8</amount>
 </Ingredient>
 <Ingredient unit="dL">
 <Name>Water</Name>
 <amount>4</amount>
 </Ingredient>
 <Ingredient_info>
 <Instructions>
 <step>Mix all ingredients together.</step>
 <step>knead thoroughly.</step>
 </Instructions>
 </Recipe>

Fig. 2 XML Document for Recipe.

Fig. 1 Architecture of the Query Processing Methodology.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

107

Table 1. Elementary Code Table.

Type Name Value
Root Element 1
Other Element 3

Attribute 5
DATA Value 7

Processing Instruction 11

"4"

"Water"

"dL"

"8"

"Flour"

"dL"

<Instructions>
<Ingredient_Info>

<title>
@ prep_time

@ name
<Recipe>

"Basic bread"

<Ingredient>
<Ingredient>

<amount>
<Name>
@ unit

<amount>
<Name>
@ unit

<step>
<step>

Knead thoroughly.

Mix all ingredients.

"5 mins"

"bread"

5
4
3
2
1
0

Fig. 3 Multi Stack structure for XML Data.

Table 2. MXDS. Table 3.Indexing on Element Path.

Type-Name Encoded-Value Type-Value
<Recipe> 0 1
@name 1 5
"bread" 11 7

@prep_time 2 5
"5 mins" 21 7
<title> 3 3

 "Basic bread" 31 7
<Ingredient_info> 4 3

<Ingredient> 41 3
@unit 411 5
"dL" 4111 7

<Name> 412 3
Flour 4121 7

<amount> 413 3
"8" 4131 7

<Ingredient> 42 3
@unit 421 5
"dL" 4211 7

<Name> 422 3
Water 4221 7

<amount> 423 3
"4" 4231 7

<Instructions> 5 3
<step> 51 3

Mix a ll ingre..... 511 11
<step> 52 3

knead throu..... . 521 11

Type-Name Encoded
Value

Type
Value

<title> 3 3
<Ingredient_info> 4 3
<Ingredient> 41 3

<Name> 412 3
<amount> 413 3

<Ingredient> 42 3
<Name> 422 3

<amount> 423 3
<Instructions> 5 3

<step> 51 3
<step> 52 3

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

108

To find the encoded value of any data type it is highly
recommended to search based on the secondary indexing.
Table 3, represents a secondary indexing which is based
on element value type. Similarly we use secondary
indexing on the other data types (such as attributes, data
values). To maintain the (semantic) exact information of
XML data, we repeat the same element name or attribute
name in MXDS. In XML data, it is a common issue that
the same path name may represent different information.
The encoded values for all other children or descendants
are calculated based on the child serial number and hash
constant (i.e. encoded value of parent tag * hash constant
+ child serial number). Each element or attribute or
processing instruction or data-value (content of element or
attribute) with their encoded value and type-value (prime
code value) are recorded sequentially in the dynamic
relational structure (MXDS).

A dynamic relational structure is presented in Table 2
for the XML data given in Fig. 2. To reduce the query
execution time we use a secondary index on MXDS based
on the type-value (each type has different type value in
Elementary code table). For example, a title could be the
“Book title” or “Person Type either Mr or Mrs or Dr or
Professor”. To maintain this semantic meaning we repeat
the same path or attribute name in MXDS with their
different encoded values.

We consider hash constant 10 for the given XML data
in Fig. 2. For the large XML document we could use the
hash constant 10,000 or 100,000 or 1 million. The hash
constant is used to encode the value for each element or
attribute or data-value. The idea behind these numbers is
to support the maximum number of children within an
element path. If we analyze the realistic XML datasets
(Bib.xml, Yahoo.xml, Protein_Sequence.xml, Dblp.xml)
in [26], we see very few of these have 1 million or
100,000 children within an element.

4. Query Organization

The proposed algorithm is presented in section 4.1, the
explanation of different types of query is described in
section 4.2, and section 4.3 presents the search time
analysis.

4.1 Algorithm for the Proposed Technique

Algorithm DRXQP ()
Begin

Parsing();
Encoding();
Searching();

End;

Parsing()
Begin
Separate each child-element (either
attribute or element) of Root-Tag from
XML document and store onto the Stack;

For (each child-element in the Stack)
do

Begin
If (child-element has nested element
or children) then
Begin

Create stack for the nested
element;
If (nested-element has attributes
& DATA-Value) then
Begin

Create stack for DATA-
Values and attributes;
Sequentially store DATA-
Values, attributes onto the
stack;

End; //If End;
If (child-element has nested element
and nested-element contains DATA-
Value) then
Begin

Create the stacks for
corresponding nested element and
DATA-Value;

End; //If
If (child-element has no nested
element except DATA-Value) then
Begin

Create the only stack for
corresponding DATA-Value;

End; //If End
End; // For End

End; //Parsing End
Encoding ()
Begin

Create Elementary_Code_Table;
Assign the prime codes (1, 3, 5, 7,
and 11) for each data type (such as
root-element, others-element,
attributes, Data-Values, and
Processing Instructions);
The encoded value for each child-
element or attribute or Data-Value is
calculated as follows:
Encoded_Value (child-element) =
Encoded_Value_of_Parent_Tag *
hash_constant + child_serial_number
of the Parent_Tag;
The encoded value for Parent of each

child is calculated as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

109

Encoded_Value (Parent-element)
=Encoded_Value_ Child_Tag /
hash_constant;
The serial _number of each child is

calculated as follows:
Child_Serial_Number
=Encoded_Value_Child_Tag%hash_constant;
End;
Searching ()
Begin

Input search_key;
Search the Encoded values of the
search_key based on their type-values
(using secondary index);

Calculate the Parent_Encoded_Value or
child_encoded_value for the search_key;
Parent_Encoded_Value=Encoded Value of
search_key/ hash_constant;
Searched for the “desired output” in
the (E-Index or Attribute-Index or
Value-Index) structure according to the
obtained parent_encoded_value or
child_encoded_value;
End;

Fig. 4 Algorithm for the Proposed Technique.

4.2 Explanation of Different Types of Query

The functionality of the searching scheme is demonstrated
in the following examples:

Query #1:
/Recipe/Ingredient_info/Ingredient/[amount=“4”] / Name
Find (the content of) Ingredient Name that matches with
the amount=4. (This type of query is known as twig query)
Answer:
The Data-value of element amount is 4. The assigned
elementary code for data value is 7 (from elementary code
table). On the basis of the assigned elementary code value
of data, it is searched (using Data-Index structure) for the
encoded value of “4”. We see encoded value of “4” is
4231. The parent of “4” is element amount (from multi-
stack-structure). So the system calculates the encoded
value of amount, which is 4231/10 (hash constant) =423.
The elements “amount and Name” are both siblings and
“Ingredient” is their parent. To find the encoded value of
Name, it is required to find the encoded value of its parent
“Ingredient”. The encoded value of Ingredient=423/10=42.
The encoded value of Name (which is a child of
Ingredient) is calculated as 42*10+2 (Child serial number
of Name, from multi stack structure) =422. The encoded
value of the desired output (Name which has the only
child) = 422*10+1=4221.

The techniques then find (using Data-Index
structure) the Type-name according to the encoded value
4221 and we see it is “Water”.

Query # 2:
/Recipe//step
Find the “step” element (does not matter where step
occurs?) (This type of query referred to structural join).
Answer:

The name of the element is step. The assigned
code for the element is 3. On the basis of the assigned
elementary code value of element, it is searched (using E-
Index structure) for the encoded value of step without
having any specific condition.

We see two encoded values for step are 51 and
52. As there is no condition associated with the step
element, the technique directly calculates the encoded
values of the child of step elements:
EVstep-child=51*10+1=511
EVstep-child=52*10+1=521.

The technique then searches (using Data-Index
structure) for the corresponding Name of these encoded
values. We see these are “Mix all Ingredients” and
“Knead thoroughly”.

Query # 3:
/Recipe/ title
Find the title of the Recipe.
Answer:
On the basis of the assigned code value of element, it is
searched (using E-Index structure) for the encoded value
of “title”. The encoded value of “title” is 3. The child-
encoded value (title which has the only child) of title is
calculated as 3*10+1=31.
It is then searched (using Data-Index structure) for the title
name of the corresponding encoded value 31. We see it is
“Basic bread”.

Query # 4:
/Recipe/Ingredient_info/Ingredient [@unit= “dL”]/ Name
Find the list of Ingredients whose unit is “dL”. This type
of query is based on attribute searching.
Answer:

The searching technique is similar to that
described in query #1.

4.3 Search Time Analysis of the Technique

 To reduce the search time, we apply secondary
indexing on MXDS based on the value types (such as
elements, attributes, Data-values, and processing
instructions). The indexing avoids searching the whole
MXDS structure each time. On the basis of the query input
(data), the searching is applied to the corresponding

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

110

indexed structure to get the encoded value. After then, it is
calculated the parent’s encoded value or child’s encoded
value (using formula based on hash constant). According
to these encoded value, the MXDS is searched to find the
element name or attribute or entity or processing
instruction.

Let be the total number of element paths,

 be the total number of attributes, and be the

total number of processing instructions and be the
total number of data-values (content of the Element-paths
and attributes).

EN

AttN procN

DataN

To find the encoded value (using E-Index structure) based
on the element type value, total search time:

EleEncodT − = (1))(ENO
To find the element name or attribute or entity or
processing instruction (using Data-Index structure), total
search time:

EAPT = + + + (2))(ENO)(AttNO)(procNO)(DataNO
Total search time to find element path=

EleEncodT − + EAPT
= + + + (3))(*2 ENO)(AttNO)(procNO)(DataNO
To find the encoded value from indexed structure based on
the Attribute type value, total search time:

AttEncodT − = (4))(AttNO
Total search time to find Attribute= + AttEncodT − EAPT
= + + + (5))(ENO)(*2 AttNO)(procNO)(DataNO
To find the encoded value from indexed structure based on
the Data type value, total search time:

DataEncodT − = (6))(DataNO
Total search time to find Data value= + DataEncodT − EAPT
= + + + (7))(ENO)(AttNO)(procNO)(*2 DataNO
Considering equation (3), (5) and (7), we see the search
time to find element-paths or attributes or data values
depend on their total number of existence in the document.

In general, if we analyze the XML document the
probability of the existence of Element-paths and their
contents are more than any other types (such as Attributes
or Processing instructions or Entities). Hence using the
proposed technique, the search time (of Attributes or
Processing instructions or Entities)

AttributeT or or . EntityT InsocessT −Pr PathElementT −<

5 Experimental Results

We used Oracle 9i (Enterprise Edition Release 9.2.0.8.0)
and Stylus Studio 2009 XML Enterprise Suite Release 2,
to evaluate the different query results in the case of a
centralized system. We used an Intel Processor with 2.13
GHz, 1.99 GB of RAM under the Windows XP
professional operating system. To support the Oracle 9i
database we used the Linux operating system. We used the
XML datasets (Bib.xml, Yahoo.xml,
Protein_Sequence.xml, XMark.xml, Dblp.xml) in [26] to
run the comparisons between the XML Query processing
and DRXQP technique.

Table 4: Queries used in our experiment.

Quer
y

Data
set

XPath Expression

Q-1 DBLP /dblp/msthesis/title
Q-2 Yahoo yahoo/listing/seller_info/seller_name
Q-3 Nasa nasa/datasets/dataset/author/firstnam

e
Q-4 Yahoo yahoo//memory

Q-5 XMar
k

//listitem[//bold]/test//emph

Table 5: Execution Time (in Sec).

Table 6: Query Time using Different Techniques.

F-size/ Q-
Time (Sec)

12
(MB)

57
(MB)

113
(MB)

174
(MB)

232
(MB)

TSGeneric + .5 4 8 12 17
DRXQP .65 4.2 9 12.5 17.5
TwigStack 1 4.4 9.5 13.25 18
TwigStacklist 1.5 5 10.5 14.5 19
TwigStack+ .4 2.5 6 7.5 11
TwigStack+
B

.3 2 4 6.5 8

File
Size
(MB)

ORAC
LE

XQuer
y

BIQ
S

MySQL DRXQ
P

1.06 1.04 .421 .12 .107 .157
2.59 2.56 1.03 .304 .262 .766
8.68 8.6 3.45 1.02 .879 1.25
15.1 11 4.1 1.85 1.53 2.5
22.4 16.31 6.08 2.74 2.28 4
34.2 24.9 9.28 4.18 3.48 5.5
42 30.5 11.4 5.13 4.27 7
53.3 38.7 14.46 6.51 5.42 9
64.6 46.9 17.5 7.9 6.57 11

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

111

Fig. 5 Time Comparison using Various Method.

Fig. 6 Comparison of Query Execution Time using Different

Techniques using Q-5.

To compare with other relational databases like

MySQL, we used our own (custom) generated database
named Personal-info comprising different file sizes (5.78
MB, 11 MB, 34.14, 53.03 MB, 104.46 MB, 130 MB, and
683 MB) and consisting of millions of tuples in the
database relations. We measured the time (in sec) with
respect to each query operation using different numbers of
predicates by using Java Eclipse. Java Eclipse is
connected with the MySQL database for the execution of
different (MySQL DB) query operations.

The comparison analysis for DRXQP, XQuery
execution time, execution time in Oracle, MySQL are
presented in Fig. 5 and also described in Table 5. To

measure the execution time of DRXQP, We took the
average query execution time through the queries (Q-1 to
Q-4) given in Table 4. Q-1 to Q-3 are the simple path
queries and Q-4 is a structural join query. To measure the
Twig query execution time, we used the query Q-5 given
in Table 6. To compare with other TwigStack queries, we
used the different file sizes (12 MB, 57 MB, 113, 174 MB,
and 232 MB) for the given query Q-5 in Table 6. The
tabular representation of Twig query execution time is
presented in Table 6. The corresponding graph is
presented in Fig. 6. It can be seen from Fig. 5 and Fig. 6,
twig query execution time is more than general path query
although for same file size.

It can be seen that the execution time of MySQL is
superior to XQuery and highly regarded Oracle execution
times across the range of predicates tested. The query
execution time of DRXQP outperform than that of
ORACLE, XQuery but not better than MySQL and BIQS
(our proposed technique described [27]). Fig. 6 clearly
shows that, the Twig query execution time of DRXQP is
better than some other query processing techniques.
Comparison analysis also shows relational query
processing time is more efficient than XML query
processing time.

6 Conclusions and Future Work

We propose a dynamic relational XML query
processing technique which supports different types of
query while maintaining the semantic intent of XML data.
The proposed technique, termed DRXQP is capable of
handling large XML data for representation in dynamic
relational structure. DRXQP supports twig query,
structural join query and general path query. DRXQP also
supports dynamic data manipulation. Experimental results
show the twig query execution time of our proposed
technique outperform than that of some other query
processing techniques (such as TwigStack, TwigStacklist).
We have done a large number of experiments on the
existing relational query processing techniques such as
MySQL, Oracle and XQuery language. Experimental
results also show the query execution time of our proposed
technique outperform than that of XQuery and Oracle;
although slightly slower than highly regarded MySQL and
BIQS.

More complex Twig query, aggregate function, deleting,

dynamic data updating will be the future research work.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

112

References

[1] V. Garakani, M. Harizi, and M. Harizi, "Effective

Guidence-Based XML Query Processing," in
International Conference on High Performance
Computing and Communications, Dalian, China 2008,
pp. 605-612.

[2] Al-Khalifa, J. S, K. H.V, P. N, S. J.M, and W. Y,
"Structural Joins: A Primitive for Efficient XML
Query Pattern Matching," in International Conference
on Data Engineering (ICDE), San Jose, CA, 2002, pp.
141-152.

[3] A. David, G. David, N. Ashish, C. Knight, and B. Peter,
"Semistructured Data Management in the Enterprise: A
Nimble, High-Throughput, and Scalable Approach," in
The 9th International Conference on Database
Engineering & Application Symposium (IDEAS), 2005.

[4] B. F. Cooper, N. Sample, M. J. Franklin, G. R.
Hjaltason, and M. Shadmon, "A Fast Index for
Semistructured Data," in The 27th International
Conference on Very Large Databases (VLDB) Roma,
Italy, 2001.

[5] J. McHugh and J. Widom, "Query Optimization for
XML," in VLDB Edinburgh, Scotland, 1999.

[6] T. Milo and D. Suciu, "Index Structures for Path
Expressions," in ICDT Jarujalem, Israel, 1999.

[7] A. A. d. Sousa, J. L. Perira, and J. A. Carvalho,
"Querying XML Databases," in The 12th International
Conference of the Chilean Computer Science Society
(SCCC) IEEE, 2002.

[8] N. Bruno, N. Koudas, and D. Srivasta, "Holistic Twig
Joins:Optimal XML Pattern Matching," in
International Conference on Management of Data
(SIGMOD), Madison, Wisconsin, 2002, pp. 310-321.

[9] J. Lu, T. W. Ling, C. Y. Chan, and T. Chen, "From
Region Encoding to extend dewey: On efficient
processing of XML twig pattern matching," in
International Conference on Very Large Databases,
Trondheim, Norway, 2005, pp. 193-204.

[10] J. Haifeng, W. Wei, and L. Hongjun, "Holistic Twig
Joins on Indexed XML Documents," in International
Conference on Very Large Databases (VLDB), Berlin,
Germany, 2003, pp. 273 - 284

[11] L. Jiaheng, C. Ting, and W. L. Tok, "Efficient
Processing of XML Twig Patterns with Parent, Child
Edges: A Look-ahed Approach," in International
Conference on Information and Knowledge
Management, Washington Dc, 2004, pp. 673-682

[12] B. Nicolas, K. Nick, and S. Divesh, "Holistic Twig
Joins: Optimal XML Pattern Matching," in
International Conference on Management of Data
(ACM SIGMOD), Wisconsin, USA, 2002, pp. 310-321.

[13] C. Ting, L. Jiaheng, and W. L. Tok, "On Boosting
Holism in XML Twig Pattern Matching Structural
Indexing Techniques," in International Conference on
Management of Data (ACM SIGMOD), Maryland,
USA 2005, pp. 455-466

[14] Y. Zhou, B. C. Ooi, K.-L. Tan, and W. H. Tok, "An
adaptable distributed query processing architecture,"

Data & Knowledge Engineering vol. 53:3 pp. 283 -
309 2005

[15] M. Jun-Ki, L. Jihyun, and C. Chin-Wan, "An Efficient
XML Encoding and Labeling method for Query
Processing and Updating on Dynamic XML Data," The
Journal of Systems and Software, vol. 82:2009, pp.
503-515, 2008.

[16] P. Stelios, P. Jignesh, and J. H.V, "SIGOPT:Using
Schema to Optimize XML Query Processing," in
International Conference on Data Engineering (ICDE),
Istanbul, Turkey, 2007, pp. 1456-1460.

[17] A.-K. Shurg and J. H.V, "Multi-level Operator
Combination in XML Query Processing," in CIKM,
Virginia, USA 2002, pp. 134-141.

[18] S. Abiteboul, "Querying Semistructured Data," in The
International Conference on Database Theory (ICDT)
Delphi, Greece., 1997.

[19] A. Deutsch, M. F. Fernandez, and D. Suciu, "Storing
Semistructured Data in Relations," in ICDT, 1999.

[20] A. Bonifati and S. Ceri, "Comparative Analysis of Five
XML Query Language," SIGMOD, vol. 29:1, pp. 68-
79, 2000.

[21] M. Benedikt, W. Fan, and F. Geerts, "XPath
Satisfiability in the Presence of DTDs," in PODS
Baltimore, Maryland, 2005.

[22] S. Pal, I. Cseri, O. Seeliger, M. Rys, G. Schaller, W.
Yu, D. Tomic, A. Baras, B. Berg, D. Churin, and E.
Kogan, "XQuery Implementation in Relational
Database System," in The 31st International
Conference on Very Large Databases Trondheim,
Norway, 2005.

[23] P. Buneman, M. Fernandez, and D. Suciu, "UnQL: a
query language and algebra for semistructured data
based on structural recursion," The VLDB Journal, vol.
9, pp. 76-110, 2000.

[24] A. Balmin, K. S. Beyer, and F. Ozcan, "On the Path to
Efficient XML Queries," in The 32nd International
Conference on Very Large Databases(VLDB) Seoul,
Korea, 2006.

[25] G. Gottlob, C. Koch, and R. Pichler, "Efficient
Algorithms for Processing XPath Queries," in The 28th
International Conference on Very Large Databases
(VLDB) Hong Kong, China, 2002.

[26] http://www.cs.washington.edu/research/xmldatasets/.
[27] B. M. Alom, F. A. Henskens, and M. R. Hannaford,

"Querying Semistructured Data with Compression in
Distributed Environments," in International
Conference on Information Technology: New
Generations (ITNG) Las Vegas, Nevada, USA: IEEE
Computer Society 2009.

http://www.cs.washington.edu/research/xmldatasets/

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

113

Authors Biography

B.M. Monjurul ALom who born in
Bagherpara, Jessore, Bangladesh, is a
research (PhD) student in the School
of Electrical Engineering and
Computer Science, The University of
Newcastle, Australia. Mr Alom has
completed his MSc engineering degree
from Bangladesh University of
Engineering and Technology, Dhaka.
His research interest is Distributed

(Structured and Semistructured) Database Management. Mr.
Alom was an assistant professor in CSE dept from 2004 to 2007
and a lecturer from 2000 to 2004 in Dhaka University of
Engineering and Technology, Gazipur, Bangladesh.

Dr. Frans Henskens is an Associate
Professor in the School of Electrical
Engineering and Computer Science,
Newcastle University Australia. He is
also Head, Discipline of Computer
Science & Software Engineering,
Deputy Head, School of Electrical
Engineering & Computer Science, and
Assistant Dean IT in Faculty of
Engineering & Built Environment. His

research interests include engineering of flexible software
systems, bioinformatics, operating systems and computer
forensics, distributed and grid computing, resilience and
availability in database systems.

Dr. Michael Hannaford is Assistant
Dean (Postgraduate Studies) of FEBE,
and a Senior Lecturer in the School of
Electrical Engineering and Computer
Science at the University of Newcastle.
His research interests are in the areas of
Distributed Computing, and
Programming Language Design and
Implementation.

