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Summary 
This paper proposes a novel Ternary Pattern Operator for texture 

characterization. The devised operator has rotation-invariant 

capability. The operator is used for extracting texture features 

from the images. From these features the texture present in the 

image are identified. The operator can be realized with few 

operations in local neighborhood and hence it is computationally 

simple. In the training phase the classifier is trained with samples 

with one particular angle and tested with samples of different 

angles. A detailed analysis is presented for rotation angles of 

misclassified samples. A distribution based classification 

approach is used for discriminating the textures. A probabilistic 

model is built for each texture class. A classification problem of 

different Brodatz texture and seven rotation angles is used in 

experiments. Experimental results prove that the performance of 

the proposed operator for feature extraction is appreciable. 

Key words: 
Local Ternary Pattern Operator, Texture Characterization, Non 

parametric classification, Brodatz texture. 

1. Introduction 

In computer vision, the visual appearance of the view is 

captured with digital imaging and stored as image pixels. 

Texture analyst state that there is significant variation in 

intensity levels or colors between nearby pixels, and at the 

limit of resolution there is non-homogeneity. Spatial non-

homogeneity of pixels corresponds to the visual texture of 

the imaged material which may result from physical 

surface properties such as roughness, for example. Image 

resolution is important in texture perception, and low-

resolution images contain typically very homogenous 

textures. Also we all know that real-world objects and 

surfaces are not flat, nor uniform, and there are numerous 

potential computer vision applications that could utilize 

texture information.   

Texture is a fundamental property of surfaces. It can be 

seen almost anywhere. For example, in outdoor scene 

images, trees, bushes, grass, sky, lakes, roads, buildings etc. 

appear as different types of texture. Hence, texture can be 

used as a measure of interpreting the images. Texture can 

be regarded as the visual appearance of a surface or 

material.  

Typically textures and the analysis methods related to them 

are divided into two main categories with different 

computational approaches: the stochastic and the structural 

methods. Structural textures are often man-made with a 

very regular appearance consisting, for example, of line or 

square primitive patterns that are systematically located on 

the surface (e.g. brick walls). In structural texture analysis 

the properties and the appearance of the textures are 

described with different rules that specify what kind of 

primitive elements there are in the surface and how they 

are located. Stochastic textures are usually natural and 

consist of randomly distributed texture elements, which 

again can be, for example, lines or curves (e.g. tree bark). 

The analysis of these kinds of textures is based on 

statistical properties of image pixels and regions. The 

above categorization of textures is not the only possible 

one; there exist several others as well, for example, 

artificial vs. natural, or micro textures vs. macro textures. 

Regardless of the categorization, texture analysis methods 

try to describe the properties of the textures in a proper 

way. It depends on the applications what kind of properties 

should be sought from the textures under inspection and 

how to do that. This is rarely an easy task. 

Texture is important in many image analysis and computer 

vision tasks. It gives additional information compared only 

to color or shape measurements of the objects. Sometimes 

it is not even possible to obtain color information at all, as 

in night vision with infrared cameras. Color measurements 

are usually more sensitive to varying illumination 

conditions than texture, making them harder to use in 

demanding environments like outdoor conditions. 

Therefore texture measures can be very useful in many 

real-world applications, including, for example, outdoor 

scene image analysis. 

The major problem of using texture information is that 

textures have usually great variations in their visual 

appearance. Textures can be oriented and scaled 

differently and imaged under changing illumination 

conditions. These cause huge variation to the texture 

appearance and there are strict requirements for the texture 
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measures to produce a reasonable description of the 

analyzed surfaces. The features should tolerate 

illumination variations and they should be able to handle 

different rotations and scales as well. Also computational 

issues are important in applications; for example, to 

achieve a reasonable classification time for textured 

samples. 

To exploit texture in applications, the measures should be 

accurate in detecting different texture structures, but still 

be invariant or robust with varying conditions that affect 

the texture appearance. Computational complexity should 

not be too high to preserve realistic use of the methods. 

Different applications set various requirements on the 

texture analysis methods, and usually selection of measures 

is done with respect to the specific application. 

The ultimate goal of texture characterization systems is to 

recognize different textures. Applications have different 

requirements for recognition: usually accuracy is the most 

important property, but sometimes also speed, usability 

and configurability should be prioritized. There is no 

universal recognition method for different texture 

characterization tasks. In industrial inspection applications, 

there is typically a trade-off between accuracy and speed. 

It is however almost equally important that the recognition 

system is easy to use and configure in new environments. 

In more general image analysis tasks, texture recognition 

methods must detect different textures in the images, but 

also consider images on a higher level. For example, in 

scene image analysis, the relations between different 

regions set constraints on the recognition and help the 

overall image understanding. 

Most approaches to texture classification assume, either 

explicitly or implicitly, that the unknown samples to be 

classified are identical to the training samples with respect 

to spatial scale, orientation, and gray-scale properties. 

However, real-world textures can occur at arbitrary spatial 

resolutions and rotations and they may be subjected to 

varying illumination conditions. This has inspired a 

collection of studies which generally incorporate 

invariance with respect to one or at most two of the 

properties spatial scale, orientation, and gray scale. 

There are many applications for texture analysis in which 

rotation-invariance is important, but  many of the existing 

texture features are not invariant with respect to rotations 

Early approaches proposed for rotation invariant texture 

classification include the methods based on  texture 

anisotropy[1], polarograms [2] and generalized co-

occurrence matrices [3].A method based on the circular 

symmetric autoregressive random field (CSAR) model for 

rotation-invariant texture classification is developed [4]. A 

method for classification of rotated and scaled textures 

using Gaussian Markov random field models was 

introduced by Cohen et al.[5]. Approaches based on Gabor 

filtering have been proposed by, among others, Leung and 

Peterson [6], Porat and Zeevi [7], and Haley and Manjunath 

[8]. A steerable oriented pyramid was used to extract 

rotation invariant features by Greenspan et al.[9] and a 

covariance-based representation to transform 

neighborhood about each pixel into a set of invariant 

descriptors was proposed by Madiraju and Liu [10].An 

extension of Laws’ masks for rotation-invariant texture 

characterization is proposed [11]. Many papers have been 

published on plain rotation invariance analysis [12], [13], 

[14]. A number of techniques incorporating invariance 

with respect to both spatial scale and rotation have been 

developed [15], [16], [17]. Chen and Kundu [18] and Wu 

and Wei [19] approached gray scale invariance by 

assuming that the gray scale transformation is a linear 

function. Chen and Kundu realized gray scale invariance 

by global normalization of the input image using histogram 

equalization. 

Characterization of textured materials is usually very 

difficult and the goal of characterization depends on the 

application. In general, the aim is to give a description of 

analyzed material, which can be, for example, the 

classification result for a finite number of classes or visual 

exposition of the surfaces. 

In realistic texture characterization problems the amount of 

data is usually huge and sometimes there is no prior 

knowledge of the data available. Characterization should 

then be made in an unsupervised manner. In these cases, it 

might be very problematic to create representative models 

for the analyzed textures or study how well specific texture 

features perform. 

The paper is organized as follows: Section 2 discusses 

various texture measures used for texture classification. 

Section 3 explains the proposed Operator. Section 4 briefs 

the classification approach. Experiments and Results are 

analyzed in Section 5. The conclusion of the method is in 

Section 6. 

2. Texture Measures 

Since we are interested in interpretation of images we can 

define texture as the characteristic variation in intensity of 

a region of an image which should allow us to recognize 

and describe it and outline its boundaries. The degrees of 

randomness and of regularity will be the key measure when 

characterizing a texture. In texture analysis the similar 

textural elements that are replicated over a region of the 

image are called texels. It is quite clear that a texture is a 

complicated entity to measure. The reason is primarily that 

many parameters are likely to be required to characterize it.  

The gray-level co-occurrence matrix approach is based on 

studies of the statistics of pixel intensity distributions. The 

early paper by Haralick et al.[20] presented 14 texture 

measures and these were used successfully for 
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classification of many types of materials for example, 

wood, corn, grass and water. However, Conners and 

Harlow [21] found that only five of these measures were 

normally used, viz. “energy”, “entropy”, “correlation”, 

“local homogeneity”, and “inertia”. The size of the co-

occurrence matrix is high and suitable choice of d 

(distance) and θ (angle) has to be made. 

Recent developments include the work with automated 

visual inspection in work. Ojala et al., [22] and Manthalkar 

et al., aimed at rotation invariant texture classification. Pun 

and Lee [23] aims at scale invariance.  

Ojala T & Pietikäinen M [24] proposed a multichannel 

approach to texture description by approximating joint 

occurrences of multiple features with marginal 

distributions, as 1-D histograms, and combining similarity 

scores for 1-D histograms into an aggregate similarity 

score.  

Ojala T  introduced a generalized approach to the gray 

scale and rotation invariant texture classification method 

based on local binary patterns [25]. The current status of a 

new initiative aimed at developing a versatile framework 

and image database for empirical evaluation of texture 

analysis algorithms is presented by him. A multiresolution 

approach to gray-scale and rotation invariant texture 

classification based on local binary patterns is presented 

[26]. 

Ahonen T, proved that the local binary pattern operator 

can be seen as a filter operator based on local derivative 

filters at different orientations and a special vector 

quantization function [27]. A rotation invariant extension 

to the blur insensitive local phase quantization texture 

descriptor is presented by Ojansivu V [28]. Block-based 

texture methods are proposed for content-based image 

retrieval by Takala V [29].  

3. Local Ternary Pattern 

The local binary pattern (LBP) operator is a theoretically 

simple, yet very powerful and gray-scale invariant method 

of analyzing textures (Ojala et al. 1996) [19]. In practice, 

the LBP operator combines characteristics of statistical and 

structural texture analysis: it describes the texture with 

micro-primitives, often called textons, and their statistical 

placement rules (Maenpaa & Pietikainen 2005) [20]. 

LBP histograms with multiple neighborhood parameters 

are created and concatenated. Large neighborhood radii 

result in sparse sampling. Feature vector grows linearly 

with the number of different neighborhoods. Also LBP is a 

crisp operator.   

 The original 8-bit version of the LBP operator considers 

only the eight nearest neighbors of each pixel and it is 

rotation variant, but invariant to monotonic changes in 

gray-scale. The dimensionality of the LBP feature 

distribution can be calculated according to the number of 

neighbors used. The basic 8-bit LBP can represent 2
8 

different local patterns, so the dimensionality of the feature 

vector is 256. The definition of the LBP has been extended 

to arbitrary circular neighborhoods of the pixel to achieve 

multi-scale analysis and rotation invariance (Ojala et al. 

2002).  

In the multiresolution model of the LBP, separate 

operators at different scales are first constructed and the 

final feature vector is a combination of individual feature 

vectors created simply by concatenating them one after 

another. Combining different operators can also be done 

by constructing the joint distribution of all different LBP 

codes, but such a distribution would be very sparse and too 

large in realistic cases  

The number of possible local patterns increases rapidly 

when the number of neighbor samples grows. For example 

with 16 neighbors, the size of the histogram would be 2
16 

bins, which is impractical to use in any realistic 

applications. Maenpaa et al. [20] suggested considering 

only the so-called ’ uniform ’  patterns, where the 

maximum number of bit-wise changes from one to zero or 

vice versa in the circular neighborhood is limited. Usually 

the maximum number of bit changes is allowed to be two. 

It was observed that certain local patterns seem to 

represent the great majority, sometimes over 90 percent of 

all local patterns in the image. With this approach, the 

number of different binary codes is reduced dramatically, 

but the discrimination performance remains good. For 

example, the number of the histogram bins with an 8-bit 

LBP is reduced to 59 bins, where 58 are the actual uniform 

patterns and the last one contains all the others. Rotation 

invariance of LBP is achieved considering only a small 

rotation invariant subset of the original binary patterns [20]. 

They are constructed rotating the obtained binary pattern 

clockwise so many times that the maximum number of the 

most significant bits is zero. Practically, the rotation 

invariance is achieved in terms of normalization of the 

binary code, and can be easily implemented with look-up 

tables. Ojala et al. (2002b) extended this approach to 

multi-scale for making the LBP operator more suitable for 

arbitrary rotation angles. They calculated the rotation 

invariant operator from different scales using ’ uniform’  

patterns to keep the size of the feature distribution 

reasonable.  

Our approach is an extension of LBP operator but 

examines the similarity among the pixels. Pixels with slight 

variations are considered alike and the degree of similarity 

is judged with threshold value.  

Local Ternary Pattern (LTP) considers 8 nearest neighbors 

of each pixel and  uses concept of “uniform” patterns. But 

the number of histogram bins is reduced to 24 almost half 

of that of LBP approach. With this reduced dimension, the 

operator performs well. 
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3.1 Gray scale and Rotation Invariant LTP 

 

Let us define texture T as the joint distribution of the gray 

levels of P+1 (P>0) image pixels: 

 T = t(gc,g0,g1,…,gP-1),  (1)  

where gc corresponds to the gray value of the center pixel 

of a local neighborhood. gp(p=0,1,2,…,P-1) correspond to 

the gray values of P where P=8. 

 

Without losing information, gc can be subtracted from gp : 

 

T = t(gc,g0-gc,g1-gc,…,gP-1-gc),  (2)  

 

Assuming that the differences are independent of  gc , the 

distribution can be factorized: 

T = t(gc)t(g0-gc,g1-gc,…,gP-1-gc),  (3) 

 

Since t(gc) describes the overall luminance of an image, 

which is unrelated to local image texture, it can be ignored: 

T = t(g0-gc,g1-gc,…,gP-1-gc)  (4) 

 

The grey level difference between the pixels around 8 

neighbors is checked against a threshold value θ.  

 

T = t(y(g0-gc), y(g1-gc),…,y(gP-1-gc))  (5) 

 

where  

 

  (6) 

 

The gray-scale invariance is achieved by means of 

determining the y value by comparison instead of using 

their exact values. The y value will not be affected by shift 

in the gray values. Fig.1. shows the y values calculated 

along the border of a 3 x 3 local region and its Local 

Ternary Pattern. The Pattern String can be formed from the 

Pattern Unit matrix by collecting the y values starting from 

any position. 

 

 
 3x3 region          Pattern Matrix  

 

 
Pattern String  : 22110211 

Fig, 1 Generation of LTP String 

  Achieving Rotation Invariance 

To remove the effect of rotation, each LTP code must be 

rotated back to a reference position, effectively making all 

rotated versions of a binary code the same. 

To achieve this the type of transitions is examined and 

coded. Successive values of the pattern string are 

examined and the possible pairs are , , 

, , . Among this if the successive 

pairs are of same value, then there is no transition. ( , 

, ).  indicates the successive pairs can 

be (0 1) or (1 0). The type of transitions are coded. 

 

 This transformation can be defined as follows: 

 

   (7) 

where PS is the Pattern String and PS(x,y) denotes the 

successive pair and is defined as follows. 

  

   PS(x,y) =   (8) 

 

  FT indicates findTransition operator and contains the 

recorded transition types. Table 1 shows the generated FT 

for the given Pattern String. 

 

Pattern String FT 

1  1  2  2  2  0  0  0 0  3  0  0  2  0  0  1 

2  2  2  1  1  1  1  1 0  0  3  0  0  0  0  3 

0  0  2  1  0  1  1  1 0  2  3  1  1  0  0  1 

0  0  2  2  2  0  0  0 0  2  0  0  2  0  0  0 

                    Table1  Transition Coding  
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 Fig 2  Generation of LTP 

The frequency of transitions  is calculated from FT. 

 

   (9)  

   

 where   are number of  , ,  

transitions respectively. 

 

The concept of “uniform” patterns was introduced since 

certain patterns seem to be fundamental properties of 

texture, providing the vast majority of patterns, sometimes 

over 90%. These patterns are called “uniform” because 

they have one thing in common: at most two transitions 

occur in FT. 

Formally we define the uniformity measure U as: 

 

)  (10) 

     

The uniform patterns are extracted and for each pattern, a 

texture unit number is assigned. All other patterns are 

labeled “non uniform ” and collapsed into one value as 24. 

The proposed representation has 23 uniform patterns and 

few of them with their corresponding texture unit number  

is listed in Table 2 

        

Uniform Pattern Texture Unit Number 

00000000 0 

00000001 1 

00000011 2 

00001111 4 

01111111 7 

11111112 9 

11112222 12 

11222222 14 

12222222 15 

22222222 16 

00000002 17 

00000222 19 

00002222 20 

00222222 22 

 Table 2 : Texture unit number 

 

 

The occurrence frequency of LTP over the larger region of 

an image will reveal the textural characteristics of the 

image and it will be used as a global image descriptor. 

The steps involved in the generation of LTP is depicted in 

Fig. 2. 

4.  LTP for classification 

 

We have proposed a simple and robust rotation 

invariant operator.  In our work, we have used 3x3 

neighborhood to capture micro-features. For a given block 

of image, the 8 neighborhood is considered to obtain the 

LTP value. We have reduced the number of bins of 

histogram.  

 

Our proposed approach has two phases :  

 Generation of Model for Concept  

 Testing phase. 

 

The steps involved in generation of Model for Class is 

illustrated in Fig. 3. Testing Phase uses a non-parametric 

classification principle. 

 

4.1 Non-parametric Classification Principle 

 

In classification, the dissimilarity between a sample and a 

model LBP distribution is measured with a non-parametric 

statistical test. This approach has the advantage that no 

assumptions about the feature distributions need to be 

made. Sokal & Rohlf (1969) have called this measure the 

G statistic: 

 

 
     (11) 

 

where S and M denote (discrete) sample and model 

distributions, respectively.  and correspond to the 

probability of bin b in the sample and model distributions. 

B is the number of bins in the distributions. 

 

 

For 

each 

pixel 

Extract 

3x3 

neighbor 

pixels 

Generate 

Pattern 

Matrix 

Get 

Pattern 

String 

Find 

transition 

types 

Get 

transition 

Frequency 

Recognize 

Uniform 

Pattern 

and label 

LT

P 
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Fig. 3 Steps in Generation of Class Model 

 

The G statistic can be used in classification in a modified 

form: 

   (12) 

 

Model textures can be treated as random processes whose 

properties are captured by their LBP distributions. In a 

simple classification setting, each class is represented with 

a single model distribution i M . Similarly, an unidentified 

sample texture can be described by the distribution S . L is 

a pseudo-metric that measures the likelihood that the 

sample S is from class i . The most likely class C of an 

unknown sample can thus be described by a simple 

nearest-neighbor rule: 

 

    (13) 

 

5.  Experiments and Results 

We demonstrate the performance of our approach with the 

proposed LTP operator with texture image data that have 

been used in recent studies on rotation invariant texture 

classification. Since the training data included samples 

from several rotation angles, we also present results for a 

more challenging setup, where the samples of just one 

particular rotation angle are used for training the texture 

classifier, which is then tested with the samples of the other 

rotation angles. 

5.1 Image Data and Experimental Setup 

The image data included  13 textures from the Brodatz 

album. Textures are presented at 6 different rotation angles 

(0, 30, 60, 90, 120, 150). For each texture class there were 

16 images for each class and angle (hence 1248 images in 

total) . Each texture class  comprises following subsets of 

images: 16 'original' images, 16 images rotated at 30
0
 , 16 

images rotated at 60
0,
 16 images rotated at 90

0, 
16 images 

rotated at 120
0
and16 images rotated at 150

0
. The size of 

each image is 128x128. The texture classes considered for 

our study are shown in Fig. 4 

5.2 Contribution of “uniform” patterns 

We studied the contribution of “uniform patterns under 

different threshold values for each texture class. Table 3 

lists the proportions of “uniform” patterns for the texture 

classes used in our study. 

When threshold values are increased, the proportions (%) 

of “uniform” patterns improves, but only few “uniform” 

patterns exists ie., the distribution of “uniform” patterns is 

reduced. 

It is also desired to estimate the optimum threshold for the 

texture classification. This evaluation can be done by 

studying the performance of the classification. 

 

Threshold 

θ 

Texture classes 

Bark Brick Bubbles Grass 

5 28.77 33.83 30.32 41.7 

10 38.05 61.66 41.9 43.2 

20 71.11 89.05 79.53 45.41 

30 88.93 96.65 92.12 64.90 

Table 3 Contributions (%) of “uniform” patterns for each Texture class 

used in the experiment with varied threshold  

For each 

training image 

of class Ci 

(i=1,2, 

For each 

pixel of 

image 

Extract Local 

Texture Pattern 

(LTP) 

Compute the 

occurrence frequency 

of LTPs 

Evaluate the model 

probability for Ci 
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Fig 5A  Image Samples for each Texture Class 

             
             Bark                                            Brick                                     Bubble                                     Grass 

Fig 5B  Histogram of “uniform”  patterns for each Texture Class 

 

Bark Brick Bubbles Grass 

                           
 

                           
 

                           
 

                           
Fig 4 : Image Samples used for Classification 

Bark 00 

 

Bark 300 

 

Bark 600 

 

Bark 1500 

 

Brick 00 

 

Brick 600 

 

Brick 900 

 

Brick 1500 

Bubbles 600 

 

Bubbles 900 

 

Bubbles 1200 

 

Bubbles 1500 

 

Grass 300 

 

Grass 600 

 

Grass 900 

 

Grass 1200 
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Distribution of patterns for each texture class is shown in 

Fig. 5A and Fig 5B. 

Table 4 presents results for a the challenging experimental 

setup where the classifier is trained with samples of  just 

one rotation angle and tested with samples of other rotation 

angles for various thresholds. 

 

Texture 

Classification Accuracy (%) for different 

Training angles 

30
0
 60

0
 90

0
 120

0
 150

0
 

Bark 93.75 93.75 93.75 93.75 93.75 

Brick 87.5 75.0 75.0 81.25 68.75 

Bubbles 87.5 87.5 100.0 93.75 81.25 

Grass 93.75 100.0 87.5 93.75 87.5 

Table-4 Classification Accuracies (%) with classifier trained with one 

rotation angle(00) with threshold (θ=5) and Tested with other versions. 

 

Texture 

Classification Accuracy (%) for different 

Training angles 

30
0
 60

0
 90

0
 120

0
 150

0
 

Bark 87.5 75.0 75.0 75.0 81.25 

Brick 93.75 87.5 87.5 93.75 87.5 

Bubbles 100.0 93.75 100.0 100.0 93.75 

Grass 100.0 100.0 100.0 100.0 93.75 

Table-5 Classification Accuracies (%) with classifier trained with one 

rotation angle(00) with threshold (θ=10) and Tested with other versions. 

 

Texture 

Classification Accuracy (%) for different 

Training angles 

30
0
 60

0
 90

0
 120

0
 150

0
 

Bark 68.75 75.0 68.75 87.5 87.5 

Brick 93.75 87.5 93.75 93.75 87.5 

Bubbles 100.0 100.0 100.0 87.5 100.0 

Grass 100.0 100.0 100.0 100.0 93.75 

 

 

Table-6 Classification Accuracies (%) with classifier trained with one 

rotation angle(00) with threshold (θ=20) and Tested with other versions. 

 

Texture 

Classification Accuracy (%) for different 

Training angles 

30
0
 60

0
 90

0
 120

0
 150

0
 

Bark 68.75 68.75 68.75 81.25 81.25 

Brick 93.75 87.5 100.0 100.0 87.5 

Bubbles 93.75 68.75 81.25 87.5 87.5 

Grass 100.0 100.0 100.0 93.75 93.75 

Table-7 Classification Accuracies (%) with classifier trained with one 

rotation angle(00) with threshold (θ=30) and Tested with other versions. 

 

Results clearly state that classification varies with different 

values of threshold values. Fig . 6 show the overall 

classification accuracies in percentage for varied threshold 

values.  

 

     

Fig. 6 Threshold Vs Classification Performance 

Fig 7 shows the contribution of “uniform” patterns in each 

texture class for varied threshold values. 
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Observations clearly state that the threshold plays a major 

role in classification. Finding an optimum threshold value 

for a given set of texture classes seems to be a tough task. 

This is due to variations in texture images. A non 

parametric classification principle is used for texture 

discrimination.  

The overall recognition rate is compared with other texture 

measures such as co-occurrence matrix, autocorrelation 

method and laws texture measure. The performances of 

different texture measures are listed in Table 8. 

 

Texture method Recognition rate in % 

Autocorrelation 76.1 

Co occurrence 78.6 

Laws 82.2 

LTP 93.5 

Table 8. Recognition rates of various Texture measures 

6.  Conclusion 

We presented a theoretically and computationally 

simple yet efficient Local Ternary Operator. The operator 

can be used for gray-scale and rotation invariant texture 

classification. The approach is based on “uniform” patterns 

and nonparametric discrimination of sample and prototype 

distributions. “Uniform” patterns help us to recognize 

texture microstructures such as edges. Our operator 

handles similarity among the pixels and this is measured by 

varying the threshold values. This also includes idea of 

human perception. We developed a generalized gray-scale 

and rotation invariant operator  for eight neighbors. 

We combined the responses of texture class for multiple 

angles to estimate the performance of classification.  

Experimental results are appreciable where the 

classifier is trained with original version of image samples 

and tested with different rotated versions. The proposed 

operator performs well for the structural and stochastic 

patterns.  

Computational simplicity is another advantage since 

the operator is evaluated with few comparisons in a local 

neighborhood. This facilitates less time for implementation. 

The performance can be further enhanced by using 

different classifiers. The operator may be suitably 

improved to achieve scale invariance. 
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