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Abstract 
Exact string Searching is one of the most important problems that 
had been investigated by many studies ranging from finding the 
shortest common super string in DNA sequencing to searching 
for occurrences of a pattern occurs in text editors. In this paper, a 
new Enhanced Checking and Skipping Algorithm (ECSA) is 
introduced. The new algorithm enhance the classical string 
searching algorithms by converting the character-comparison 
into character-access, by using the condition type character-
access rather than the number-comparison, and by starting the 
comparison at the latest mismatch in the previous checking, 
which in turn increases the probability of finding the mismatch 
faster if there is any. A computer program is developed to 
compare the performance of the introduced algorithm against the 
conventional Naïve (brute force) and Boyer-Moore-Horsepool 
(BMH) algorithms.  The results of the experiment show that the 
performance of the enhanced algorithm is outperform the 
performance of the introduced algorithms.      
Keywords:  
String-searching, pattern matching, checking and 

skipping, Condition type, and multiple 
references.  

 
1. Introduction 

 
The string searching algorithm is so fundamental that 
most computer programs use it in one form or another,  In 
fact, exact string Searching is one of the most important 
problems that had been investigated by many studies 
ranging from finding the shortest common super string in 
DNA sequencing [1] to searching for occurrences of a 
pattern occurs in text editors.  In general, string searching 
algorithms deal with searching the occurrences of a string 
(the pattern) of size m in a string (the text) of size n 
(where n ≥ m) [2-4]. The string searching algorithm, in 
general, may be represented as follow: 
Algorithm String-Searching 
 // Find all occurrences of Pat[0,m-1] in Text[0,n-
1] 

 { 
  Preprocessing phase; 
  Search phase; 
  Align Pat[0] with Text[0]; 
  While (end of Text is not reached) 
  { 
          Checking step; 

Candidate Checking phase; 

          Detailed comparison phase; 
                       If an occurrence of Pat has been found then 
   Report occurrence; 
          Endif 
          Skipping step; 
   Move forward; 
  } 
 } 

In literature, many exact string searching and pattern 
matching algorithms were introduced and their 
performance were investigate against classical exact string 
searching algorithm such as Naïve (brute force) algorithm 
and Boyer-Moore-Horsepool (BMH) algorithm, some of 
these algorithms preprocess both the text and the pattern 
[5] while others need only to preprocess the pattern [6-9]. 
In all cases, as shown in the general representation of 
searching algorithm above, the exact string searching 
problem consists of two major steps: checking and 
skipping, the checking step itself consists of two phases: 

1) A search along the text for a reasonable 
candidate string 

2) A detailed comparison of the candidate against 
the pattern to verify the potential match. 

Some characters of the candidate string must be selected 
carefully in order to avoid the problem of repeated 
examination of each character of text when patterns are 
partially matched, intuitively, the fewer the number of 
character comparisons in the checking step the better the 
algorithm is.  There are different algorithms that check in 
different ways if the characters in the text match with the 
corresponding characters in the pattern [10-17].  After the 
checking step, the skipping step shifts the pattern to the 
right to determine the next position in the text where the 
substring text can possibly match with the pattern.  The 
reference character is a character in the text chosen as the 
basis for the shift according to the shift table.  In literature, 
the searching algorithms may use one reference character 
or use two reference characters, where the references 
might be static or dynamic [18-20].  In addition, some of 
the algorithms focus on the performance of the checking 
operation while others focus on the performance of the 
skipping operation [21].  The main goal of this paper is to 
develop a new enhanced checking and skipping algorithm 
(ECSA) that can be used for string searching and patter 
matching and outperform the algorithms introduced in 
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literature. The rest of this paper is organized as follow: In 
section 2, the classical Naïve exact string searching 
algorithm is explained. Boyer-Moore-Horsepool (BMH) 
exact string searching algorithm is introduced in section3. 
In section 4 the developed enhanced checking and 
skipping algorithm (ECSA) is introduced. Numerical 
results and illustrations of the performance of the 
developed ECSA are presented in Section 5. Finally, some 
concluding remarks are made in Section 6. 
 
2. The Naïve or (Brute Force) Algorithm 

 
To illustrate this straightforward algorithm, let us assume 
that the target sequence is an array Text[n] of n characters 
and the pattern sequence is the array Pat[m] of m 
characters, then a Naïve approach to the problem would 
be:  

void Naïve  (char *Pat, int PatLength, char *Text, int 
TextLength) 

{ 
    for (int TextIx = 0; TextIx <= TextLength - 

PatLength; TextIx ++) 
    { 
        int PatIx = 0; 

        while (Text[TextIx  + PatIx] == Pat[PatIx]) 
        { 
   if (PatIx == PatLength -1) 
             { 

                cout << "\n  Occurence at " << TextIx  << " 
to " << TextIx + PatIx; 

                break; 

    }      
              else PatIx ++; 

             } 
    } 
    return; 
} 

In the outer loop, Text is searched for occurrences of the 
first character in Pat.  In the inner loop, a detailed 
comparison of the candidate string is made against Pat to 
verify the potential match.  The algorithm has a worst case 
time of O(nm), where O(nm) is the number of 
comparisons performed by the algorithm to find all the 
occurrences of Pat with size m characters in the Text with 
size n characters.  The worst case in this algorithm occurs 
when we get a match on each of the n Text characters and 
at each position we may need to perform m comparisons. 

 
 

The following example illustrates this algorithm: 
 
 assume that we are given the following Text and Pat: 
 

Text: A C C D E F C F X G H C F B C F B 
Pat: C F X 

 
Searching process: Loop 1: 
Comparison starts from left to right   

C F X Pat[j] 
≠ 
A C C D E F C F X G H C F B C F B Text[i] 

(Pat[j] = ‘C’) ≠ (Text[i] = ‘A’).  
 
Skipping right one position produces Loop 2: 

 C F X Pat[j] 
 = ≠ 
A C C D E F C F X G H C F B C F B Text[i] 

(Pat[j] = ‘C’) == (Text [i] = ‘C’);  (Pat[j + 1] = ‘F’) ≠ (Text [i + 1] = ‘C’).  
 
Loop 3 is similar to loop 2 in the sense that it needs two character comparisons to find the mismatch.  
 
Loop 4: 

   C F X Pat[j] 
   ≠ 
A C C D E F C F X G H C F B C F B Text[i] 
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(Pat[j] = ‘C’) ≠ (Text [i] = ‘D’).  
 
Loop 5 and loop 6 are similar to loop 4 in the sense that each one of them needs one character comparison to find the 
mismatch. 
 
Loop 7: 

      C F X Pat[j] 
      = = =
A C C D E F C F X G H C F B C F B Text[i] 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  

Each character in Pat matches the corresponding character in Text, hence, there is an occurrence at location 6 to 8.   
Each one of the next four loops (loop 8 to loop 11) needs one character comparison to find the mismatch.   
 
Loop 12: 

           C F X Pat[j]
           = = ≠
A C C D E F C F X G H C F B C F B Text[i] 

(Pat[j] = ‘C’) == (Text[i] = ‘C’);  (Pat[j + 1] = ‘F’) == (Text [i + 1] = ‘F’);  (Pat[j + 2] = ‘X’) ≠ (Text[i + 2] = ‘B’).   
Each one of the next two loops (loop 13 and loop 14) needs only one character comparison to find the mismatch.  
 
Loop 15: 

              C F X Pat[j] 
              = = ≠ 
A C C D E F C F X G H C F B C F B Text[i] 

(Pat[j] = ‘C’) == (Text [i] = ‘C’);  (Pat[j + 1] = ‘F’) == (Text [i + 1] = ‘F’);  (Pat[j + 2] = ‘X’) ≠ (Text [i + 2] = ‘B’). 
Moving one position ends the searching process, hence, to find all the occurrences of Pat in Text 23 character comparisons 
are needed in addition to 55 number comparisons (i.e., the total number of comparisons is 78). 
 
 
3. Boyer–Moore–Horsepool (BMH) 

Algorithm 
  

Horspool is one of many authors extended the BM 
algorithm [22].  Horspool proposed the Boyer–Moore–
Horspool (BMH) [23] algorithm that is regarded as the 
best general-purpose string-searching algorithm.  The 
algorithm scans the characters of the pattern from right to 

left beginning with the rightmost character.  In case of a 
mismatch (or a complete match of the whole pattern), it 
uses only a single auxiliary skip table indexed by the 
mismatching text symbols.  If the reference character in 
Text (the character that corresponds the last character in 
Pat) does not occur in Pat it is possible to skip forward by 
m positions (the pattern length) and repeat the 
examination. 

 
 

The following example explains the algorithm:  
 
Assume that we are given the following Text and Pat.:  
 

Text: A C C D E F C F X G H C F B C F B 
Pat: C F X 

 
The construction of the skip table for the pattern follows: 
 

0 1 2 3 4 5 6 7 8 9 10 11 
A B C D E F G H … X Y Z 
3 3 2 3 3 1 3 3 … 3 3 3 
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Any character that is not in the pattern will produce a shift distance equals to m, where m = 3.  Any character in the pattern 
Pat[j] produces a shift distance equals to m - j, where j = 0, 1, & 2.  Searching process:  
 
Loop 1: 
     Comparison starts from right to left 

C F X Pat[j] 
 ≠  
A C C D E F C F X G H C F B C F B Text[i] 

(Pat[j] = ‘X’) ≠ (Text[i] = ‘C’).  Looking up in the skip table for character ‘C’ gives value 2.   
 
Skipping right 2 positions produces Loop 2: 

  C F X Pat[j] 
    ≠    
A C C D E F C F X G H C F B C F B Text[i] 

(Pat[j] = ‘X’) ≠ (Text[i] = ‘E’).  Lookup in the skip table for character ‘E’ gives value 3.   
 
Skipping right 3 positions produces Loop 3: 

     C F X Pat[j] 
      ≠    
A C C D E F C F X G H C F B C F B Text[i] 

(Pat[j] = ‘X’) ≠ (Text[i] = ‘F’).  A look up in the skip table for character ‘F’ gives value 1.   
 
Skipping right one position produces Loop 4: 

      C F X Pat[j] 
      = = =
A C C D E F C F X G H C F B C F B Text[i] 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  

Each character in Pat matches the corresponding character in Text.  There is an occurrence at location 6 to 8.  Looking up 
in the skip table for character ‘X’ gives value 3.   
 
Skipping right 3 positions produces Loop 5: 

         C F X Pat[j] 
           ≠
A C C D E F C F X G H C F B C F B Text[i] 

(Pat[j] = ‘X’) ≠ (Text[i] = ‘C’).  A look up in the skip table for character ‘C’ gives value 2.  
 
 Skipping right 2 positions produces Loop 6: 

           C F X Pat[j] 
             ≠
A C C D E F C F X G H C F B C F B Text[i] 

(Pat[j] = ‘X’) ≠ (Text[i] = ‘B’).  Looking up in the skip table for character ‘B’ gives value 3.   
 
Skipping right 3 positions produces Loop 7: 

              C F X Pat[j] 
                ≠ 
A C C D E F C F X G H C F B C F B Text[i] 

(Pat[j] = ‘X’) ≠ (Text[i] = ‘B’).  Lookup in the skip table for character ‘B’ gives value 3.  Skipping right 3 positions ends 
the searching process.  
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In this example, for a pattern of 3 characters and a Text of 17 characters, only 9 character comparisons have been 
performed, in addition to 25 number comparisons, to find all the occurrences of Pat in Text (i.e., total number of 
comparisons is 34). 
 
 
void PreProcessBMH(char *Pat, int PatLength, int 
*skip_table) 
{ 
   for(int i = 0; i < ASIZE; i++) 
       skip_table[i] = PatLength; 
   for(i = 0; i < PatLength - 1; i++) 
       skip_table[Pat[i]] = PatLength - i - 1; 
} 
 
void BMH(char *Pat, int PatLength, char *Text, int 
TextLength, int *skip_table)  
{ 
     char c; 
     /* Preprocessing */ 
     PreProcessBMH(Pat, PatLength, skip_table); 
     /* Searching */ 
     int TextIx = 0; 
     while (TextIx <= TextLength - PatLength) 
     { 
           c = Text[TextIx + PatLength - 1]; 
           if (Pat[PatLength - 1]  == c && memcmp(Pat, Text 
+ TextIx, PatLength - 1) == 0) 
                 cout<<"\nOccurence at location "<<TextIx<<" 
to location "<< TextIx + PatLength –1; 
          TextIx += skip_table [c]; 
     } 
} 
 
4. Enhanced Checking and Skipping 
Algorithm (ECSA) 
 
As we mentioned earlier, a string matching algorithm is a 
succession of checking and skipping, where  the aim of a 
good algorithm is to minimize the work done during each 
checking and to maximize the length distance during the 
skipping. Most of the string matching algorithms 
preprocess the pattern before the search phase to help the 
algorithm to maximize the length of the skips, the 
preprocessing phase in this new ECSA algorithm helps in 
both increases the performance of the checking step by 
converting some of the character-comparison into 
character-access and maximizes the length of the skips. At 
each attempt during the checking steps the ECSA 
algorithm compares the character at last_mismatch (the 
character that causes the mismatch in the previous 
checking step) with the corresponding character in Text; if 
they match then it compares the first character of Pat with 
the corresponding character in Text, finally if they match 
the ECSA compares the other characters from right to left 

including the character at last_mismatch (because rather 
the cost is high) and excluding the first character of Pat. 
The enhanced performance of this algorithm during the 
checking step is due to the fact that the mismatch is 
detected quickly by starting the comparison, after each 
shift, at the location last_mismatch (see line 17 in ECSA 
algorithm),  if there is a match then the comparison goes 
from right to left, including the compared character at 
last_mismatch.  The idea here is that the mismatched 
character must be given a high priority in the next 
checking operation.  After a number of checking steps, 
this leads to start the comparison at the least frequent 
character without counting the frequency of each 
character in the text.  Another enhancement is due to 
several improvements in the process and in the 
programming technique itself, including converting a 
number-comparison and a character-comparison into a 
character-access (such as converting condition of type if(j 
< n) into a condition of type if(j),  These improvements 
may be summarized in the following points: 
1) The following style of for-statement:  

for (int j = 0; j < n; j++) { 
 is changed into the following style: 
  for (int j = n; j ; j-- ) { 
In another words, the number comparison of 
condition type “if( j < n)” is changed into a character 
access of condition type “if( j )”. 

2) Converting the character-comparison into character-
access:  This conversion is explained using the 
following example; assume that we have the 
following Pat and Text. 

 0 1 2 3 4 
Text: A C F X G 
Pat: C F X   
 
To compare the character ‘C’ in Pat with the character ‘A’ 
in Text at location zero, most programmers normally write 
the statement if(Text[i] == Pat[j]), where i = j = 0.  To 
convert this character-comparison into a character-access, 
a new array must be declared with alphabet size and 
initialized by zero, as shown in line 12 in ECSA (int 
infix[ASIZE] = {0};). Performing line 14 in ECSA 
infix[Pat[0]] = infix[‘C’] = 1 sets the location ‘C’ in the 
array infix by one. So if   TextIx = 0 and Text[0] = ‘A’, 
then executing the character-access at line 19,  
if(infix[Text[TextIx]]), which is equivalent to the condition 
if(infix[‘A’]) = 0, produces false result. However, if the 
character at location zero in Text is the character ‘C’, then 
line 19  if(infix[Text[TextIx]]) = if(infix[Text[0]]) = 
if(infix[‘C’]) = 1, produces true result.  Hence, the 
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condition if(Text[i] == Pat[j]) of type character-
comparison is replaced by the condition 
if(infix[Text[TextIx]]) of type character-access. The 
condition at line 19 serves two goals, the first is 
converting the character-comparison to character-access at 
Pat[0], and the second is Checking the character at 
location Pat[0] in advance before entering the for-
statement at line 21.  This occurs because the value of 
index PatIx becomes zero at the end of the loop at line 21 
and the control will exit the loop without checking the 
character at location Pat[0]. 
For the skipping step, ECSA has five reference characters, 
including three static references and two dynamic 
references.  The Text pointer TextIx always points to the 
character, which is next to the character corresponding to 
the last character in Pat and the reference character ref 
always points to the character that corresponds to the last 
character in Pat (i.e. ref = TextIx – 1). Now let ref1 = 
TextIx, then the reference character ref2 can be calculated 
from ref or ref1, where ref2 can be found as “ref2 = 
TextIx + m - 1” or “ref2 = TextIx + m” depending on the 
existence of ref or ref1 in Pat, where ref2 = TextIx + m - 1 
during the checking step if the character at ref doesn’t 
exist in Pat, or ref2 = TextIx + m after the checking step if 
the character at ref1 doesn’t exist in Pat.  The above 
formulas may be illustrated in the following example: 
Example 1: 

Text: A B C D E F G H
Pat: E F G      

In the above Text and Pat assume that the pointers TextIx 
and ref1 point to the character ‘D’, the pointer ref points 
to the character ‘C’, and m = 3,  in this case since the 

character ‘C’ at ref doesn’t exist in Pat, then ref2 = TextIx 
+ m - 1 = 3 + 3 - 1 = 5. So, start counting from zero, ref2 
points to the character ‘F’ in Text.  Assuming that the 
character ‘C’ in Text is either the character ‘E’, ‘F’, or ‘G’ 
(i.e., any character exists in Pat) then the character at ref 
occurs in Pat,  in this case the checking step will be 
continued to find out the occurrence of Pat in Text, then 
the occurrence of character ‘D’ at ref1 must be examined 
whether Pat occurs in Text or not, and  since ‘D’ doesn’t 
occur in Pat then ref2 = TextIx + m  = 3 + 3  = 6,  hence, 
ref2 points to the character ‘G’ in Text. 
In addition to that, ECSA pre-processes the pattern to 
produce two different arrays, namely skip and pos, each 
array has a length equals to the alphabet size. The skip 
array is used when the reference character ref1 exists in 
Pat, it expresses how much the pattern is to be shifted 
forward after the checking step. While the pos array 
defines where each one of the different reference 
characters ref1, ref2, ref_ref1, or ref_ref2 is located in Pat, 
if any one of them exists in Pat, where the two dynamic 
pointers ref_ref1 and ref_ref2 can be calculated from the 
two static pointers ref1 and ref2 respectively. In particular, 
the dynamic pointer ref_ref1 which is calculated at the 
skipping step if ref1 occurs in Pat can be found as  
ref_ref1 = ref1 + m - pt, where m is the Pat length and pt 
is the location of ref1 in Pat (i.e., pt = pos[Text[ref1]]), 
and the dynamic pointer ref_ref2 which is calculated and 
used only during checking step if ref doesn’t occur in Pat 
or after the checking step if ref1 doesn’t occur in Pat can 
be found as  ref_ref2 = ref2 + m - pt1, where pt1 
determines where ref2 is located in Pat. The above 
formulas can be illustrated in the following examples: 

 
 
Example 2 : Calculating ref_ref1 

 
 0 1 2 3 4 5 6 7
Text: A B G E E F G H
Pat: E F G

 
Assuming the checking step is performed on the above Text and Pat, then the reference character will be character ‘E’ at 
location 3 in Text, and since ‘E’ at ref1 occurs at location 1 in Pat, then pt = pos[Text[ref1]] = pos[‘E’] = 1 (note that for 
the case of counting position the counting starts from 1 not zero),  and ref_ref1 may be found as ref_ref1 = ref1 + m - pt = 3 
+ 3 - 1 = 5 (i.e. ref_ref1 points to the character ‘F’ in Text at location 5).   
 
Example 3 : Calculating ref_ref2 when the character at ref doesn’t occur in Pat 
 

  0 1 2 3 4 5 6 7 8 9 10 
Text: A B C D E F G H F E G 
Pat: F E G   

 
Since ref doesn’t occur in Pat, then ref2=5 (calculated above in Example 1).  Consequently, ref_ref2 = ref2 + m - pt1, 
where m = 3 and pt1 = pos[Text[ref2]]) = pos[Text[‘F’]]) = 1.  Hence, ref_ref2 may be found as ref_ref2 = 5 + 3 - 1 = 7.  In 
such a case, the alignment will be with ‘H’ at location 7 in Text, however, the letter ‘H” doesn’t occur in Pat, so, TextIx 
will move forward 7 locations to point to the character ‘G’ at position 10. 
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Example 4 : Calculating ref_ref2 after the checking step if ref1 doesn’t exist in Pat 
 
Let Text and Pat as shown below: 
 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 
Text: C D E F G H I J K L E D C M 
Pat: E D C            

 
Since the character at ref occurs in Pat and there is a mismatch then ref1 will be considered as a basis for calculating ref2, 
and since ref1 doesn’t occur in Pat then ref2 = TextIx + m = 6, and pt1 = pos[Text[ref2]]) = pos[Text[‘I’]]) = 0. Hence, 
ref_ref2 may be found as ref_ref2 = ref2 + m - pt1 = 6 + 3 - 0 = 9.  In addition, the TextIx pointer will be shifted forward 10 
positions to align with the letter Text[ref_ref2] = Text[‘L’] = 3m+1 positions, which is the maximum shift distance that this 
algorithm can skip with only two–character-access.  As a result, the pointer TextIx will point to the letter ‘M’ at position 
Text[13], and the result will be as follows:  
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 
Text: C D E F G H I J K L E D C M 
Pat:           E D C  

 
 
 

 
Based on the above discussion and examples we may 
conclude that the ECSA algorithm is designed to scan the 
characters of both the text and the pattern from right to 
left.  At each attempt it first compares the character at 
last_mismatch with the corresponding character in Text; if 
they match then it compares the first character of Pat with 
the corresponding characters in Text, and then if they 
match ECSA compares the other characters from right to 
left including the character at last_mismatch and 
excluding the first character of Pat.   Whether there is an 
occurrence of Pat in Text or not, the existence of the 
character at ref in Pat will be checked first, so there are 
two cases: 

1) The character at ref exists in Pat: 
 In such a case, the existence of Pat in Text will 
be checked.  After the checking step, the 
existence of ref1 in Pat will be examined, hence, 
there are two cases: 
1.1) The character at ref1 doesn’t exist in Pat.  

Then ref2 and ref_ref2 will be 
calculated. Next, the pointer TextIx will 
be moved forward to align with the 
character at ref_ref2. 

1.2) The character at ref1 exists in Pat.  Then 
ref_ref1 will be calculated.  Then, the 
pointer TextIx will be moved forward to 
align with the character at ref_ref1. 

2) The character at ref doesn’t exist in Pat: 
In this case ref2 and ref_ref2 will be calculated 
according to the pointer ref, then the pointer 

TextIx will be moved forward to align with the 
character at ref_ref2.  

Based on that, The ECSA algorithm that reflects the above 
ideas is as follows: 
1) void PreProcessPat(char *Pat, int PatLength, int *pos, 
int *skip) 
{ 
2)       char c;  
3)      /* Fill tables with initial values */  
4)      for(int j = 0; j<ASIZE; j++) {  
5) pos[j]=0;     skip[j] = 2*PatLength; 
        } 
6)       /*  Compute shift distance and position of 
characters in Pat*/ 
7)       for( j=0; j<PatLength; j++) { 
8) c = Pat[j];       pos[c]= j +1;  skip[c] = 2 * 
PatLength - j -1; 
        } 
} 
 
9) void ECSA(char *Pat, int PatLength, char *Text, int 
TextLength, int *pos, int *skip) 
{  
10)      int TextIx, PatIx, last_mismatch, z; 
11)      int pt, pt1, ref, ref1, ref_ref1,  ref2, ref_ref2; 
12)      int infix[ASIZE] = {0};  
13)      /* Update infix table according to the first 
character in Pat */ 
14)      infix[Pat[0]] = 1;       last_mismatch =0;          
TextIx = PatLength; 
15)      // Start Searching operation  
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16)      while(TextIx<=TextLength+1)  
       {            // Checking step: Check first the occurrence 
of the character at the previous mismatch.  
17)  if(Text[TextIx - PatLength + last_mismatch] == 
Pat[last_mismatch]) 
18)               // Check now the character in Text that 
corresponds the first charcter in Pat;  
19)               if(infix[Text[TextIx - PatLength]]) 
20)                {  // Check the occurrence of Pat in Text 
from right to left excluding first character                             
21)          for( z = 0, PatIx = PatLength - 1; PatIx;  
PatIx--  ) 
22)  if(Text[TextIx - ++z] != Pat[PatIx])  
                             { 
23)   last_mismatch = PatIx; 
24)   goto next; 
  } 
25)          cout<<"\nAn occurrence at location 
"<<TextIx-PatLength <<" to "<<TextIx - 1<<endl; 
                  }    
26)            // Start the skipping part 
27)             next: 
28)            ref = TextIx - 1;  ref1 = TextIx; 
29)           if ( !pos[Text[ref]] )  
           {  
30)   ref2 = ref + PatLength;      pt1 = 
pos[Text[ref2]];       ref_ref2 = ref2 + PatLength - pt1; 
31)   TextIx  +=  3 * PatLength - pt1 - 
pos[Text[ref_ref2]]; 
            } 
32)            else  
            { 
33)     pt = pos[Text[ref1]];  
34)                if( !pt) 

                 { 
35)         ref2 = TextIx + PatLength;    pt1 = 
pos[Text[ref2]];      ref_ref2 = ref2 + PatLength - pt1; 
36)        TextIx  +=  3 * PatLength + 1 - pt1 - 
pos[Text[ref_ref2]]; 
                  }   
 37)                  else  
                  {   
38)           ref_ref1 = ref1 + PatLength - pt; 
  
39)           TextIx += skip[Text[ref_ref1]] - pt + 1; 
                  } 
 40)            }  // This is the end of else of main if statement 
       } 
41)       return; 
} 
 
5. Illustration and Discussion 
   
The three algorithms Naïve, BMH, and our new algorithm 
ECSA were implemented and compared on English text 
with a size of more than two mega characters and contains 
85 different characters. The algorithms executed using 
Intel(R) Pentium(R) 4 PC with CPU speed 2.40GHz, 
246MB RAM, and Windows XP professional operating 
system, and a program was designed in C++ to select 
randomly 3000 patterns with ranges from 4 to 94 
characters, and the average number of occurrences ranges 
from 1 to 1177.  The cost of the searching process to find 
all the occurrences of the different patterns in each group 
in Text is measured by finding the search clock time, 
where the total clock time includes the preprocessing 
clock time of patterns and the searching clock time. 

 
 

Table 1 : The clock time (seconds) required by Naïve, BMH, and our new algorithm ECSA to find the occurrences of each group of patterns  
 

Clock Time in seconds 

 
Group 

No. 

Pattern 
Length 

(in 
characters) 

Naïve 
 BMH ECSA 

 
Improveme

nts  of  
ECSA  vs. 

Naïve         
BMH 

1 4 8.562 3.922 1.341 84.34%        
65.81% 

2 14 8.516 1.578 0.812 90.47%        
48.54% 

3 24 8.468 1.140 0.625 92.62%        
45.18% 

4 34 8.516 0.969 0.547 93.58%        
43.55% 
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5 44 8.531 0.844 0.485 94.32%        
42.54% 

6 54 8.422 0.797 0.468 94.44%        
41.28% 

7 64 8.516 0.750 0.485 94.31%        
35.33% 

8 74 8.297 0.703 0.437 94.73%        
37.84% 

9 84 8.593 0.703 0.438 94.90%        
37.70% 

10 94 8.454 0.687 0.437 94.83%        
36.39% 

Total time 
84.875 12.093 6.075 

92.84%        
49.76% 

 
Table (1) shows the clock time required to find each group of patterns, and as we can see from the table, ECSA reduces the 
clock time required by Naïve and BMH algorithms by 84.34% to 94.9% and 35.33% to 65.81% respectively. 
In Fig. 1, the clock time required by the three algorithms: Naïve, BMH, and ECSA to find all the occurrences of Pat in Text 
are shown, and from the figure, it is clear that the new developed algorithm outperform Naïve and BMH algorithm. 
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Fig.1:  The clock time required by Naïve, BMH, and ECSA algorithms to find all the occurrences of patterns in each  group  
 

 
Finally, the analysis of the three algorithms shows that the 
enhanced performance of ECSA is due to several factors, 
including: 
1) Converting character-comparison into character-access:  

The ECSA converts the first condition of Pat from 
character-comparison (Text[TextIx] == Pat[PatIx]) 
into character access (if(infix[Text[TextIx]]) with a 
reasonable overhead cost. 

2) Character-access vs. number-comparison:  The ECSA 
uses the condition type character-access (if(i)) (this 
type of condition needs 40% less time to be executed 
than the time needed by any other type of conditions) 
in the main loops rather than using the number-
comparison (if (TextIx < TextLen)). 

3) The starting point of checking: The ECSA algorithm 
starts the comparison at the latest mismatch in the 
previous checking.  This increases the probability of 
finding the mismatch faster if there is a mismatch.  

 
6. Conclusions 
 
A new exact string searching algorithm ECSA was 
developed, and its performance was compared with two 
classical algorithms, namely, Naïve, and BMH.  The 
developed algorithm increases the performance of both 
checking phase and skipping phases needed for the string 
searching process.  In the checking phase, ECSA 
algorithm uses both the character-access and the 
character-comparison tests at the checking step while 
most of the current existing algorithms use only the 
character-comparison. On the other hand, in the skipping 
phase ECSA focuses on increasing the shift distance.  The 
search clock time criteria was used in an experiment to 
compare the performance of ECSA against Naïve, and 
BMH. From the results we can see that: 
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1) Using ECSA improved the clock time required by 
Naïve and BMH by 84.34% to 94.90%  and 35.33% 
to 65.81% respectively. 

2) Decreasing the pattern length decreases the system 
performance. 

3) In Naïve algorithm, the shift distance is only one 
position, and in BMH algorithm it ranges from 1 to m 
positions, while in ECSA it ranges from 1 to (3m + 1) 
positions.  Obviously, increasing the shift distance 
has a major effect on reducing the different types of 
comparisons and in turn increasing the system 
performance. 

4) In Naïve algorithm, there is no reference character, 
and in BMH there is only one reference character, 
while ECSA has five reference characters three of 
them are static and the other two are dynamic.  
Increasing the number of reference characters 
resulted into an increase in the shifted distance. 
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