
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

193

New Enhanced Exact String Searching Algorithm

Mahmoud Moh’d Mhashi & Mohammed Alwakeel
College of Computers and Information Technology

 University of Tabuk
Kingdom of Saudi Arabia

Tabuk, P. O. Box 1458, Tabuk, 71431

Abstract
Exact string Searching is one of the most important problems that
had been investigated by many studies ranging from finding the
shortest common super string in DNA sequencing to searching
for occurrences of a pattern occurs in text editors. In this paper, a
new Enhanced Checking and Skipping Algorithm (ECSA) is
introduced. The new algorithm enhance the classical string
searching algorithms by converting the character-comparison
into character-access, by using the condition type character-
access rather than the number-comparison, and by starting the
comparison at the latest mismatch in the previous checking,
which in turn increases the probability of finding the mismatch
faster if there is any. A computer program is developed to
compare the performance of the introduced algorithm against the
conventional Naïve (brute force) and Boyer-Moore-Horsepool
(BMH) algorithms. The results of the experiment show that the
performance of the enhanced algorithm is outperform the
performance of the introduced algorithms.
Keywords:
String-searching, pattern matching, checking and

skipping, Condition type, and multiple
references.

1. Introduction

The string searching algorithm is so fundamental that
most computer programs use it in one form or another, In
fact, exact string Searching is one of the most important
problems that had been investigated by many studies
ranging from finding the shortest common super string in
DNA sequencing [1] to searching for occurrences of a
pattern occurs in text editors. In general, string searching
algorithms deal with searching the occurrences of a string
(the pattern) of size m in a string (the text) of size n
(where n ≥ m) [2-4]. The string searching algorithm, in
general, may be represented as follow:
Algorithm String-Searching
 // Find all occurrences of Pat[0,m-1] in Text[0,n-
1]

 {
 Preprocessing phase;
 Search phase;
 Align Pat[0] with Text[0];
 While (end of Text is not reached)
 {
 Checking step;

Candidate Checking phase;

 Detailed comparison phase;
 If an occurrence of Pat has been found then
 Report occurrence;
 Endif
 Skipping step;
 Move forward;
 }
 }

In literature, many exact string searching and pattern
matching algorithms were introduced and their
performance were investigate against classical exact string
searching algorithm such as Naïve (brute force) algorithm
and Boyer-Moore-Horsepool (BMH) algorithm, some of
these algorithms preprocess both the text and the pattern
[5] while others need only to preprocess the pattern [6-9].
In all cases, as shown in the general representation of
searching algorithm above, the exact string searching
problem consists of two major steps: checking and
skipping, the checking step itself consists of two phases:

1) A search along the text for a reasonable
candidate string

2) A detailed comparison of the candidate against
the pattern to verify the potential match.

Some characters of the candidate string must be selected
carefully in order to avoid the problem of repeated
examination of each character of text when patterns are
partially matched, intuitively, the fewer the number of
character comparisons in the checking step the better the
algorithm is. There are different algorithms that check in
different ways if the characters in the text match with the
corresponding characters in the pattern [10-17]. After the
checking step, the skipping step shifts the pattern to the
right to determine the next position in the text where the
substring text can possibly match with the pattern. The
reference character is a character in the text chosen as the
basis for the shift according to the shift table. In literature,
the searching algorithms may use one reference character
or use two reference characters, where the references
might be static or dynamic [18-20]. In addition, some of
the algorithms focus on the performance of the checking
operation while others focus on the performance of the
skipping operation [21]. The main goal of this paper is to
develop a new enhanced checking and skipping algorithm
(ECSA) that can be used for string searching and patter
matching and outperform the algorithms introduced in

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

194

literature. The rest of this paper is organized as follow: In
section 2, the classical Naïve exact string searching
algorithm is explained. Boyer-Moore-Horsepool (BMH)
exact string searching algorithm is introduced in section3.
In section 4 the developed enhanced checking and
skipping algorithm (ECSA) is introduced. Numerical
results and illustrations of the performance of the
developed ECSA are presented in Section 5. Finally, some
concluding remarks are made in Section 6.

2. The Naïve or (Brute Force) Algorithm

To illustrate this straightforward algorithm, let us assume
that the target sequence is an array Text[n] of n characters
and the pattern sequence is the array Pat[m] of m
characters, then a Naïve approach to the problem would
be:

void Naïve (char *Pat, int PatLength, char *Text, int
TextLength)

{
 for (int TextIx = 0; TextIx <= TextLength -

PatLength; TextIx ++)
 {
 int PatIx = 0;

 while (Text[TextIx + PatIx] == Pat[PatIx])
 {
 if (PatIx == PatLength -1)
 {

 cout << "\n Occurence at " << TextIx << "
to " << TextIx + PatIx;

 break;

 }
 else PatIx ++;

 }
 }
 return;
}

In the outer loop, Text is searched for occurrences of the
first character in Pat. In the inner loop, a detailed
comparison of the candidate string is made against Pat to
verify the potential match. The algorithm has a worst case
time of O(nm), where O(nm) is the number of
comparisons performed by the algorithm to find all the
occurrences of Pat with size m characters in the Text with
size n characters. The worst case in this algorithm occurs
when we get a match on each of the n Text characters and
at each position we may need to perform m comparisons.

The following example illustrates this algorithm:

 assume that we are given the following Text and Pat:

Text: A C C D E F C F X G H C F B C F B
Pat: C F X

Searching process: Loop 1:
Comparison starts from left to right

C F X Pat[j]
≠
A C C D E F C F X G H C F B C F B Text[i]

(Pat[j] = ‘C’) ≠ (Text[i] = ‘A’).

Skipping right one position produces Loop 2:

 C F X Pat[j]
 = ≠
A C C D E F C F X G H C F B C F B Text[i]

(Pat[j] = ‘C’) == (Text [i] = ‘C’); (Pat[j + 1] = ‘F’) ≠ (Text [i + 1] = ‘C’).

Loop 3 is similar to loop 2 in the sense that it needs two character comparisons to find the mismatch.

Loop 4:

 C F X Pat[j]
 ≠
A C C D E F C F X G H C F B C F B Text[i]

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

195

(Pat[j] = ‘C’) ≠ (Text [i] = ‘D’).

Loop 5 and loop 6 are similar to loop 4 in the sense that each one of them needs one character comparison to find the
mismatch.

Loop 7:

 C F X Pat[j]
 = = =
A C C D E F C F X G H C F B C F B Text[i]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Each character in Pat matches the corresponding character in Text, hence, there is an occurrence at location 6 to 8.
Each one of the next four loops (loop 8 to loop 11) needs one character comparison to find the mismatch.

Loop 12:

 C F X Pat[j]
 = = ≠
A C C D E F C F X G H C F B C F B Text[i]

(Pat[j] = ‘C’) == (Text[i] = ‘C’); (Pat[j + 1] = ‘F’) == (Text [i + 1] = ‘F’); (Pat[j + 2] = ‘X’) ≠ (Text[i + 2] = ‘B’).
Each one of the next two loops (loop 13 and loop 14) needs only one character comparison to find the mismatch.

Loop 15:

 C F X Pat[j]
 = = ≠
A C C D E F C F X G H C F B C F B Text[i]

(Pat[j] = ‘C’) == (Text [i] = ‘C’); (Pat[j + 1] = ‘F’) == (Text [i + 1] = ‘F’); (Pat[j + 2] = ‘X’) ≠ (Text [i + 2] = ‘B’).
Moving one position ends the searching process, hence, to find all the occurrences of Pat in Text 23 character comparisons
are needed in addition to 55 number comparisons (i.e., the total number of comparisons is 78).

3. Boyer–Moore–Horsepool (BMH)

Algorithm

Horspool is one of many authors extended the BM
algorithm [22]. Horspool proposed the Boyer–Moore–
Horspool (BMH) [23] algorithm that is regarded as the
best general-purpose string-searching algorithm. The
algorithm scans the characters of the pattern from right to

left beginning with the rightmost character. In case of a
mismatch (or a complete match of the whole pattern), it
uses only a single auxiliary skip table indexed by the
mismatching text symbols. If the reference character in
Text (the character that corresponds the last character in
Pat) does not occur in Pat it is possible to skip forward by
m positions (the pattern length) and repeat the
examination.

The following example explains the algorithm:

Assume that we are given the following Text and Pat.:

Text: A C C D E F C F X G H C F B C F B
Pat: C F X

The construction of the skip table for the pattern follows:

0 1 2 3 4 5 6 7 8 9 10 11
A B C D E F G H … X Y Z
3 3 2 3 3 1 3 3 … 3 3 3

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

196

Any character that is not in the pattern will produce a shift distance equals to m, where m = 3. Any character in the pattern
Pat[j] produces a shift distance equals to m - j, where j = 0, 1, & 2. Searching process:

Loop 1:
 Comparison starts from right to left

C F X Pat[j]
 ≠
A C C D E F C F X G H C F B C F B Text[i]

(Pat[j] = ‘X’) ≠ (Text[i] = ‘C’). Looking up in the skip table for character ‘C’ gives value 2.

Skipping right 2 positions produces Loop 2:

 C F X Pat[j]
 ≠
A C C D E F C F X G H C F B C F B Text[i]

(Pat[j] = ‘X’) ≠ (Text[i] = ‘E’). Lookup in the skip table for character ‘E’ gives value 3.

Skipping right 3 positions produces Loop 3:

 C F X Pat[j]
 ≠
A C C D E F C F X G H C F B C F B Text[i]

(Pat[j] = ‘X’) ≠ (Text[i] = ‘F’). A look up in the skip table for character ‘F’ gives value 1.

Skipping right one position produces Loop 4:

 C F X Pat[j]
 = = =
A C C D E F C F X G H C F B C F B Text[i]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Each character in Pat matches the corresponding character in Text. There is an occurrence at location 6 to 8. Looking up
in the skip table for character ‘X’ gives value 3.

Skipping right 3 positions produces Loop 5:

 C F X Pat[j]
 ≠
A C C D E F C F X G H C F B C F B Text[i]

(Pat[j] = ‘X’) ≠ (Text[i] = ‘C’). A look up in the skip table for character ‘C’ gives value 2.

 Skipping right 2 positions produces Loop 6:

 C F X Pat[j]
 ≠
A C C D E F C F X G H C F B C F B Text[i]

(Pat[j] = ‘X’) ≠ (Text[i] = ‘B’). Looking up in the skip table for character ‘B’ gives value 3.

Skipping right 3 positions produces Loop 7:

 C F X Pat[j]
 ≠
A C C D E F C F X G H C F B C F B Text[i]

(Pat[j] = ‘X’) ≠ (Text[i] = ‘B’). Lookup in the skip table for character ‘B’ gives value 3. Skipping right 3 positions ends
the searching process.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

197

In this example, for a pattern of 3 characters and a Text of 17 characters, only 9 character comparisons have been
performed, in addition to 25 number comparisons, to find all the occurrences of Pat in Text (i.e., total number of
comparisons is 34).

void PreProcessBMH(char *Pat, int PatLength, int
*skip_table)
{
 for(int i = 0; i < ASIZE; i++)
 skip_table[i] = PatLength;
 for(i = 0; i < PatLength - 1; i++)
 skip_table[Pat[i]] = PatLength - i - 1;
}

void BMH(char *Pat, int PatLength, char *Text, int
TextLength, int *skip_table)
{
 char c;
 /* Preprocessing */
 PreProcessBMH(Pat, PatLength, skip_table);
 /* Searching */
 int TextIx = 0;
 while (TextIx <= TextLength - PatLength)
 {
 c = Text[TextIx + PatLength - 1];
 if (Pat[PatLength - 1] == c && memcmp(Pat, Text
+ TextIx, PatLength - 1) == 0)
 cout<<"\nOccurence at location "<<TextIx<<"
to location "<< TextIx + PatLength –1;
 TextIx += skip_table [c];
 }
}

4. Enhanced Checking and Skipping
Algorithm (ECSA)

As we mentioned earlier, a string matching algorithm is a
succession of checking and skipping, where the aim of a
good algorithm is to minimize the work done during each
checking and to maximize the length distance during the
skipping. Most of the string matching algorithms
preprocess the pattern before the search phase to help the
algorithm to maximize the length of the skips, the
preprocessing phase in this new ECSA algorithm helps in
both increases the performance of the checking step by
converting some of the character-comparison into
character-access and maximizes the length of the skips. At
each attempt during the checking steps the ECSA
algorithm compares the character at last_mismatch (the
character that causes the mismatch in the previous
checking step) with the corresponding character in Text; if
they match then it compares the first character of Pat with
the corresponding character in Text, finally if they match
the ECSA compares the other characters from right to left

including the character at last_mismatch (because rather
the cost is high) and excluding the first character of Pat.
The enhanced performance of this algorithm during the
checking step is due to the fact that the mismatch is
detected quickly by starting the comparison, after each
shift, at the location last_mismatch (see line 17 in ECSA
algorithm), if there is a match then the comparison goes
from right to left, including the compared character at
last_mismatch. The idea here is that the mismatched
character must be given a high priority in the next
checking operation. After a number of checking steps,
this leads to start the comparison at the least frequent
character without counting the frequency of each
character in the text. Another enhancement is due to
several improvements in the process and in the
programming technique itself, including converting a
number-comparison and a character-comparison into a
character-access (such as converting condition of type if(j
< n) into a condition of type if(j), These improvements
may be summarized in the following points:
1) The following style of for-statement:

for (int j = 0; j < n; j++) {
 is changed into the following style:
 for (int j = n; j ; j--) {
In another words, the number comparison of
condition type “if(j < n)” is changed into a character
access of condition type “if(j)”.

2) Converting the character-comparison into character-
access: This conversion is explained using the
following example; assume that we have the
following Pat and Text.

 0 1 2 3 4
Text: A C F X G
Pat: C F X

To compare the character ‘C’ in Pat with the character ‘A’
in Text at location zero, most programmers normally write
the statement if(Text[i] == Pat[j]), where i = j = 0. To
convert this character-comparison into a character-access,
a new array must be declared with alphabet size and
initialized by zero, as shown in line 12 in ECSA (int
infix[ASIZE] = {0};). Performing line 14 in ECSA
infix[Pat[0]] = infix[‘C’] = 1 sets the location ‘C’ in the
array infix by one. So if TextIx = 0 and Text[0] = ‘A’,
then executing the character-access at line 19,
if(infix[Text[TextIx]]), which is equivalent to the condition
if(infix[‘A’]) = 0, produces false result. However, if the
character at location zero in Text is the character ‘C’, then
line 19 if(infix[Text[TextIx]]) = if(infix[Text[0]]) =
if(infix[‘C’]) = 1, produces true result. Hence, the

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

198

condition if(Text[i] == Pat[j]) of type character-
comparison is replaced by the condition
if(infix[Text[TextIx]]) of type character-access. The
condition at line 19 serves two goals, the first is
converting the character-comparison to character-access at
Pat[0], and the second is Checking the character at
location Pat[0] in advance before entering the for-
statement at line 21. This occurs because the value of
index PatIx becomes zero at the end of the loop at line 21
and the control will exit the loop without checking the
character at location Pat[0].
For the skipping step, ECSA has five reference characters,
including three static references and two dynamic
references. The Text pointer TextIx always points to the
character, which is next to the character corresponding to
the last character in Pat and the reference character ref
always points to the character that corresponds to the last
character in Pat (i.e. ref = TextIx – 1). Now let ref1 =
TextIx, then the reference character ref2 can be calculated
from ref or ref1, where ref2 can be found as “ref2 =
TextIx + m - 1” or “ref2 = TextIx + m” depending on the
existence of ref or ref1 in Pat, where ref2 = TextIx + m - 1
during the checking step if the character at ref doesn’t
exist in Pat, or ref2 = TextIx + m after the checking step if
the character at ref1 doesn’t exist in Pat. The above
formulas may be illustrated in the following example:
Example 1:

Text: A B C D E F G H
Pat: E F G

In the above Text and Pat assume that the pointers TextIx
and ref1 point to the character ‘D’, the pointer ref points
to the character ‘C’, and m = 3, in this case since the

character ‘C’ at ref doesn’t exist in Pat, then ref2 = TextIx
+ m - 1 = 3 + 3 - 1 = 5. So, start counting from zero, ref2
points to the character ‘F’ in Text. Assuming that the
character ‘C’ in Text is either the character ‘E’, ‘F’, or ‘G’
(i.e., any character exists in Pat) then the character at ref
occurs in Pat, in this case the checking step will be
continued to find out the occurrence of Pat in Text, then
the occurrence of character ‘D’ at ref1 must be examined
whether Pat occurs in Text or not, and since ‘D’ doesn’t
occur in Pat then ref2 = TextIx + m = 3 + 3 = 6, hence,
ref2 points to the character ‘G’ in Text.
In addition to that, ECSA pre-processes the pattern to
produce two different arrays, namely skip and pos, each
array has a length equals to the alphabet size. The skip
array is used when the reference character ref1 exists in
Pat, it expresses how much the pattern is to be shifted
forward after the checking step. While the pos array
defines where each one of the different reference
characters ref1, ref2, ref_ref1, or ref_ref2 is located in Pat,
if any one of them exists in Pat, where the two dynamic
pointers ref_ref1 and ref_ref2 can be calculated from the
two static pointers ref1 and ref2 respectively. In particular,
the dynamic pointer ref_ref1 which is calculated at the
skipping step if ref1 occurs in Pat can be found as
ref_ref1 = ref1 + m - pt, where m is the Pat length and pt
is the location of ref1 in Pat (i.e., pt = pos[Text[ref1]]),
and the dynamic pointer ref_ref2 which is calculated and
used only during checking step if ref doesn’t occur in Pat
or after the checking step if ref1 doesn’t occur in Pat can
be found as ref_ref2 = ref2 + m - pt1, where pt1
determines where ref2 is located in Pat. The above
formulas can be illustrated in the following examples:

Example 2 : Calculating ref_ref1

 0 1 2 3 4 5 6 7
Text: A B G E E F G H
Pat: E F G

Assuming the checking step is performed on the above Text and Pat, then the reference character will be character ‘E’ at
location 3 in Text, and since ‘E’ at ref1 occurs at location 1 in Pat, then pt = pos[Text[ref1]] = pos[‘E’] = 1 (note that for
the case of counting position the counting starts from 1 not zero), and ref_ref1 may be found as ref_ref1 = ref1 + m - pt = 3
+ 3 - 1 = 5 (i.e. ref_ref1 points to the character ‘F’ in Text at location 5).

Example 3 : Calculating ref_ref2 when the character at ref doesn’t occur in Pat

 0 1 2 3 4 5 6 7 8 9 10
Text: A B C D E F G H F E G
Pat: F E G

Since ref doesn’t occur in Pat, then ref2=5 (calculated above in Example 1). Consequently, ref_ref2 = ref2 + m - pt1,
where m = 3 and pt1 = pos[Text[ref2]]) = pos[Text[‘F’]]) = 1. Hence, ref_ref2 may be found as ref_ref2 = 5 + 3 - 1 = 7. In
such a case, the alignment will be with ‘H’ at location 7 in Text, however, the letter ‘H” doesn’t occur in Pat, so, TextIx
will move forward 7 locations to point to the character ‘G’ at position 10.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

199

Example 4 : Calculating ref_ref2 after the checking step if ref1 doesn’t exist in Pat

Let Text and Pat as shown below:

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Text: C D E F G H I J K L E D C M
Pat: E D C

Since the character at ref occurs in Pat and there is a mismatch then ref1 will be considered as a basis for calculating ref2,
and since ref1 doesn’t occur in Pat then ref2 = TextIx + m = 6, and pt1 = pos[Text[ref2]]) = pos[Text[‘I’]]) = 0. Hence,
ref_ref2 may be found as ref_ref2 = ref2 + m - pt1 = 6 + 3 - 0 = 9. In addition, the TextIx pointer will be shifted forward 10
positions to align with the letter Text[ref_ref2] = Text[‘L’] = 3m+1 positions, which is the maximum shift distance that this
algorithm can skip with only two–character-access. As a result, the pointer TextIx will point to the letter ‘M’ at position
Text[13], and the result will be as follows:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Text: C D E F G H I J K L E D C M
Pat: E D C

Based on the above discussion and examples we may
conclude that the ECSA algorithm is designed to scan the
characters of both the text and the pattern from right to
left. At each attempt it first compares the character at
last_mismatch with the corresponding character in Text; if
they match then it compares the first character of Pat with
the corresponding characters in Text, and then if they
match ECSA compares the other characters from right to
left including the character at last_mismatch and
excluding the first character of Pat. Whether there is an
occurrence of Pat in Text or not, the existence of the
character at ref in Pat will be checked first, so there are
two cases:

1) The character at ref exists in Pat:
 In such a case, the existence of Pat in Text will
be checked. After the checking step, the
existence of ref1 in Pat will be examined, hence,
there are two cases:
1.1) The character at ref1 doesn’t exist in Pat.

Then ref2 and ref_ref2 will be
calculated. Next, the pointer TextIx will
be moved forward to align with the
character at ref_ref2.

1.2) The character at ref1 exists in Pat. Then
ref_ref1 will be calculated. Then, the
pointer TextIx will be moved forward to
align with the character at ref_ref1.

2) The character at ref doesn’t exist in Pat:
In this case ref2 and ref_ref2 will be calculated
according to the pointer ref, then the pointer

TextIx will be moved forward to align with the
character at ref_ref2.

Based on that, The ECSA algorithm that reflects the above
ideas is as follows:
1) void PreProcessPat(char *Pat, int PatLength, int *pos,
int *skip)
{
2) char c;
3) /* Fill tables with initial values */
4) for(int j = 0; j<ASIZE; j++) {
5) pos[j]=0; skip[j] = 2*PatLength;
 }
6) /* Compute shift distance and position of
characters in Pat*/
7) for(j=0; j<PatLength; j++) {
8) c = Pat[j]; pos[c]= j +1; skip[c] = 2 *
PatLength - j -1;
 }
}

9) void ECSA(char *Pat, int PatLength, char *Text, int
TextLength, int *pos, int *skip)
{
10) int TextIx, PatIx, last_mismatch, z;
11) int pt, pt1, ref, ref1, ref_ref1, ref2, ref_ref2;
12) int infix[ASIZE] = {0};
13) /* Update infix table according to the first
character in Pat */
14) infix[Pat[0]] = 1; last_mismatch =0;
TextIx = PatLength;
15) // Start Searching operation

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

200

16) while(TextIx<=TextLength+1)
 { // Checking step: Check first the occurrence
of the character at the previous mismatch.
17) if(Text[TextIx - PatLength + last_mismatch] ==
Pat[last_mismatch])
18) // Check now the character in Text that
corresponds the first charcter in Pat;
19) if(infix[Text[TextIx - PatLength]])
20) { // Check the occurrence of Pat in Text
from right to left excluding first character
21) for(z = 0, PatIx = PatLength - 1; PatIx;
PatIx--)
22) if(Text[TextIx - ++z] != Pat[PatIx])
 {
23) last_mismatch = PatIx;
24) goto next;
 }
25) cout<<"\nAn occurrence at location
"<<TextIx-PatLength <<" to "<<TextIx - 1<<endl;
 }
26) // Start the skipping part
27) next:
28) ref = TextIx - 1; ref1 = TextIx;
29) if (!pos[Text[ref]])
 {
30) ref2 = ref + PatLength; pt1 =
pos[Text[ref2]]; ref_ref2 = ref2 + PatLength - pt1;
31) TextIx += 3 * PatLength - pt1 -
pos[Text[ref_ref2]];
 }
32) else
 {
33) pt = pos[Text[ref1]];
34) if(!pt)

 {
35) ref2 = TextIx + PatLength; pt1 =
pos[Text[ref2]]; ref_ref2 = ref2 + PatLength - pt1;
36) TextIx += 3 * PatLength + 1 - pt1 -
pos[Text[ref_ref2]];
 }
 37) else
 {
38) ref_ref1 = ref1 + PatLength - pt;

39) TextIx += skip[Text[ref_ref1]] - pt + 1;
 }
 40) } // This is the end of else of main if statement
 }
41) return;
}

5. Illustration and Discussion

The three algorithms Naïve, BMH, and our new algorithm
ECSA were implemented and compared on English text
with a size of more than two mega characters and contains
85 different characters. The algorithms executed using
Intel(R) Pentium(R) 4 PC with CPU speed 2.40GHz,
246MB RAM, and Windows XP professional operating
system, and a program was designed in C++ to select
randomly 3000 patterns with ranges from 4 to 94
characters, and the average number of occurrences ranges
from 1 to 1177. The cost of the searching process to find
all the occurrences of the different patterns in each group
in Text is measured by finding the search clock time,
where the total clock time includes the preprocessing
clock time of patterns and the searching clock time.

Table 1 : The clock time (seconds) required by Naïve, BMH, and our new algorithm ECSA to find the occurrences of each group of patterns

Clock Time in seconds

Group

No.

Pattern
Length

(in
characters)

Naïve
 BMH ECSA

Improveme

nts of
ECSA vs.

Naïve
BMH

1 4 8.562 3.922 1.341 84.34%
65.81%

2 14 8.516 1.578 0.812 90.47%
48.54%

3 24 8.468 1.140 0.625 92.62%
45.18%

4 34 8.516 0.969 0.547 93.58%
43.55%

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

201

5 44 8.531 0.844 0.485 94.32%
42.54%

6 54 8.422 0.797 0.468 94.44%
41.28%

7 64 8.516 0.750 0.485 94.31%
35.33%

8 74 8.297 0.703 0.437 94.73%
37.84%

9 84 8.593 0.703 0.438 94.90%
37.70%

10 94 8.454 0.687 0.437 94.83%
36.39%

Total time
84.875 12.093 6.075

92.84%
49.76%

Table (1) shows the clock time required to find each group of patterns, and as we can see from the table, ECSA reduces the
clock time required by Naïve and BMH algorithms by 84.34% to 94.9% and 35.33% to 65.81% respectively.
In Fig. 1, the clock time required by the three algorithms: Naïve, BMH, and ECSA to find all the occurrences of Pat in Text
are shown, and from the figure, it is clear that the new developed algorithm outperform Naïve and BMH algorithm.

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10
Group Number

Ti
m

e
 in

 s
ec

on
ds ECSA

BMH

Naïve

Fig.1: The clock time required by Naïve, BMH, and ECSA algorithms to find all the occurrences of patterns in each group

Finally, the analysis of the three algorithms shows that the
enhanced performance of ECSA is due to several factors,
including:
1) Converting character-comparison into character-access:

The ECSA converts the first condition of Pat from
character-comparison (Text[TextIx] == Pat[PatIx])
into character access (if(infix[Text[TextIx]]) with a
reasonable overhead cost.

2) Character-access vs. number-comparison: The ECSA
uses the condition type character-access (if(i)) (this
type of condition needs 40% less time to be executed
than the time needed by any other type of conditions)
in the main loops rather than using the number-
comparison (if (TextIx < TextLen)).

3) The starting point of checking: The ECSA algorithm
starts the comparison at the latest mismatch in the
previous checking. This increases the probability of
finding the mismatch faster if there is a mismatch.

6. Conclusions

A new exact string searching algorithm ECSA was
developed, and its performance was compared with two
classical algorithms, namely, Naïve, and BMH. The
developed algorithm increases the performance of both
checking phase and skipping phases needed for the string
searching process. In the checking phase, ECSA
algorithm uses both the character-access and the
character-comparison tests at the checking step while
most of the current existing algorithms use only the
character-comparison. On the other hand, in the skipping
phase ECSA focuses on increasing the shift distance. The
search clock time criteria was used in an experiment to
compare the performance of ECSA against Naïve, and
BMH. From the results we can see that:

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

202

1) Using ECSA improved the clock time required by
Naïve and BMH by 84.34% to 94.90% and 35.33%
to 65.81% respectively.

2) Decreasing the pattern length decreases the system
performance.

3) In Naïve algorithm, the shift distance is only one
position, and in BMH algorithm it ranges from 1 to m
positions, while in ECSA it ranges from 1 to (3m + 1)
positions. Obviously, increasing the shift distance
has a major effect on reducing the different types of
comparisons and in turn increasing the system
performance.

4) In Naïve algorithm, there is no reference character,
and in BMH there is only one reference character,
while ECSA has five reference characters three of
them are static and the other two are dynamic.
Increasing the number of reference characters
resulted into an increase in the shifted distance.

References

[1] Ukkonen E., "A linear–time algorithm for finding

approximate shortest common superstring", Algorithmica,
1990; 5:313–323.

[2] Stephen G., "String Searching Algorithms", World Scientific,
Singapore, 1994.
[3] Apostolico, "A, Galil Z. Pattern Matching Algorithms",
Oxford University Press, 1997.
[4] Gusfield D., "Algorithms on strings, trees and sequences",

Cambridge University Press, Cambridge, 1997.
[5] Fenwick P., "Fast string matching for multiple searches",
Software–Practice and Experience, 2001, 31(9):815–833.
[6] Liu Z, Du X,and Ishii N., "An improved adaptive string

searching algorithm", Software Practice and Experience,
1988, 28(2):191–198.

[7] Sunday D., "A very fast substring search algorithm",
Communications of the ACM, 1990, 33(8):132–142.
[8] Raita T., "Tuning the Boyer-Moore-Horspool String

Searching Algorithm", Software Practice and Experience,
1992, 22 (10):879-844.

[9] Bruce W., Watson, E., "A Boyer-Moore-style Algorithm for
Regular Expression Pattern Matching", Science of
Computer Programming, 2003, 48: 99-117.

[10] Ager M. S., Danvy O., and Rohde H. K., "Fast partial
evaluation of pattern matching in strings", ACM/SIGPLAN
Workshop Partial Evaluation and Semantic-Based Program
Manipulation, San Diego, California, USA, pp. 3 – 9,
2003.W.-K. Chen, Linear Networks and Systems (Book
style)., Belmont, CA: Wadsworth, 1993, pp. 123–135.

[11] Fredriksson and Grabowski S., “Practical and Optimal
String Matching”, Proceedings of SPIRE'2005, Lecture
Notes in Computer Science 3772, 2005, pp. 374-385,
Springer Verlag.

[12] Hernandez, and Rosenblueth D., “Disjunctive partial
deduction of a right-to-left string-matching algorithm”,
Information Processing Letters, 2003, 87: 235–241.

[13] Apostolico A., and R.Giancarlo R., “The Boyer-Moore-
Galil string searching strategies revisited”, SIAM J.
Comput., 1986, 15(1): 98-105.

[14] Crochemore, “Transducers and repetitions”, Theoret.
Comput. Sci., 1986; 45: 63-86.

[15] Crochemore M., and Perrin D., “Two-way string-
matching”, J. ACM, 1991, 38: 651-675.

[16] Galil Z., and Giancarlo R., “On the exact complexity of
string matching: upper bounds”, SIAM J. Comput., 1992,
21: 407-437.

[17] Smith P. D., “Experiments with a very fast substring search
algorithm”, SP&E, 1991, 21(10): 1065-1074.

[18] Smith P., "On Tuning the Boyer-Moore-Horspool String
Searching Algorithm", Short Communication, Software
Practice and Experience, 1994, 24(4):435-436.

[19] Mhashi M., "A Fast String Matching Algorithm using
Double-Length Skip Distances", Dirasat Journal, University
of Jordan, Jordan, 2003, 30(1):84-92.

 [20] Mhashi M., "The Effect of Multiple Reference Characters
on Detecting Matches in String Searching Algorithms",
Software Practice and Experience, 2005, 35(13): 1299 -
1315.

[21] Mhashi, M., "The Performance of the Character-Access On
the Checking Phase in String Searching Algorithms",
Transactions on Enformatica, Systems Sciences and
Engineering, 2005, 9: 38 –43.

[22] Boyer RS., and Moore JS., "A fast string searching
algorithm", Communications of the ACM, 1977,
20(10):762–772.

[23] Horspool RN., "Practical Fast Searching in Strings",
Software Practice and Experience, 1980, 10(6):501–506.

Mahmoud M. Mhashi Received his M.S.
degree in computer Science from University
of Colorado at Boulder, in 1988, and the Ph.D.
degree in computer Science from University
of Liverpool University of Liverpool, in 1991.
He is currently a Professor at University of
Tabuk. His current research interests include
string searching algorithms.

 Mohammed M. Alwakeel was born in
Tabouk, Saudi Arabia, in 1970. He received
the B.S. degree in computer engineering and
the M.S. degree in electrical engineering, both
from King Saud University, Riyadh, Saudi
Arabia, in 1993 and 1998, respectively, and
the Ph.D. degree in electrical engineering
from Florida Atlantic University, Boca Raton,
in 2005. From 1994 to 1998, he was a
Communications Network Manager at The
National Information Center, Saudi Arabia.
From 1999 to 2001, he was with King

Abdulaziz University, Saudi Arabia, as a Lecturer and was the Vice Dean
of Tabouk Community College. He is currently the Dean of computers
and Information Technology college at University of Tabuk. His current
research interests include teletraffic analysis, cellular systems, image
recognition, and string searching algorithms.

	New Enhanced Exact String Searching Algorithm
	G
	

