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Summary 
This paper presents a new approach in the detection, localization, 
and classification of frequency and amplitude changes in 
nonstationary signal waveforms using a variable window short-
time Fourier Transform (STFT) known as ST in short and an 
Extended Complex Kalman Filter (CEKF).  Unlike the fixed 
window STFT, the variable window Short-time Fourier 
Transform has excellent time-frequency resolution characteristics 
and provides detection, localization, and visual patterns suitable 
for automatic recognition of time-varying signal patterns.  The 
CEKF, on the other hand, provides automatic classification and 
measurements of the frequent amplitude, and phase of sinusoids 
embedded in noise.  The technique is applied to both simulated 
and experimentally obtained waveform disturbances in the 
presence of additive noise and the results reveal significant 
accuracy in completely localizing the changes in amplitude, 
frequency, and phase of nonstationary sinusoids in noise.    
Key words: 
S-Transform (ST), Kalman Filter, Time-frequency localization, 
Frequency estimation, Noise rejection and time varying 
amplitude and phase estimation.   

1. Introduction 

 In this paper, we propose a novel digital signal processing 
technique for the detection, classification and 
measurement of the parameters of a sinusoidal signal with 
time varying amplitude, phase, and frequency which are 
usually contaminated with noise.  
The new developments in the area of signal processing [1], 
[12] provides high performance signal analysis because 
they employ understandable signal representations than 
just time or frequency representation of signals. These 
potential tools have been successfully applied in 
geophysics, acoustics, image processing, data compression 
and recently power quality analysis [2 - 5]. Several 
techniques, leading to time-frequency representation and 
applicable to SDD, are investigated here.  
To analyze distorted signal, short time discrete Fourier 
transform (STFT) is most often used. This transform 
performs satisfactorily for stationary signals where 
properties of signals do not change with time. For 
nonstationary signals, the STFT does not track the signal 
dynamics properly. On the other hand, the wavelet 

analysis provides a unified framework for processing 
distorted signals. 
Wavelet analysis [6] is based on the decomposition of a 
signal according to time-scale, rather than frequency, using 
basis functions with adaptable scaling properties, which is 
known as multi resolution analysis. A Wavelet Transform 
(WT) expands a signal not in terms of a trigonometric 
polynomial but by wavelets, generated using transition 
(shift in time) and dilation (compression in time) of a fixed 
wavelet function. The wavelet function is localized both in 
time and frequency yielding wavelet coefficients at 
different scales. This gives the WT much greater compact 
support for analysis of signals with localized transient 
components.  Several types of wavelets have been 
considered [7,8,9] for detection, localization, and 
classification of waveform distortions as both time and 
frequency information are available by multi resolution 
analysis. At first the extraction of the occurred disturbance 
requires its time duration estimation. This information is 
vital as there is a need to obtain the sampling frequency 
and the frequency sub-band containing most of the spectral 
energy. However, this process is very much influenced by 
the noise superimposed on the signal and the iterative 
nature of the wavelet transform based algorithms requiring 
different sampling frequencies for different frequency sub-
bands. 
 
The variable window STFT, which is known as S-
Transform (ST in short) [10], on the other hand, is an 
extension to the ideas of WT, and is based on a moving 
and scalable localizing Gaussian window and has 
characteristics superior to either of the transforms. The ST 
is fully convertible from the time domain to 2-D frequency 
translation domain and then to familiar Fourier frequency 
domain. The amplitude frequency – time spectrum and the 
phase – frequency – time spectrum are both useful in 
defining local spectral characteristics. The superior 
properties of the ST are due to the fact that the modulating 
sinusoids are fixed with respect to the time axis while the 
localizing scalable Gaussian window dilates and translates. 
As a result, the phase spectrum is absolute in the sense that 
it always refers to the origin of the time axis. The real and 
imaginary spectrum can be localized independently with a 
resolution in time corresponding to the basis function in 
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question and the changes in the absolute phase of a 
constituent frequency can be followed along the time axis. 
The phase information associated with the ST makes it as 
an ideal candidate for the detection and classification of 
distorted signals. 
 
Amongst the several numerical techniques, Kalman 
filtering [11,12] approaches have attracted widespread 
attention, as they accurately estimate the amplitude, phase 
and frequency of a signal buried with noise and harmonics.   
In this paper, a variation of nonlinear Kalman filter [13] is 
presented which simplifies the modeling requirement for 
amplitude and frequency estimation of a signal.   
 
The ST matrix of time varying nonstationary signal 
samples is computed, and is used to detect and localize 
and recognize amplitude, frequency, phase change patterns. 
After a change in any parameter of the signal occurs, the 
signal samples up to the next change are fed to an 
Extended Complex Kalman filter to estimate the amplitude, 
frequency, phase, and harmonic contents of the signal to 
provide automatic recognition and measurement of the 
changed parameters.  Extensive computer simulation tests 
are performed to validate the efficacy of the proposed 
approach. 

2.  Variable Window STFT (S-Transform) 

The short-time Fourier transform of a signal  is given 
by 

)t(x

  (1)

 Where τ  and f denote the time and frequency 
is the main signal and the position of the translating 

window is determined by , which has the same value as t.  
An alternate expression for (1) is obtained through the use 
of convolution theorem as 

∫
∞
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Where W is the Fourier transform of w, and the 
convolution variable α has the same dimension as f.  One 
of the disadvantages of STFT is the fixed width and height 
of the window.  This causes misinterpretation of signal 
components with periods longer than the window width 
and the width that works well with low frequency 
components can not detect the high frequency components.  
The S-transform is a time localized Fourier transform and 
has a window whose width and height vary with frequency.     
Although the theory of S-Transform has been presented in 
references [9], [10] and originally by Stockwell etal. [8], 

some of the equations and computational steps are outlined 
below: 
The general window function w(t, f) is chosen as 
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Here σ(f) is a function of frequency as 
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The window is normalized as 
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Here β is normally set to a value 0.2 for best overall 
performance of S-Transform where the contours exhibit 
the least edge effects and for computing the highest 
frequency component of very short duration oscillatory 
transients β is made equal to 5. The S-Transform performs 
multi resolution analysis on the signal, because the width 
of its window varies inversely with frequency.  This gives 
high time resolution at high frequencies and on the other 
hand, high frequency resolution at low frequencies.   
The expression for S-transform is given by  

∫
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Here the window function is used as given in (3).  
 
An alternative formulation for S-transform is given by 
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The discrete version of the S-Transform of a signal is 
obtained as  
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Where X[m + n] is obtained by shifting the discrete 
Fourier Transform (DFT) of x(k) by n, X[m] being given  

 [ ] N
mk2j1N

0k
ekx

N
1]m[X

π
−−

=
∑=            (9) 

and     n
m2 22

e]nm[W
βπ−

=+                                  (10) 
j, m and n = 0, 1, ….., N-1 
 
Another version of the discrete S-Transform used for 
computation  
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for  m = 1, 2, …, M and n = 0, 1, 2, …N/2 
where M is the number of data points of the signal x[m],  
N is the width of the window, the signal vector x[m] is 
padded at the beginning or at the end with 0. 

3. Implementation of S-Transform (ST): 

The computation of the S-Transform is efficiently 
implemented using the convolution theorem and FFT. The 
following steps are used for the computation of S-
Transform: 
 
(i) Compute the DFT of the signal x(k) using FFT 

software routine and shift spectrum X[m] to 
X[m+n]. 

(ii) Compute the gaussian window function 
for the required 

frequency n. 
)n/m2exp( 2222βπ−

(iii) Compute the inverse Fourier Transform of the 
product of DFT and gaussian window function to 
give the ST matrix. 

 
The output of the S-transform is an n×m matrix, whose 
rows pertain to frequency and columns indicate time. Each 
column thus represents the “local spectrum” for that point 
in time. From the ST matrix we obtain the frequency-time 
contours having the same amplitude spectrum and these 
contours can be used to visually classify the nature of the 
signal and its change of frequency. However, for 
automatic classification of the signal, the standard 
deviation (SD) of the most significant contour having the 
largest frequency amplitude versus time is calculated. 
Thus SD = std (contour c1) and it can be considered as a 
measure of the energy of the signal with zero mean.  The 
standard deviation of the nonstationary signal is found to 
indicate whether the signal belongs to normal class or the 
disturbed one. Further it can be used to distinguish 
between amplitude changes or frequency changes. Once 
the signal is found to contain a frequency, amplitude or 
phase change, the next step is to compute its duration and 
magnitude and use the CEKF (Complex Extended Kalman 
Filter) for the estimation of amplitude, frequency, phase, 
and the harmonic content if any during the distortion. The 
next section describes a Complex Extended Kalman Filter 
for the computation of the above quantities which can be 
used for further classification of the nature of the 
disturbance in the signal. 
 

4. Complex Extended Kalman Filter 

Measurement and classification of patterns are the 
important aspects for time varying analysis, and signal 
STFT whereas ST or Wavelet transform can only localize 
and classify the distorted signals.  Several methods are 
already developed for the measurement of percentage 
change in amplitude, frequency, and the harmonic content 
of the distorted signal.  Out of all the approaches Kalman 
filtering [14] is the best one.  The important fact about the 
Kalman filtering approach is that it can perfectly track the 
percentage change in amplitude, frequency, and the 
harmonic content of the abnormal time varying signal in 
the presence of noise.  Taking this advantage into 
consideration, in this paper we have implemented Kalman 
filtering for estimation of amplitude, frequency, and phase 
of the nonstationary signals.  The fundamental principle of 
Kalman Filter approach is described below: 
 
The discrete values of the sinusoidal signal are 
transformed into a complex vector and modeled along with 
the frequency in a nonlinear state-space form and the 
theory of extended Kalman filter is used to obtain the state 
vectors iteratively.  The computation of Kalman gain and 
choice of initial covariance matrix are crucial in 
determining the speed of convergence of the new 
algorithm and its noise rejection property.  The 
characteristic of the model is that 3 states are required to 
extract the signal frequency, amplitude and phase with the 
Extended Complex Kalman Filtering.  A variety of 
simulated sinusoids with time varying frequency, 
amplitude, and phase with noise and harmonics is used for 
the application of this new technique.  
 
If a sinusoidal signal is sampled with a fixed time interval 
Δt to produce the sampled set y(k), we get 

,....2,1,0k),twkcos(A)k(y =+= φΔ           (11)              
 Where  is the frequency of the signal,  Δt = sampling 
interval , A=amplitude, 

w
φ =phase angle. 

The sampled signal x(k) is expressed as  
tjwkjtjwj e.e

2
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2
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Using the following state variable notations  
tjwk

1 e)k(x Δ=   , A)k(x 2 =  ,     (13) φ= j
3 e)k(x

the signal x(k) is modeled in the state space as 
 α)()1( 11 kxkx =+  

 )()1( 22 kxkx =+  
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                                                                (14) 
tjwe Δ

=
.α

and the observed signal y(k) is  
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The stochastic model of the signal model is obtained 
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The estimated analytic signal is obtained as a function of 
the states as 

( ){ })()(),(),(()( 321 kkxkxkxgky η+=                
(18) The above system and applying the EKF technique, a 
nonlinear recursive filter is obtained for estimating the 
time varying parameters of a sinusoid embedded in white 
noise. 
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The observation matrix H is obtained as  
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The observation matrix H is obtained as 
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The ECKF measurement update equations 
are:
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and the time update equations are: 
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where K(k)= Kalman gain matrix 

)/1(ˆor   )/(ˆ kkPkkP +   = Covariance matrix, R 
=measurement noise variance, H = Observation vector *, T 

represent conjugate and transpose of a complex quantity, 
respectively. 
 
This nonlinear filter is quite stable regardless of the initial 
conditions of the states x1 and x2, and  provided, the 
observation signal is bounded, which is usually true in a 
practical system like the power network. After the 
convergence of the state vector is attained, the frequency is 
calculated as 

3x

         [ ]))(ˆIm(sin
2

1)(ˆ
1

1 kx
T
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Δ
=

π
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where Im( ) stands for the imaginary part of a quantity. 
 

Further the amplitude of the signal ‘A’ can be obtained 
from 
          )(2 kxA =  , ))(ln( 3 kx=φ   (26)
                                                            

5. Computational and Experimental Test 
Results 

Fig. 1 shows the flow chart for the hybrid variable window 
STFT and Kalman filtering approach to classify the pattern 
and measure the change in amplitude and frequency, and 
phase of the pure sinusoidal signal in distorted 
environment. Different cases of amplitude, phase, and 
frequency changes are tested using this approach.  Test1 
analyzes different types of major power quality problems, 
such as sudden frequency change and harmonic distorted 
signal, using simulated waveforms and MATLAB 
software package; Test2 analyzes distorted signals 
generated using experimental setup. The chosen sampling 
rate is 2.5 kHz, for Test1 and 2.3kHz for Test2, and the 
frequency (f ) is normalized with respect to a base 
frequency. The ST output shows the plot of the amplitude 
contours of a given magnitude in the time–frequency co-
ordinate system. The standard deviation (SD) of the 
contour number 1( having the largest frequency amplitude 
variation with time) is computed and used to detect the 
presence of disturbance and its duration is calculated from 
the change in frequency amplitude of the contour number 
1. Further SD indicates whether the disturbance is a steady 
state short duration disturbance or other high frequency 
phenomenon. The flow chart shown in Fig.1 clearly 
indicates that after detection and localization, the Extended 
Kalman Filter is used to classify and estimate the 
parameters of the disturbance signal. The following 
sections provide computational and experimental results: 
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Test 1: 
Computational Results: 
 
To illustrate the application of the hybrid approach, the 
following case studies are presented: 
A.   Sudden frequency change 
Fig. 2(a) shows the waveform, when the frequency is 
suddenly reduced from 50Hz to 45 Hz. Such a distorted 
signal is analyzed by the present approach and the results 
are plotted as in Fig. 2(b) and Fig. 2(c), respectively. The 
frequency distortion is reflected in the magnitude of the 
standard deviation SD which increases from zero to 0.087, 
and the harmonic factor HF = 0.0285. For this frequency 
change the time-frequency curve shows localized contours 
which provide an excellent visual classification. However, 
with SD > 0.05, the waveform is identified to belong to a 
class other than voltage sag , voltage swell, or interruption. 
The Kalman Filter accurately tracks the amplitude of the 
frequency changes of the original 50 Hz signal.  
 
Frequency Ramping 
 
The frequency of the test sinusoid is allowed to stay at 60 
Hz level till 100 samples, and then ramped from 60 Hz to 
75 Hz in a span covering 200 samples uniformly.  Fig.3 
shows the original signal, the   S-transform frequency 
versus time (in samples), the peak magnitude of the signal 
obtained from the   S-transform matrix.  From the figure it 
is quite obvious that the frequency disturbance is 
completely localized and detected and the peak amplitude 
of the signal is accurately obtained.  The instantaneous 
frequency estimation is, however, done by the Extended 
Complex Kalman (ECKF) showing clearly the ramping.  
The frequency estimation error varies between 0.005 to 
0.05 Hz in the presence of noise of 30 dB, SNR. Single 
step and double step frequency excursions are shown in 
Figs.5 and 6. 
 
An experimental signal is collected from a signal generator 
through a data acquisition interface and a software using 
C++ compiler.  The initial frequency is 60 Hz and ramped 
negatively to 45 Hz in a span of 400 samples and then 
again increases to 60 Hz for the rest of the experiment.  
The S-transform contours along with the instantaneous 
frequency tacked by the ECKF are shown in Fig.4.  Here 
again the accuracy is upto .05 Hz in the presence of 
distortion and noise.   

6.  Conclusion 

This paper introduces the use of ST and Kalman filtering 
approach as powerful analysis tools that can be used to 
classify and measure the system response to distorted 
signals. Using ST, one can detect, localize and visually 

classify the short duration events in the signal.  Then 
Kalman filtering technique is used to extract important 
features from the analyzed signal and classify the nature of 
the disturbance present in the signal. Further the Extended 
Kalman Filter accurately tracks the change in amplitude, 
frequency, phase, and harmonic content of the distorted 
signal.  The method is applied on different sets of data 
obtained from computer simulations and laboratory tests 
and accurate results are obtained in most of the case 
studies. 
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Fig 1.  Hybrid S-transform Kalman Filter 
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Fig. 2(a) Example of sudden frequency change, (b)S-transform Contour plot, (c)Estimated frequency plot 

 

 
Frequency tracking with CEKF 

Fig.3 ramping frequency from 60 to 75 Hz Negative ramp frequency 
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Frequency tracking with CEKF 

Fig.4. Negative ramping frequency  
 
 

 

 
Frequency tracking with CEKF 

Fig.5. Single step frequency  
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Frequency tracking with CEKF 
Fig.6. Double step frequency  
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