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Summary 
This paper considers a queuing model with batch Poisson input 

and two heterogeneous servers, where the service times are 

exponentially distributed. The faster server is always on, but the 

slower server is only used when the queue length exceeds a 

certain level. Traditionally, this was done through scheduling 

policy. In this paper an enhanced algorithm, called fuzzy 

scheduling policy, is suggested using fuzzy reasoning to achieve 

the benefits of heterogeneity in service rates. Uncertainty 

associated with queue congestion estimation and lack of 

mathematical model for estimating heterogeneity in service rates 

makes the fuzzy scheduling algorithm the best choice. Extensive 

performance analysis via simulation showed the effectiveness of 

the proposed method for congestion detection and avoidance 

improving overall queuing systems. 
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1. Introduction 

Multi-server queuing systems are of interest in 

applications such as multiprocessor systems as well as 

communication networks. There are two kinds of server 

heterogeneity: one where the servers have different mean 

service rates and another where the servers have different 

service functions, as when some servers serve only a 

certain class of customers. For clarity, we call the two 

kinds of service server heterogeneity in service rates and 

server heterogeneity in service functions. This paper 

tackles the problem of optimal control of queuing systems 

with heterogeneous servers using fuzzy reasoning 

algorithm. The system objective is to assign customers 

dynamically to idle servers in order to minimize the 

average cost of holding customers [1-2]. 

 We examine the case of queuing systems with server 

heterogeneity in service rates. This case has been 

examined in the works of Nobel and Tijms [3] and Viniotis 

and Ephremidis [4]. The fuzzy reasoning approach is 

totally different from classical approaches. 

In addition to the papers noted above, results on optimal 

routing of customers to multiple servers also have been 

reported elsewhere. In [5] and [6], Liu described an 

approach to improve the performance of the M/M/2 queue 

(a queue with two parallel servers and exponential 

inter-arrival times (iat) and service times) by replacing its 

homogeneous servers with heterogeneous servers. The 

author showed that there exists an optimal ratio at which 

the first order and second order metrics reach their 

optimums.  

 The problem of optimal allocation of customers in a 

two server queue with heterogeneous service rates and 

re-sequencing is addressed by Varma [7] and Xia and Tse 

[8]. The re-sequencing constraint ensures that the 

customers leave the system in the order in which they 

entered it. A comprehensive discussion on optimal service 

control of queuing systems can be found in the survey 

papers of Stidham [9] and Dragicevic and Bauer [10]. 

 Most of the work mentioned thus far employs 

conventional stochastic threshold policy. In this paper, we 

propose an entirely new threshold policy using fuzzy 

reasoning and show via simulation that this new threshold 

policy efficiently solves cases intractable with classical 

threshold policy.  

 The rest of this paper is organized as follows. Section 

2 summarizes problem description. Followed by the fuzzy 

scheduling policy as a new scheduling policy for queuing 

systems, performance analyzes of the proposed algorithm, 

and finally the conclusions. 

 

2. Problem Description 
 

The queuing system considered here is as follows: 

Customers arrive at the buffer in a Poisson stream with 

constant rate. The buffer has limited capacity and the order 

of service is irrelevant. The buffer is served by two 

exponential servers with different mean service rates µ1 

and µ2 where λ < µ1 + µ2. Without loss of generality, it is 

assumed that: µ1 > µ2. 

 The problem is to assigns customers to idle servers 

dynamically so as to minimize the sum of waiting time in 

queue and service time of the customers. 

 The sojourn time is the sum of waiting time in queue 

and service time. By Little‘s theorem [11], the system 

objective is equivalent to minimizing the mean number of 

customers in the system. Another objective could be to 

minimize the average holding cost if we assume a holding 
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cost per customer per unit time. This process is a 

continuous time Markov decision process. 

 Lin and Kumar [12] prove that there exists an optimal 

policy and it is of the threshold type. Specifically, the 

faster server should be fed a customer from the buffer 

whenever the server is available for service, but the slower 

server should be utilized if and only if the queue length 

exceeds a critical threshold value n. Walrand [13] gives the 

same result a simpler proof, using a probabilistic argument. 

Viniotis and Ephremidis [4] extend the same result with 

less restrictions. The last two papers, however, do not 

facilitate the calculation of the threshold. A threshold 

policy is of the type of faster server first allocation [2]. 

 

3. Fuzzy Scheduling Policy for Queuing 

Systems 
 

In this section, concepts and rules of the proposed fuzzy 

scheduling policy algorithm for queuing systems are 

introduced. In the following two subsections, we studied 

the effect of some queue parameters on scheduling policy 

algorithm. These parameters are used in subsection 3 to 

create the rules of the proposed fuzzy scheduling policy. 

Method to design their membership functions is presented 

in the later subsection. Overall system design and its 

implementation complexity are presented in subsection 5 

and 6. 

 

3.1 Effect of Current Queue Size on Scheduling 

Policy 
 

Current queue size qc is the most used indicator in 

scheduling policy for estimating the probability of dropping 

the incoming packets. The drop probability pd can be 

calculated as [14]: 
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where N is a load factor, C is a transmission capacity (in 

packets/seconds) and Tp is a propagation delay (in seconds). 

Assuming a 10 Mbps (2500 packets/sec) transmission 

capacity with a 100 msec propagation delay, Fig. 1 shows 

the relation between pd and the load for various queue sizes. 

It is evident that the probability of a packet dropping 

increases as the load increases. More packets in the queue 

wait for processing as load increases. Thus, it can be stated 

that when the used space of the queue is high, srv2Status 

must be Yes and vice versa. Consequently the following 

rules are proposed: 

R1: If qc is low then srv2Status is No  

R2: If qc is medium then srv2Status is No 

R3: If qc is high then srv2Status is Yes 

 
Fig. 1  Drop probability for the coming load. 

 

 

3.2 Effect of Node Neighborhood Density on 

Scheduling Policy 
 

In computer networks, the traffic is categorized as: data 

packets and control messages. The control messages are 

used to continuously update the nodes about the topology 

changes (new created or lost links). For example, if a node 

has two neighbors that means it will receive two Hello 

messages every second from them. Besides, receiving a 

route request messages, a route breaks messages, or data 

packets. If that node has ten neighbors, this means it will 

receive, in every second, ten Hello messages beside bulk 

amount of control messages and data packets. Hence, it is 

clear that the traffic pass through the nodes with few 

neighborhoods is less than the others with many 

neighbors.  

    In Eq.(1), the load N can be written as: 
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where λi denote flow's rate from the neighbor node i and n 

is the number of neighbors. The congestion will happen at: 
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where qm is the maximum queue size. Hence, if the 

neighbors' density (nd) of a node's is high, the node's queue 

will be full quickly and increases the probability of 

congestion and vice versa. Consequently the following 

rules are proposed: 

R4: If nd is low then srv2Status is No  

R5: If nd is medium then srv2Status is Yes 

R6: If nd is high then srv2Status is Yes 

(1) 

(3) 

(2) 
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 3.3 The Rule-base for Fuzzy Scheduling Policy 
 

To fulfill the fuzzy sets theory, the previous six rules (R1 

to R6) can be combined within a 2-dimensional rule-base 

to control scheduling policy adaptively as presented in 

Table 1. For example, according to Table 1 the first rule is: 

 

IF qc is Low AND nd is Low THEN srv2Status is No 

  

 
Table 1: Fuzzy scheduling policy rules for queuing systems 

 

 

nd 

 Low Medium High 

 

qc 

Low No No No 

Medium No Yes Yes 

High Yes Yes Yes 

 

  

3.4 Membership Functions for the Fuzzy Variables 
 

After defining the fuzzy linguistic ‗if-then‘ rules, the 

membership function (MF) corresponding to each element 

in the linguistic set should be defined. For example, if the 

queue size is 5 k bytes and qc equal to 2 k bytes, using 

conventional concept, it implies qc is either ‗low‘ or 

‗medium‘ but not both. In fuzzy logic, however, the 

concept of MFs allows us to say the qc is ‗low‘ with 80% 

membership degree and ‗medium‘ with 20% membership 

degree. 

    The MFs we propose to use for the fuzzy inputs (qc, 

nd) and the fuzzy output (srv2Status) are illustrated in Fig. 

2. These MFs are used due to their economic value of the 

parametric and functional descriptions. In these MFs, the 

designer needs only to define one parameter; midpoint. 

These MFs mainly contain the triangular shaped MF. This 

function is specified by three parameters (a, b, c) as 

follows: 
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where a = midpoint/2, b = midpoint, c = 3 × midpoint/2 

and x is the input to the fuzzy system. The remaining MFs 

are as follows: Z-shaped membership to represent the 

whole set of low values and S-shaped membership to 

represent the whole set of high values. 

   Maxpoint is the maximum queue size in qc−MF (Table 

1), and it is the number of the network's nodes in nd −MF. 

   Midpoint of qc−MF is a threshold that indicates 

whether the queue is going to be full soon. The threshold is 

simply set to 60% of the queue size. The optimal value for 

this variable depends in part on the maximum average 

delay that can be allowed by the nodes. 

   Midpoint of nd−MF is a threshold that indicates 

whether the congestion will happen. The threshold is 

simply set to 60% of the expected flow's rate from the 

neighbor nodes. 

 

 
Fig. 2  Membership functions used for the fuzzy variables. 

 

 

3.5 Fuzzification, Inference and Defuzzification 
 

The fundamental diagram of the fuzzy system is 

presented in Fig. 3. Fuzzification is a process where crisp 

input values are transformed into membership values of the 

fuzzy sets (as described in the previous section). After the 

process of fuzzification, the inference engine calculates the 

fuzzy output using the fuzzy rules described in Table 1. 

Defuzzification is a mathematical process used to convert 

the fuzzy output to a crisp value; that is, srv2Status value in 

this case. 

 

 
Fig. 3  Block-diagram for the basic elements of the proposed 

fuzzy scheduling policy. 

 

There are various choices in the fuzzy inference engine 

and the defuzzification method. Based on these choices, 

several fuzzy systems can be constructed. In this study, the 

most commonly used fuzzy system, Mamdani method, is 
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selected; for further details on this system see [15]. 

Formally, the rule-base (Table 1) of the fuzzy scheduling 

policy can be rewritten in the following format: 

 

IF qc is Ai1 AND nd is Ai2 THEN srv2Status is Bi         (5) 

 

where Ai1, Ai2, and Bi are the linguistic labels Low, Medium, 

High, Yes and No of the i
th

 rule.  

Mamdani method is used as the fuzzy inference engine, 

where Min () operator is chosen as AND connective 

between the antecedents of the rules as follows: 

 

τi = Ai1 (x1)  Ai2 (x2) 

 

where τi is called the degree of firing of the i
th

 rule for the 

input values: x1 = qc and x2 = nd. The next step is the 

determination of the individual rule output Fi (fuzzy set) 

which is obtained by: 

 

Fi(y) = τi  Bi (y) 

 

The third step is the aggregation of rules outputs to obtain 

the overall system output F (fuzzy set), where Max () 

operator is chosen as OR connective between the individual 

rules: 

 

F(y) = i Fi(y) = i (τi  Bi (y)) 

 

To use this algorithm in the queuing systems 

environments, a fourth step needs to be added to get a crisp 

single value for srv2Status. This process is called 

defuzzification. Center of area (COA) [15] is chosen as the 

defuzzification method as follows: 
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here yj is a sampling point in the discrete universe 

output F, and F(yj) is its membership degree in the MF. 
 

3.6 Implementation Complexity of the Fuzzy 

Algorithm 
 

Using fuzzy logic algorithm with scheduling policy of 

queuing systems we may achieve comparable or better 

run-time computation than purely conventional methods. 

This can be achieved using one of the following methods: 

1. Lockup table: The input-output relationship of the 

fuzzy reasoning engine for the fuzzy scheduling policy 

can be stored as a lookup table which will result in a 

very fast execution. 

2. Fuzzy logic interpreter: Instead of implementing the 

fuzzy system using a high level language with its local 

interpreter and compiler, an interactive computing 

environment based on a fuzzy logic interpreter can be 

used to minimize the calculation overhead [16]. 

3. Dedicated fuzzy hardware: Fuzzy systems based on 

dedicated hardware can deliver much higher 

performance than those based on general-purpose 

computing machines [17]. 

 

4. Performance Analysis of the Proposed 

Fuzzy Scheduling Policy  
 

4.1 Simulation Experiment 
 

To simulate the heterogeneous environment, we simulate a 

buffer served by two servers with different mean service 

rates µ1 and µ2 as shown in Fig. 4.  

   To simulate the conventional threshold scheduling 

policy with optimal threshold value, when server 2 is 

available, a queuing customer is allocated to it only if the 

queue size reaches or exceeds the threshold value (Thr). 

For comparison purpose, we run the simulation with two 

different threshold values: Thr = 5 and Thr = 6. 

 

100100100 100

µ1

µ2

Service Time = 500 bps

Service Time = 50 bps

...

Server 1 departure

Server 2 departure

Buffer

 

Fig. 4  The arrangement of the simulation environment. 
 

 

 In our simulation we used 200 sources for denoting 

flow's rate from the neighbor nodes. 

 Simulation of the heterogeneous environment,  the 

conventional threshold scheduling policy, and the 

proposed fuzzy scheduling policy was done using C++ 

programming language. 

 Fig. 5 and Fig. 6 shows the arrival functions of 

threshold and fuzzy scheduling policies, while Fig. 7 and 

Fig. 8 shows the departure functions. 

 

 

 

 

 

 

 

(8) 

(9) 

(6) 

(7) 
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void srv2_departure (void) 

{   ++no_pkts_departed; 

    ++sentToSrv2; 

    if (no_pkts_in_q <= threshold)  

 {  srv2_status = 0; // free -- idel 

            event_time[next_source][next_event] = infinite; 

 } 

 else if (no_pkts_in_q > threshold 

 {  --no_pkts_in_q; 

    delay = clock - arrival_time[0]; 

    total_delay += delay; 

    tx_src = src_queue[0]; 

    if (src_queue[0] != next_source) 

            event_time[next_source][next_event] = infinite; 

    

    swap(); 

    // schedule the next departure 

     event_time[tx_src][next_event] = clock + service_time2; 

   }  

} // end-departure 
 

Fig. 7  Departure function of threshold scheduling policy. 

 

void srv2_departure (void) 

{  ++no_pkts_departed; 

   ++sentToSrv2;  

    srv2Status = fuzzify (qc, nd); 

    if (srv2Status >=0.5) 

      srv2_Decision = 1;      // you can use srv2 if its free 

    else srv2_Decision = 0;    // no need for slower srv2  

    if (srv2_Decision == 0) 

    {   srv2_status = 0;   // free -- idel 

        event_time[next_source][next_event] = infinite;  } 

    else if (srv2_Decision == 1)   

    {    --no_pkts_in_q; 

 delay = clock - arrival_time[0]; 

 total_delay += delay; 

 tx_src = src_queue[0]; 

 if (src_queue[0] != next_source) 

            event_time[next_source][next_event] = infinite; 

 swap(); 

     event_time[tx_src][next_event] = clock + service_time2; 

    }  

} // end-departure 

 
Fig. 8  Departure function of fuzzy scheduling policy. 

srv1_status == idle SendToServer1()

SendToQueue()

End

Start

++ no_pkts_arrived

no_pkts_in_q >= 

MAX_Q_SIZE

++ total_pac_loss

arrival_time[no_pkts_in_q] = clock;

src_queue[no_pkts_in_q] = next_source;

++no_pkts_in_q;

End

Start

YesNo

YesNo

no_pkts_in_q <= 

threshold

srv2_status == idle SendToServer2()

YesNo

No

Yes

 
 

Fig. 5. Arrival function of threshold scheduling policy. 
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4.2 Simulation Results and Evaluations 
 

Figures from 9 to 13 provide comparison between 

threshold and fuzzy scheduling policies.  

 From the Fig. 9, Fig. 10 and Fig. 11, it‘s noticed that 

as the load (rate of data transmitted) through the system 

increases, the average packets delay, loss ratio and the 

average buffer utilization increases linearly. However, as 

the load reaches the network's capacity, the buffers begin 

to fill. This increases number of packets sent to server 2, as 

shown in Fig. 12 and Fig. 13. Once the buffers begin to 

overflow, packet loss occurs. Increases in load beyond this 

point increase the probability of packet loss as shown in 

Fig. 10.  

 Taking the threshold policy as a base system, Table 2 

shows the percentage of improvement of fuzzy method 

over the original threshold method. 

 

 

 
 

 
Fig. 9  Comparison of average delay. 

srv1_status == idle SendToServer1()

SendToQueue()

End

Start

++ no_pkts_arrived

no_pkts_in_q >= 

MAX_Q_SIZE

++ total_pac_loss

arrival_time[no_pkts_in_q] = clock;

src_queue[no_pkts_in_q] = next_source;

++no_pkts_in_q;

End

Start

YesNo

YesNo

Fuzzy_output < 0.5

srv2_status == idle SendToServer2()

YesNo

No

Yes

Calculate Fuzzy_output using 

(no_pkts_in_q, lamda)

 
 

Fig. 6. Arrival function of fuzzy scheduling policy. 
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Fig. 10  Comparison of loss ratio. 

 
 

 
Fig. 11  Comparison of average buffer utilization. 

 

 

 
Fig. 12  Comparison of server 2 utilization. 

 
 

 
Fig. 13  Comparison of average server 2 utilization. 

 
 

Table 2: Percentage of improvement of fuzzy method over threshold 

method 

 
Average 

delay 

Loss 

ratio 
Buffer 

utilization 
Server 2 

utilization 

M/M/2  

with thr = 5 
27.88 % 24.13 % 33.10 % 32.75 % 

M/M/2  

with thr = 6 
30.25 % 27.88 % 34.98 % 99.95 % 

 

 

 

5. Conclusion 
 

In this study, the problem of optimal allocation of 

customers in a two server queue with heterogeneous 

service rates is addressed. A novel scheduling policy of 

queuing systems based on fuzzy reasoning is suggested. 

The fuzzy reasoning have capabilities of adapting to high 

variability and uncertainty in such heterogeneous 

environments. The proposed fuzzy scheduling policy is 

contrasted with a well-known classical scheduling policy. 

From the simulation results, the efficiency of the proposed 

fuzzy scheduling policy in terms of average delay, loss 

ratio, buffer utilization and servers  utilization are 

pronounced than classical scheduling policy. 
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