
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

206

Manuscript received April 5, 2010

Manuscript revised April 20, 2010

Optimizing Scheduling Policy of Queuing Systems in

Heterogeneous Environments using Fuzzy Reasoning

Essam Natsheh† and Khalid A. Buragga†

† College of Computer Sciences & IT, King Faisal University, Hofuf 31982, Saudi Arabia

Summary
This paper considers a queuing model with batch Poisson input

and two heterogeneous servers, where the service times are

exponentially distributed. The faster server is always on, but the

slower server is only used when the queue length exceeds a

certain level. Traditionally, this was done through scheduling

policy. In this paper an enhanced algorithm, called fuzzy

scheduling policy, is suggested using fuzzy reasoning to achieve

the benefits of heterogeneity in service rates. Uncertainty

associated with queue congestion estimation and lack of

mathematical model for estimating heterogeneity in service rates

makes the fuzzy scheduling algorithm the best choice. Extensive

performance analysis via simulation showed the effectiveness of

the proposed method for congestion detection and avoidance

improving overall queuing systems.

Key words:
Queuing theory, heterogeneous service rates , optimal control ,

optimal customer allocation, fuzzy reasoning

1. Introduction

Multi-server queuing systems are of interest in

applications such as multiprocessor systems as well as

communication networks. There are two kinds of server

heterogeneity: one where the servers have different mean

service rates and another where the servers have different

service functions, as when some servers serve only a

certain class of customers. For clarity, we call the two

kinds of service server heterogeneity in service rates and

server heterogeneity in service functions. This paper

tackles the problem of optimal control of queuing systems

with heterogeneous servers using fuzzy reasoning

algorithm. The system objective is to assign customers

dynamically to idle servers in order to minimize the

average cost of holding customers [1-2].

 We examine the case of queuing systems with server

heterogeneity in service rates. This case has been

examined in the works of Nobel and Tijms [3] and Viniotis

and Ephremidis [4]. The fuzzy reasoning approach is

totally different from classical approaches.

In addition to the papers noted above, results on optimal

routing of customers to multiple servers also have been

reported elsewhere. In [5] and [6], Liu described an

approach to improve the performance of the M/M/2 queue

(a queue with two parallel servers and exponential

inter-arrival times (iat) and service times) by replacing its

homogeneous servers with heterogeneous servers. The

author showed that there exists an optimal ratio at which

the first order and second order metrics reach their

optimums.

 The problem of optimal allocation of customers in a

two server queue with heterogeneous service rates and

re-sequencing is addressed by Varma [7] and Xia and Tse

[8]. The re-sequencing constraint ensures that the

customers leave the system in the order in which they

entered it. A comprehensive discussion on optimal service

control of queuing systems can be found in the survey

papers of Stidham [9] and Dragicevic and Bauer [10].

 Most of the work mentioned thus far employs

conventional stochastic threshold policy. In this paper, we

propose an entirely new threshold policy using fuzzy

reasoning and show via simulation that this new threshold

policy efficiently solves cases intractable with classical

threshold policy.

 The rest of this paper is organized as follows. Section

2 summarizes problem description. Followed by the fuzzy

scheduling policy as a new scheduling policy for queuing

systems, performance analyzes of the proposed algorithm,

and finally the conclusions.

2. Problem Description

The queuing system considered here is as follows:

Customers arrive at the buffer in a Poisson stream with

constant rate. The buffer has limited capacity and the order

of service is irrelevant. The buffer is served by two

exponential servers with different mean service rates µ1

and µ2 where λ < µ1 + µ2. Without loss of generality, it is

assumed that: µ1 > µ2.

 The problem is to assigns customers to idle servers

dynamically so as to minimize the sum of waiting time in

queue and service time of the customers.

 The sojourn time is the sum of waiting time in queue

and service time. By Little‘s theorem [11], the system

objective is equivalent to minimizing the mean number of

customers in the system. Another objective could be to

minimize the average holding cost if we assume a holding

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

207

cost per customer per unit time. This process is a

continuous time Markov decision process.

 Lin and Kumar [12] prove that there exists an optimal

policy and it is of the threshold type. Specifically, the

faster server should be fed a customer from the buffer

whenever the server is available for service, but the slower

server should be utilized if and only if the queue length

exceeds a critical threshold value n. Walrand [13] gives the

same result a simpler proof, using a probabilistic argument.

Viniotis and Ephremidis [4] extend the same result with

less restrictions. The last two papers, however, do not

facilitate the calculation of the threshold. A threshold

policy is of the type of faster server first allocation [2].

3. Fuzzy Scheduling Policy for Queuing

Systems

In this section, concepts and rules of the proposed fuzzy

scheduling policy algorithm for queuing systems are

introduced. In the following two subsections, we studied

the effect of some queue parameters on scheduling policy

algorithm. These parameters are used in subsection 3 to

create the rules of the proposed fuzzy scheduling policy.

Method to design their membership functions is presented

in the later subsection. Overall system design and its

implementation complexity are presented in subsection 5

and 6.

3.1 Effect of Current Queue Size on Scheduling

Policy

Current queue size qc is the most used indicator in

scheduling policy for estimating the probability of dropping

the incoming packets. The drop probability pd can be

calculated as [14]:

 2
22

cp

d
qCT

N
p




where N is a load factor, C is a transmission capacity (in

packets/seconds) and Tp is a propagation delay (in seconds).

Assuming a 10 Mbps (2500 packets/sec) transmission

capacity with a 100 msec propagation delay, Fig. 1 shows

the relation between pd and the load for various queue sizes.

It is evident that the probability of a packet dropping

increases as the load increases. More packets in the queue

wait for processing as load increases. Thus, it can be stated

that when the used space of the queue is high, srv2Status

must be Yes and vice versa. Consequently the following

rules are proposed:

R1: If qc is low then srv2Status is No

R2: If qc is medium then srv2Status is No

R3: If qc is high then srv2Status is Yes

Fig. 1 Drop probability for the coming load.

3.2 Effect of Node Neighborhood Density on

Scheduling Policy

In computer networks, the traffic is categorized as: data

packets and control messages. The control messages are

used to continuously update the nodes about the topology

changes (new created or lost links). For example, if a node

has two neighbors that means it will receive two Hello

messages every second from them. Besides, receiving a

route request messages, a route breaks messages, or data

packets. If that node has ten neighbors, this means it will

receive, in every second, ten Hello messages beside bulk

amount of control messages and data packets. Hence, it is

clear that the traffic pass through the nodes with few

neighborhoods is less than the others with many

neighbors.

 In Eq.(1), the load N can be written as:






n

i

iN

0



where λi denote flow's rate from the neighbor node i and n

is the number of neighbors. The congestion will happen at:

mc

n

i

id qqandCifp  
0

1 

where qm is the maximum queue size. Hence, if the

neighbors' density (nd) of a node's is high, the node's queue

will be full quickly and increases the probability of

congestion and vice versa. Consequently the following

rules are proposed:

R4: If nd is low then srv2Status is No

R5: If nd is medium then srv2Status is Yes

R6: If nd is high then srv2Status is Yes

(1)

(3)

(2)

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

208

 3.3 The Rule-base for Fuzzy Scheduling Policy

To fulfill the fuzzy sets theory, the previous six rules (R1

to R6) can be combined within a 2-dimensional rule-base

to control scheduling policy adaptively as presented in

Table 1. For example, according to Table 1 the first rule is:

IF qc is Low AND nd is Low THEN srv2Status is No

Table 1: Fuzzy scheduling policy rules for queuing systems

nd

 Low Medium High

qc

Low No No No

Medium No Yes Yes

High Yes Yes Yes

3.4 Membership Functions for the Fuzzy Variables

After defining the fuzzy linguistic ‗if-then‘ rules, the

membership function (MF) corresponding to each element

in the linguistic set should be defined. For example, if the

queue size is 5 k bytes and qc equal to 2 k bytes, using

conventional concept, it implies qc is either ‗low‘ or

‗medium‘ but not both. In fuzzy logic, however, the

concept of MFs allows us to say the qc is ‗low‘ with 80%

membership degree and ‗medium‘ with 20% membership

degree.

 The MFs we propose to use for the fuzzy inputs (qc,

nd) and the fuzzy output (srv2Status) are illustrated in Fig.

2. These MFs are used due to their economic value of the

parametric and functional descriptions. In these MFs, the

designer needs only to define one parameter; midpoint.

These MFs mainly contain the triangular shaped MF. This

function is specified by three parameters (a, b, c) as

follows:

 
   
   














elsewhere

cxbforbcxc

bxaforabax

cbaxtriangle

0

/

/

,,;

 (4)

where a = midpoint/2, b = midpoint, c = 3 × midpoint/2

and x is the input to the fuzzy system. The remaining MFs

are as follows: Z-shaped membership to represent the

whole set of low values and S-shaped membership to

represent the whole set of high values.

 Maxpoint is the maximum queue size in qc−MF (Table

1), and it is the number of the network's nodes in nd −MF.

 Midpoint of qc−MF is a threshold that indicates

whether the queue is going to be full soon. The threshold is

simply set to 60% of the queue size. The optimal value for

this variable depends in part on the maximum average

delay that can be allowed by the nodes.

 Midpoint of nd−MF is a threshold that indicates

whether the congestion will happen. The threshold is

simply set to 60% of the expected flow's rate from the

neighbor nodes.

Fig. 2 Membership functions used for the fuzzy variables.

3.5 Fuzzification, Inference and Defuzzification

The fundamental diagram of the fuzzy system is

presented in Fig. 3. Fuzzification is a process where crisp

input values are transformed into membership values of the

fuzzy sets (as described in the previous section). After the

process of fuzzification, the inference engine calculates the

fuzzy output using the fuzzy rules described in Table 1.

Defuzzification is a mathematical process used to convert

the fuzzy output to a crisp value; that is, srv2Status value in

this case.

Fig. 3 Block-diagram for the basic elements of the proposed

fuzzy scheduling policy.

There are various choices in the fuzzy inference engine

and the defuzzification method. Based on these choices,

several fuzzy systems can be constructed. In this study, the

most commonly used fuzzy system, Mamdani method, is

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

209

selected; for further details on this system see [15].

Formally, the rule-base (Table 1) of the fuzzy scheduling

policy can be rewritten in the following format:

IF qc is Ai1 AND nd is Ai2 THEN srv2Status is Bi (5)

where Ai1, Ai2, and Bi are the linguistic labels Low, Medium,

High, Yes and No of the i
th

 rule.

Mamdani method is used as the fuzzy inference engine,

where Min () operator is chosen as AND connective

between the antecedents of the rules as follows:

τi = Ai1 (x1)  Ai2 (x2)

where τi is called the degree of firing of the i
th

 rule for the

input values: x1 = qc and x2 = nd. The next step is the

determination of the individual rule output Fi (fuzzy set)

which is obtained by:

Fi(y) = τi  Bi (y)

The third step is the aggregation of rules outputs to obtain

the overall system output F (fuzzy set), where Max ()

operator is chosen as OR connective between the individual

rules:

F(y) = i Fi(y) = i (τi  Bi (y))

To use this algorithm in the queuing systems

environments, a fourth step needs to be added to get a crisp

single value for srv2Status. This process is called

defuzzification. Center of area (COA) [15] is chosen as the

defuzzification method as follows:

 

 









m

j j

m

j jj

yF

yyF
Statussrv

1

1
2

here yj is a sampling point in the discrete universe

output F, and F(yj) is its membership degree in the MF.

3.6 Implementation Complexity of the Fuzzy

Algorithm

Using fuzzy logic algorithm with scheduling policy of

queuing systems we may achieve comparable or better

run-time computation than purely conventional methods.

This can be achieved using one of the following methods:

1. Lockup table: The input-output relationship of the

fuzzy reasoning engine for the fuzzy scheduling policy

can be stored as a lookup table which will result in a

very fast execution.

2. Fuzzy logic interpreter: Instead of implementing the

fuzzy system using a high level language with its local

interpreter and compiler, an interactive computing

environment based on a fuzzy logic interpreter can be

used to minimize the calculation overhead [16].

3. Dedicated fuzzy hardware: Fuzzy systems based on

dedicated hardware can deliver much higher

performance than those based on general-purpose

computing machines [17].

4. Performance Analysis of the Proposed

Fuzzy Scheduling Policy

4.1 Simulation Experiment

To simulate the heterogeneous environment, we simulate a

buffer served by two servers with different mean service

rates µ1 and µ2 as shown in Fig. 4.

 To simulate the conventional threshold scheduling

policy with optimal threshold value, when server 2 is

available, a queuing customer is allocated to it only if the

queue size reaches or exceeds the threshold value (Thr).

For comparison purpose, we run the simulation with two

different threshold values: Thr = 5 and Thr = 6.

100100100 100

µ1

µ2

Service Time = 500 bps

Service Time = 50 bps

...

Server 1 departure

Server 2 departure

Buffer

Fig. 4 The arrangement of the simulation environment.

 In our simulation we used 200 sources for denoting

flow's rate from the neighbor nodes.

 Simulation of the heterogeneous environment, the

conventional threshold scheduling policy, and the

proposed fuzzy scheduling policy was done using C++

programming language.

 Fig. 5 and Fig. 6 shows the arrival functions of

threshold and fuzzy scheduling policies, while Fig. 7 and

Fig. 8 shows the departure functions.

(8)

(9)

(6)

(7)

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

210

void srv2_departure (void)

{ ++no_pkts_departed;

 ++sentToSrv2;

 if (no_pkts_in_q <= threshold)

 { srv2_status = 0; // free -- idel

 event_time[next_source][next_event] = infinite;

 }

 else if (no_pkts_in_q > threshold

 { --no_pkts_in_q;

 delay = clock - arrival_time[0];

 total_delay += delay;

 tx_src = src_queue[0];

 if (src_queue[0] != next_source)

 event_time[next_source][next_event] = infinite;

 swap();

 // schedule the next departure

 event_time[tx_src][next_event] = clock + service_time2;

 }

} // end-departure

Fig. 7 Departure function of threshold scheduling policy.

void srv2_departure (void)

{ ++no_pkts_departed;

 ++sentToSrv2;

 srv2Status = fuzzify (qc, nd);

 if (srv2Status >=0.5)

 srv2_Decision = 1; // you can use srv2 if its free

 else srv2_Decision = 0; // no need for slower srv2

 if (srv2_Decision == 0)

 { srv2_status = 0; // free -- idel

 event_time[next_source][next_event] = infinite; }

 else if (srv2_Decision == 1)

 { --no_pkts_in_q;

 delay = clock - arrival_time[0];

 total_delay += delay;

 tx_src = src_queue[0];

 if (src_queue[0] != next_source)

 event_time[next_source][next_event] = infinite;

 swap();

 event_time[tx_src][next_event] = clock + service_time2;

 }

} // end-departure

Fig. 8 Departure function of fuzzy scheduling policy.

srv1_status == idle SendToServer1()

SendToQueue()

End

Start

++ no_pkts_arrived

no_pkts_in_q >=

MAX_Q_SIZE

++ total_pac_loss

arrival_time[no_pkts_in_q] = clock;

src_queue[no_pkts_in_q] = next_source;

++no_pkts_in_q;

End

Start

YesNo

YesNo

no_pkts_in_q <=

threshold

srv2_status == idle SendToServer2()

YesNo

No

Yes

Fig. 5. Arrival function of threshold scheduling policy.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

211

4.2 Simulation Results and Evaluations

Figures from 9 to 13 provide comparison between

threshold and fuzzy scheduling policies.

 From the Fig. 9, Fig. 10 and Fig. 11, it‘s noticed that

as the load (rate of data transmitted) through the system

increases, the average packets delay, loss ratio and the

average buffer utilization increases linearly. However, as

the load reaches the network's capacity, the buffers begin

to fill. This increases number of packets sent to server 2, as

shown in Fig. 12 and Fig. 13. Once the buffers begin to

overflow, packet loss occurs. Increases in load beyond this

point increase the probability of packet loss as shown in

Fig. 10.

 Taking the threshold policy as a base system, Table 2

shows the percentage of improvement of fuzzy method

over the original threshold method.

Fig. 9 Comparison of average delay.

srv1_status == idle SendToServer1()

SendToQueue()

End

Start

++ no_pkts_arrived

no_pkts_in_q >=

MAX_Q_SIZE

++ total_pac_loss

arrival_time[no_pkts_in_q] = clock;

src_queue[no_pkts_in_q] = next_source;

++no_pkts_in_q;

End

Start

YesNo

YesNo

Fuzzy_output < 0.5

srv2_status == idle SendToServer2()

YesNo

No

Yes

Calculate Fuzzy_output using

(no_pkts_in_q, lamda)

Fig. 6. Arrival function of fuzzy scheduling policy.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

212

Fig. 10 Comparison of loss ratio.

Fig. 11 Comparison of average buffer utilization.

Fig. 12 Comparison of server 2 utilization.

Fig. 13 Comparison of average server 2 utilization.

Table 2: Percentage of improvement of fuzzy method over threshold

method

Average

delay

Loss

ratio
Buffer

utilization
Server 2

utilization

M/M/2

with thr = 5
27.88 % 24.13 % 33.10 % 32.75 %

M/M/2

with thr = 6
30.25 % 27.88 % 34.98 % 99.95 %

5. Conclusion

In this study, the problem of optimal allocation of

customers in a two server queue with heterogeneous

service rates is addressed. A novel scheduling policy of

queuing systems based on fuzzy reasoning is suggested.

The fuzzy reasoning have capabilities of adapting to high

variability and uncertainty in such heterogeneous

environments. The proposed fuzzy scheduling policy is

contrasted with a well-known classical scheduling policy.

From the simulation results, the efficiency of the proposed

fuzzy scheduling policy in terms of average delay, loss

ratio, buffer utilization and servers utilization are

pronounced than classical scheduling policy.

Acknowledgment

The authors would like to express their appreciation to

Deanship of Scientific Research at King Faisal University

for supporting this research.

References
[1] R. Zhang and Y. A. Phillis, ―Fuzzy routing of queueing

systems with heterogeneous servers,‖ in Proc. Int. Cong.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

213

Robot. Automat. Albuquerque, NM, vol. 3, pp. 2340–2345,

Apr. 1997.

[2] R. Zhang and Y. A. Phillis, "Fuzzy control of queueing

systems with heterogeneous servers", IEEE Trans. Fuzzy

Systems, vol.7, no.1, pp. 17-26, Feb. 1999.

[3] R. D. Nobel and H. C. Tijms, ―Optimal control of a

queueing system with heterogeneous servers and setup

costs,‖ IEEE Trans. on Automatic Control, vol. 45, Issue:

4, pp. 780-784, Apr. 2000. DOI: 10.1109/9.847122.

[4] I. Viniotis and A. Ephremidis, ―Extension of the optimality

of the threshold policy in heterogeneous multiserver

queueing systems,‖ IEEE Trans. Automat. Contr., vol. 33. pp.

104–109, Jan. 1988. DOI : 10.1109/9.371.

[5] X. Liu, ―An approach to reduce the Erlang C probability of

the M/M/2 system‖, Proc. of IEEE International Conference

on Communications, vol. 2, pp. 994-998, 2005. DOI:

10.1109/ICC.2005.1494498.

[6] X. Liu, ―Optimality of the Second Order Metrics of the

M/M/2 System with Heterogeneous Service Rates‖, Proc. of

IEEE International Conference on Communications, pp.

6350-6355, Glasgow, 2007. DOI : 10.1109/ICC.2007.1051.

[7] S. Varma, ―Optimal allocation of customers in a two server

queue with resequencing‖, IEEE Trans. Automat. Contr., vol.

36 , Issue:11, pp. 1288-1293, 1991. DOI:

10.1109/9.100940.

[8] Y. Xia and D. N. C. Tse, ―On the Large Deviations of

Resequencing Queue Size: 2-M/M/1 Case‖, IEEE Trans. on

Information Theory, vol. 54, Issue:9, pp. 4107-4118, 2008.

DOI: 10.1109/TIT.2008.928234.

[9] S. Stidham Jr., ―Computing optimal control policies for

queueing systems,‖ 24th IEEE Conference on Decision and

Control, vol. 24 , Part: 1, pp. 1810-1814, 1985. DOI:

10.1109/CDC.1985.268874.

[10] K. Dragicevic and D. Bauer, ―A survey of concurrent

priority queue algorithms‖, Proc. of IEEE International

Symposium on Parallel and Distributed Processing, pp. 1-6,

2008. DOI: 10.1109/IPDPS.2008.4536331.

[11] L. Kleinrock, Queueing Systems—Volume I: Theory,

Wiley-Interscience, New York, 1 edition, 1975. ISBN-13:

978-0471491101.

[12] W. Lin and P. R. Kumar, ―Optimal control of a queueing

system with two heterogeneous servers,‖ IEEE Trans.

Automat. Contr., vol. AC-29, pp. 696–703, Aug. 1984.

[13] J. Walrand, ―A note on ‗optimal control of a queueing

system with two heterogeneous servers‘,‖ Syst. Contr. Lett.,

vol. 4, pp. 131–134, 1984.

[14] E. Plasser, T. Ziegler and P. Reichl, "On the Non-Linearity

of the RED Drop Function", Pro. of the 15th international

conference on Computer communication, vol. 1, pp.

515-534, India, Aug. 2002.

[15] R. R. Yager and D. P. Filev, "Essentials of Fuzzy Modeling

and Control", Ch. 4, pp. 109-153, John Wiley & Sons, 1994.

[16] P. P. Bonissone, ―A compiler for fuzzy logic controllers,‖ in

Fuzzy Eng. Toward Human Friendly Sys. IFES’91 IOS Press,

1992.

[17] [17] D. L. Hung, ―Dedicated Digital Fuzzy Hardware‖,

IEEE Micro, vol. 15, Issue 4, pp. 31-39, Aug. 1995.

Essam Natsheh obtained his PhD in

Communications and Networks

Engineering from University Putra

Malaysia in 2006. Currently, he is an

Assistant Professor at the Computer

Information Systems Department,

College of Applied Studies and

Community Services, King Faisal

University (Saudi Arabia). Essam has

more than ten years of teaching and

research experiences in Malaysia and Saudi Arabia. Also, he has

more than 15 publications in refereed journals at international

level. His research interest is mobile ad-hoc networks, in

particular, the development of a new routing algorithm for this

type of networking.

Khalid Buragga received the B.Sc.

in Computer Information Systems

(CIS) from King Faisal University,

Saudi Arabia, and the M.Sc. in CIS

from University of Miami, USA, and

the Ph.D. in Information Technology

from George Mason University, USA.

He is currently an assistant professor at

college of Computer Sc. & IT, King

Faisal University. His general research

interests span the areas of software design, development, quality,

and reliability; business process re-engineering, integrating

systems; communications, networking and signal processing.

