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Summary 
 
Predicting protein function is one of the most important problems 
in the post-genomic era. Recent high-throughput experiments 
have determined proteome-scale protein physical interaction 
maps for several organisms. In this paper, a new method, which 
is based on Gaussian Mixture Model, is introduced to predict 
protein function from protein-protein interaction data. In the 
proposed method, A global information are taken into account by 
representing a protein using all the functional annotations of all 
proteins assigned with that term and have a shortest  path with 
target protein in the all protein interaction network. We apply our 
method to a constructed data set for yeast and fly based upon 
protein function classifications of GO scheme and upon the 
interaction networks collected from IntAct protein-protein 
interaction. The results obtained by leave-one-cross-validation 
test show that the proposed method can obtain desirable results 
for protein function prediction and outperforms some existing 
approaches based on protein-protein interaction data. 
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1. Introduction 

With the rapid growth of sequenced genomes, the gap 
between the number of protein sequences deposited in 
public databases and the experimental annotation of their 
functions is widened gradually. It is necessary to know the 
function of the proteins when we investigate cellular and 
physiological mechanisms of organisms. Although 
experimentally determining protein function is more 
accurate, it is labor intensive and time-consuming. 
Therefore, developing a reliable computational method for 
predicting protein function is very significant for genome 
research. Some computational methods have been 
developed to predict protein function. This approach uses 
different biology data type. Earlier methodologies focus on 
estimating the function based on genomic sequence 
analysis, for example, analyzing sequence similarity 
between proteins listed in the databases [1] using 
programs[2, 3], using the gene fusion method or ‘Rosetta 
stone’ to infer yet unknown functions for protein[4], 

exploring the principle on similarity of phylogenetic trees 
for protein function prediction[5]. With the development 
of high-throughput experimental techniques, various 
high-throughput biological data, such as microarray gene 
expression profiles and mutant phenotype, have also been 
used to assign functions to novel proteins [5, 6].  
Protein-protein interaction (PPI) biology data type has 
been employed by some researches to predict protein 
function [7-10]. Proteins play an important role in many 
biological functions within a cell and many cellular 
processes, and proteins collaborate or interact with each 
other to perform special biochemical events. Therefore, it 
is possible to deduce functions of a protein through the 
functions of its interaction partners.  
Many approaches based on protein-protein interaction 
have been proposed for the prediction of protein function 
[7-10]. These methods assign functions to novel proteins 
by utilizing topological interaction patterns of a 
protein-protein interaction network. Schwikowski et al. [7] 
applied a straight-forward approach and predicted the 
function of an unannotated protein to be the most common 
one among its neighbors. Hishigaki et al. [8] considered 
both directly and indirectly connected proteins in the PPI 
network and developed a method based on Chi-square 
statistics. Deng et al and Letovsky and Kasif applied the 
model of Markov random fields (MRF) and provided 
statistical frameworks for the prediction of protein 
functions. Letovsky proposed a probabilistic approach 
(PA) for protein annotation, which assumes that the 
number of neighbors of a protein that are annotated with a 
given function is binomially distributed and the 
distribution’s parameter depends on whether the protein 
has that function [10]. 
 In our research, the protein function prediction is 
formulated as a binary classification problem with novel 
feature representation and the Gaussian mixture model 
used to estimate the likelihood rate. The proposed method, 
rather than using information about the local neighborhood 
of the protein, using global information on the whole 
network is taken into account when making predictions. 
For each function we used a Bayesian approach to 
compute the posterior probability that protein has a 
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function. This study attempts to answer the question 
“inclusion any additional information on the whole 
network will improve the prediction of function of 
unlabeled proteins. Extensive experimental compare our 
method with NC and PAP, and show that the proposed 
method has better ability for the protein function 
prediction. 

The remainder of the paper is organized as follows. In 
Section 2, we present our GMM- based prediction model. 
Extensive experimental results and comparison with other 
methods are reported in Section 3. Discussion of the 
proposed work is introduced in section 4. The paper is 
concluded in Sections 5. 

 
 
2. Theoretical Consideration 
 
Our goal is to assign GO terms to proteins in protein 
interaction networks. We formulate our pattern-based 
protein function prediction as a (multi-class) classification 
problem: GO terms are classes; proteins are items to be 
categorized into classes; and network information of 
proteins corresponds to features of items.  
Definition protein interaction network can be represented 
as an undirected graph G = (V, E, ) with a set of vertices 
V and a set of edges E. Each vertex  represents a 
unique protein, while each edge  represents an 
observed interaction between proteins u and v,  is a 
finite alphabet of (annotation) terms (from a function 
vocabulary, e.g., Gene Ontology GO). 
 
2.1 Feature Extraction 
 
We computed a shortest-path vector for each protein using 
Dijkstra's algorithm from protein interaction network. 
Each node v is then identified by an n-dimensional feature 
vector where n is the number of terms. The ith component 
of the vector is a function of the lengths of the shortest 
paths in the graph between v and all nodes labeled with the 
ith term. Let  denote the indicator function of a set A 
that determines whether t belongs to A. i.e. 

           (1)               

      

Let  and  denote the set of terms assigned to 
proteins  respectively. In this research, we adopt a 
form of feature vector driven from the global information 
of  the underlying network. The form exploits the 
observation that the degree of  similarity in a certain 
function between any two proteins in the network 
depends on the distance between them in the network.The 
feature vector of a protein  is described as: 

 

With 
              (2)             

where  is the shortest path length  between 
protein . 
Note that the contribution of a protein  to feature 
element   increases with the decrease in the length of 
the shortest path between q and p provided that q is 
annotated with  on the other hand,  has no effect on p 
if it is not annotated with . This emphasizes the usefulness 
of using the above equation.   
 
2.2 Feature Reduction 
 
In biological data, feature vector is large, so feature 
reduction is essential. We applied the principle component 
analysis PCA for the purpose of dimensionality reduction 
[11]. Principal components analysis is a statistical 
technique that linearly transforms an original set of 
variables into a substantially smaller set of uncorrelated 
variables that represents most of the information in the 
original set of variables. Its goal is to reduce the 
dimensionality of the original data set. A small set of 
uncorrelated variables is much easier to understand and 
use in further analyses than a larger set of correlated 
variables. 
  
2.3 The Proposed Method 
 
To know the set of terms that might associate some 
unknown protein p, first, we define a scoring function 

 for every term . Terms are then sorted in 
descending order according to . The topmost terms 
are supposed to have high chance of being considered 
associating p. We define the score function as being the 
ratio between the posterior probability that  given 
the feature vector of the protein p and posterior probability 
that  given the feature vector of the protein p. This 
is mathematically described as follows: 

                                           
We adopted a Bayesian approach to estimate 

 and  and utilize the whole 
structure information of the network for this purpose as 
follows: 

                    (4)                 

                                                                                

                 (5)                  

Notice that it is the product of the  likelihood and the 
prior probability that is most  important in determining 
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the posterior probability; the evidence factor,  can 
be viewed as merely a scale factor that  guarantees that 
the posterior probabilities sum to one, as all good 
probabilities must.  
The prior probability  could be estimated using 
a given protein interaction network as: 
 

                     (6)                                 
   
 Here  is the number of proteins that t annotates and  
is the number of all proteins in a given protein interaction 
network. The prior probability , is estimated as: 
 

                    (7)                              
 
We propose Gaussian mixture Model (GMM) for the 
likelihood probabilities  and . 
We randomly select a set of i.i.d. samples of features of 
proteins annotated with term t as a training data for GMM 
to model and another set not annotated with 
term  as training data for GMM model to build models 
for the term . 
 
2.4 Gaussian Mixture Model  
 
Gaussian Mixture Models (GMMs) are commonly used as 
parametric models of the probability distribution of 
continuous measurements or features [12]. The GMM’s 
probability density function is represented as a weighted 
sum of Gaussian component densities. 

             (8)                       

Where  is a D-dimensional continuous-valued data 
vector (i.e. measurement or features), i = 1, . . . ,M, 
are the mixture weights and  ,  are 
the component Gaussian densities. Each component 
density is a D-variate Gaussian function of the form 

(9) 
With mean vector   and covariance matrix  . The 
mixture weights satisfy the constraint that . 
The complete Gaussian mixture model is parameterized by 
the mean vectors, covariance matrices and mixture weights 
from all component densities. These parameters are 
collectively represented by the notation 

 
The parameters to be estimated are the mixing 
coefficients , the covariance matrix , and the mean 
vector . The form of the covariance matrix can be 
spherical, diagonal, or full. Maximizing the data likelihood 
is often used as a training procedure for mixture models. 

GMM parameters could be estimated from training data 
using the iterative Expectation-Maximization (EM) 
algorithm. The expectation-maximization (EM) algorithm, 
a well-established and common technique, is used for 
maximum-likelihood parameter estimation [13, 14]. The 
EM algorithm iteratively modifies the model parameters 
starting from the initial iteration . EM guarantees a 
monotonically non decreasing likelihood, starting from a 
random set of parameter values. It is thus able to find a 
local maximum which depends on parameter initialization. 
Good initialization of parameters, however, results in a 
near optimum solution to the maximum likelihood 
problem.  
 
 
 
3. Experimental Consideration  
 
For our experiments, we built protein interaction networks 
from IntAct protein-protein interaction database [15]. We 
employed two dataset, namely FLY (Drosophila 
melanogaster) and YEAST (Saccharomyces cerevisiae). 
FLY dataset contain 6666 proteins and 19565 interactions 
YEAST database contains 5974 proteins and 25555 
interactions. The most recent gene ontology GO functional 
classification scheme [16] is accepted as the functional 
annotation scheme of proteins. 
 
3.1 Cross-validation of function prediction 
 
We assessed the performance of our function prediction 
approach by the leave-one-out cross-validation method. 
For each protein in annotations, we assumed it is 
unannotated and predicted its function using its interaction 
information and the annotations of the other proteins. Then 
we compared the predicted functions with the true 
annotations. The prediction performance was evaluated 
using precision and recall (also called true positive rate). 
Let  be the set of functions from the actual annotation 
in IntAct  for a protein   ,  be the set of functions 
predicted by our algorithm for  and  be the set of 
common functions of  and   Precision and recall 
are then described 

                            (10)                

and  
  (11) 

where  is the size of the set of   and  is the total 
number of distinct proteins that are annotated on at least 
one functional. Since there is a tradeoff between having 
high precision and high recall, we evaluate the accuracy of 
different techniques by using the F-values of predictions, 
instead. We employed F-value which is defined [17] as the 
harmonic mean of precision and recall of a prediction set. 
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In table 1 shows number of component appropriate for our 
method. Table 1 shows the different component number of 
GMM to get accurate result. 
       

Table 1: Accuracy F-values on each database 
GMM Model 
Component FLY YEAST 

2 .57 .52 

3 .84 .82 

4 .59 .56 

 
 
Figure 1 illustrates the precision and recall plots with 
respect to the threshold of prediction confidence, which is 
a user dependent parameter in our algorithm. When we use 
200 as the threshold of prediction confidence, our 
algorithm predicts no or a very few functions for each 
protein, but most of the functions are correctly predicted 
comparing to the actual annotations. It results in the 
precision of greater than 0.8. As a lower threshold is used, 
recall increases while precision decreases monotonically. 
Approximately, when the recall is 0.5 and 0.7, we had the 
precision of 0.4 and 0.2, respectively. In this experiment, 
we also merged data from the two species to observe how 
the prediction accuracy changes we tested our technique 
on FLY+YEAST using molecular function annotations 
only.  Table 2 displays that the accuracy of our method 
did not decrease by the integration of cross-species 
information. 

 
Figure 1: Precision and recall plots by cross-validation for protein 

function prediction 

 
 
 
 

The performance of our function prediction algorithm was 
assessed by the leave-one-out cross-validation using the 

proteins that appear in the interaction data from IntAct and 
are annotated on the functional categories GO. As a higher 
threshold of prediction confidence is used, precision 
increases whereas recall decreases 
 

Table 2: Accuracy F-values on merged database 
 FLY YEAST FLY+YEAST 

GMM-
based .84 .82 .87 

 
 
3.2 Ontology Comparison 
 
we tested the accuracy of GMM technique on FLY and 
YEAST datasets for Biological Process (BP), Molecular 
Function (MF), and Cellular Component (CC) 
sub-ontologies of GO. Table 3 shows the results of this 
experiment on FLY and   YEAST. 
 

       Table 3: Ontology comparison on FLY and YEAST 
species MF BP CC 

FLY .84 .72 .70 
YEAST .82 .86 .85 

 
 
 
3.3 Comparison with other approaches 
 
We compared our method to the neighbor counting (NC) 
technique [16] and pattern-based annotation prediction 
(PAP) method [17].For NC, PAP, and our technique, we 
computed the F-values of GO term predictions on FLY. We 
computed the F-value for each k value in top-k prediction 
tests. To sum up the prediction results, for each individual 
protein, we picked the k value that produces the highest 
F-value for that protein. Therefore F-values of techniques 
represent the highest possible accuracy of the technique, 
rather than the accuracy specific to the value of k.  Figure 
2 shows a plot of F-values against increasing values of k. 
Our method generates F-values higher than NC and PAP 
techniques for every value of k, except k =1. 
 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010 
 
118

 
Figure 2: Accuracy of NC, PAP, and GMM for different values of 

k in top-k prediction experiments 

 
 
4. Discussion 
 
Through recent advances of high-throughput techniques, a 
significant amount of protein-protein interaction data has 
been accumulated. Protein function has been predicted 
from the interaction data because the evidence of 
interaction can be interpreted as functional links. 
In this paper, we proposed a new method to predict protein 
functions based on Gaussian mixture model from 
protein-protein interaction data. Leave-one-out 
cross-validation method was performed on a constructed 
data set for fly and yeast to evaluate the prediction 
performance. One of the attractive advantages of the 
proposed method is that it considers the effect of global 
information on the whole network for the protein function 
prediction.  Comparisons with the Neighbor Counting 
method (NC) and PAP method, The GMM has better 
performance and can be used to assign functions to novel 
discovered proteins as a supplementary method. NC 
method is chosen as a baseline in order to contrast with its 
assumption that interacting protein pairs have common 
annotations [18] while PAP methods are chosen to 
illustrate how much improvement is gained by the 
utilization of additional information from protein 
interaction network, since PAP employs only direct 
neighbors of proteins, and is shown to have reasonable 
accuracy in comparison with our methodology [19].To 
further improve the prediction accuracy, we can take into 
account the functional associations between indirect 
protein interactions and the topology of the protein 
interaction network to represent protein with the semantic 
knowledge in the Gene Ontology (GO) database for the 
purpose of improving the accuracy of function prediction. 
 
 
 
 

5. Conclusion 
 
The paper introduced a novel technique for prediction of 
protein functions. The technique used global features from 
the protein interaction networks and modeled various 
functions using a Gaussian mixture models. Bayesian 
decision was then taken to determine if a specific function 
is likely assigned to a given protein. Experimental results 
show that predication of protein function was improved by 
using the global information of protein interaction 
networks and the new modeling approach. Compared with 
other published technique, the proposed approach shows 
promising results in terms of the accuracy and recall. 
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