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Abstract  
 An approach to partly erase null values in incomplete decision 

systems is proposed. A formally similar reduction approach to 

incomplete decision table is introduced, compared to the case in 

complete system, but it is rather different in forming the 

positive region which is not defined in [9] and the reduction 

approach which is not the same as in [9]. 

1 Introduction 

Rough Set Theory (RST)[1-3] is put forward by 
Palwak Z. in 1980s. It ,as  a  mathematical tool to 
deal with non-determination, fuzziness, and 
uncertainty, has been massively used in the research 
fields of Artificial Intelligence, Data mining[4,5], 
Pattern Recognition[6], Knowledge Acquisition[7], 
Machine Learning[8] and so on. RST proposed 
originally by Palwak Z. is based on the assumption 
that all objects have definitive values in every attribute 
in a complete decision system and the classification is 
made by an indiscernibility relation defined by Pawlak 
Z. But in incomplete decision systems, it is not always 
be able to establish an indiscernibility relation due to 
the existence of null values. So the original RST can 
no longer be immediately applied in incomplete 
decision systems which could be seen everywhere in 
the real world. Therefore many new expanded RST 
models are suggested, mainly in expanding 
indiscernibility relation to non-indiscernibility relation 
such as tolerance relation [9], similarity relation [10], 

limited tolerance relation [11], etc.  
For the reason of decreasing some null values, a 
partial completion method to fill in incomplete 
decision systems is introduced. 
The paper is organized as follows. In section 2, a 
partial completion approach to full out incomplete 
decision systems is suggested. Section 3 defines a 
reduction approach to incomplete decision table, but it 
is rather different in forms from the definition by 
Kryszkiewicz, M in [9]. 

2  Partial Completion to IDT  

Definition 1 An incomplete information system(IIS) is a 
quadruple: S =< U, AT, V, f >, where U is a non-empty 
finite set of objects and AT is a non-empty finite set of 
attributes, such that for any attribute a in AT, a: U->Va  
where Va is called the value set of attribute a. Attribute 
domain Va may contain a null value, meaning unknown 
or uncertain, denoted by special symbol  ”*”.  V 

=
aa AT

V
∈
∪

 represents the value set of all attributes in S. 
a(x) represents the value of x at attribute a.  

In incomplete decision systems, null values are divided 
into two types, one is existed, and the other is 
non-existing. In the present paper, the assumption of 
existing type of null values is considered. Let a∈AT and 
x∈U. If the value of x at attribute a is null, i.e. a(x) =*, 
and the highest frequent appearance value, not a null 
value, at attribute a is unique, we use it to replace a(x) 
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(=*). If the highest frequent appearance value at attribute 
a is not unique, we do not use any to replace a(x) (=*), 
because it is not reasonable to randomly apply any one of 
the highest frequent appearance values to substitute for. 
So the result obtained may remain incomplete. We call 
this procedure a partial completion. It differs from some 
other papers in randomly applying any one of the highest 
frequent appearance values to substitute for the null.  

In the following, we first give some definitions and then 
show how to perform the partial completion. 

Definition  2  Let  S is an incomplete decision system, 
a in AT, Va={a(x): x in U, a(x)<>*}, |Va| denote the 

cardinal number of Va.  c(a)= , ( ) *

1
x U a x∈ ≠
∑

 represents the 
number of non-null value at attribute a. If  a(x)<>*,then   

c(a(x))= , ( ) ( )

1
y U a y a x∈ =
∑

 expresses the appearance 
number of  a(x) at attribute a. 

Definition  3  Let  S be an incomplete decision 
system, a∈AT, x, y in U. Then the probability of the 
same of x and y at attribute a, denoted by pa(x, y) is 
defined as follows: 

pa(x,y)=

1, ( ) ( )
( ( ))/ | |, ( ) * ( ) *
( ( ))/ | |, ( ) * ( ) *

0, ( ) * ( ) * ( ) ( )

if a x a y
c a x U if a x a y
c a y U if a x a y

if a x a y a x a y

=⎧
⎪ ≠ ∧ =⎪
⎨ = ∧ ≠⎪
⎪ ≠ ∧ ≠ ∧ ≠⎩

 

Obviously, pa(x, y) is symmetric function about x and y, 
that is, pa(x, y) = pa(y, x). In the above definition, if 
a(x)<>* and a(y)=*, pa(x, y) can be also defined to be 
equal to c(a(x))/c(a); if a(x) =* and a(y)<>*, pa(x, y) can 
be also defined to be equal to c(a(y))/c(a). But computing 
c(a) consumes more time than computing |U|. So here 
pa(x, y) takes the above form and is convenient to 
calculate.  

Definition  4  Let  S be an incomplete decision 
system, a in AT, x in U, a(x)=*. The set of most similar 
values to the value of x at attribute a, denoted by Pa (x), 
is  

Pa(x)={a(y): pa(x, y)= max
z U∈

{ pa(x, z): z<>x} 

Definition  5   Let  S  be  an incomplete 
decision system, a in AT, x in U, a(x)=*. If | Pa (x)| =1, 
then we replace a(x), a null value, with the unique 
value in Pa (x). If  | Pa (x)|>1, a(x) remains 
unchangeable. 

By Definition 5, when a(x) is null, it can be 
replaced if and only if Pa (x) is consisted of only one 
element. If Pa (x) contains several different elements, 
it is not allowed to be substituted. Although each 
element in P(x) can be regarded as a feasible candidate 
to replace a(x), a null value, it is not reasonable to 
select randomly any one to fill in, because such a 
replacement will extremely influence on the 
classification about the universe according to the 
relation among objects. Suppose y, z in Pa (x). If we 
replace a(x) with a(y), not with a(z), x will be 
indiscernible with y, not with z. Oppositely, x will be 
indiscernible with z, not with y. In this case, we are in 
a bewilder situation. So the best way is to keep a(x) 
null so as to get balance between y and z.  If  Pa (x) 
contains more elements, persisting on this balance 
sometimes is more necessary. 
Definition  6  Let  S be an incomplete decision 
system, A⊆AT, x, y in U. Then the probability of the 
same of x and y at attribute subset A, denoted by pA(x, 
y) is defined as follows: 

     pA(x, y)= ( , )a a
a A

p x yα
∈
∑  

where 1a
a A

α
∈

=∑  and 0<= aα <=1. For any a in 

A, aα can be considered to be the significance of a in 

attribute subset  A. Because 0<= aα <=1, 0<=pA(x, 

y)<=1 also holds. 
   If there is no decision about the significances of all 

attributes in A, aα  may be equal to 1/|A|, the average 

value. 
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Definition 7    Let  S be an incomplete decision 
system, A⊆AT, x, y in U, a(x)=*, The set of most 
similar values to the value of x in attribute subset A , 
denoted by PA (x), is 

PA(x)={a(y): pA(x, y)= max
z U∈

{ pA(x, z): z<>x}. 

According to Definition 7, when a(x) is null, it can 
be replaced if and only if PA(x) is composed of only 
one element, otherwise a(x) remains null. 

A partial completion to an incomplete decision 
system may be fulfilled by following the above 
definitions. We call this procedure a partial completion, 
because S may still be an incomplete decision system, 
not a complete one. But after this partial completion, 
there are not so many null values in S. This 
consideration is more appropriate to the real world 
problem solving because when there are several 
candidates existed, it not suitable to select any one of 
them to act. 
Example 1  Let we have an incomplete decision 
system S=<U, AT, V, f> shown in table 1, where the 
universe U={x1,x2,…,x10}, the attribute set 
AT={a1,a2,a3},* means null. 

Table 1 an incomplete information system 

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

a1 1 1 3 1 * 3 3 3 2 3 
a2 2 * 2 2 2 1 2 1 3 1 
a3 1 3 3 * 1 * * 2 * 2 

In order to discriminate the position of *, we use *ij 
represents object xi has a null value at attribute aj. 
P(*ij) states the value set of the values that may be 
chosen to replace *ij . 
According to Definition 5, we can obtain, 

P(*22)= 2aP
(*22)={2}, P(*43)= 3aP

(*43)={1,2,3}, 

P(*51)= 1aP
(*51)={3}, P(*63)= 3aP

(*63)={1,2,3}, 

P(*73)= 3a
P

(*73)={1,2,3}, P(*93)= 3aP
(*93) ={1,2,3}. 

Therefore, we get a partial completion system as in 

Table 2. 
Furthermore, let A=AT={a1,a2,a3}, 

1 2 3
1/ 3a a aα α α= = =

, PA(*ij) state the value set of 

the values that may be chosen to replace *ij  by 
attribute subset A, then according  to Definition 6, we 
obtain, PA(*43)={1,3}, PA(*63)={2},PA(*73)={1,3}, 
PA(*93)={1,2,3}. We get a further partial complete 
decision system shown in Table 3, from Table 2 

Table 2 partial complete IIS from table 1 

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 
a1 1 1 3 1 3 3 3 3 2 3 
a2 2 2 2 2 2 1 2 1 3 1 
a3 1 3 3 * 1 * * 2 * 2 

Table 3 further partial complete IIS from table 2 

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 
a1 1 1 3 1 3 3 3 3 2 3 
a2 2 2 2 2 2 1 2 1 3 1 
a3 1 3 3 * 1 2 * 2 * 2 

In this way, some null values are deleted except *43, 
*73, and *93. It is still incomplete. 

3  A New Reduction Method to IDT 

Although you may do some completion work to your 
incomplete decision table so as to remove missing data 
or noises, you may still confront a incomplete one. 
Therefore, we have a urgent requirement to research 
approaches to reduce incomplete information system 
or decision tables. [9] puts forward an efficient method 
to obtain reductions based on discernibility matrix. 
But the matrix is much different from that in complete 
systems in formation, for example, one is symmetric, 
the another is non-symmetric. Now we give a 
description of reductions in incomplete decision tables. 
Most of terms are cited from [9]. 
  Let S =< U, AT, V, f > is as in definition 1.  

A AT⊆ , the tolerance relation is defined 

as ( ) {( , ) | , ( , )SIM A x y U U a A f x a= ∈ × ∀ ∈
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( , ) ( , ) * ( , ) *}.f y a f x a f y a= ∨ = ∨ =

( ) { | ( , ) ( )}AS x y U x y SIM A= ∈ ∈  is the tolerance 

class of x. / ( )U SIM A  { ( ) | }AS x x U= ∈   is the 

collection of all tolerance classes  with respect  to 

A AT⊆ . It forms a covering, but maybe not a 

partition of U. A AT⊆  is a reduction of S if both 

( ) ( )S I M A S I M A T=  and for any 

, ( ) ( ).B S SIM B SIM AT⊂ ≠  

For any ,X U⊆ _ ( )A X =
  { | ( ) }Ax U S x X∈ ⊆  

is called the lower approximation of X, while 

( )A X− =   { | ( ) }Ax U S x X∈ ∩ ≠∅  is called the 

upper approximation of X. Note that forms of them are 
very similar to those in complete systems, but the 
contents are much different. In S =< U, AT, V, f >, if 

,AT C D= ∪  ,C D∩ =∅  C is called condition 

attribute set, D decision attribute set. Ordinarily, 

* ( )dV d D∉ ∈ . For convenience to speaking, D  is 

always supposed to be a single decision attribute set, 

i.e. { },D d= d is the decision attribute. SIM(D) is a 

equivalence relation because * ( )dV d D∉ ∈ . 

( )Apos D ( )( / ( ))A Y Y U SIM D−= ∪ ∈ is 

called the positive region of A with respect to D. 

( ) ( ( )) / ( )A AD card pos D card Uγ =  is called 

dependence degree of attribute set A AT⊆  with 

respect to D. 

If { }( ) ( )( )A A apos D pos D a A−= ∈
, then a is called 

dispensable on A with respect to D. Otherwise a is 
called indispensable on A with respect to D. If all 
attributes in A are indispensable, then A is called to be 
independent with respect to D. 

Definition 8 A AT⊆  is a reduction of AT  with 

respect to D, if and only if A is independent on AT and 

( ) ( ).A ATpos D pos D=  

Theorem 1  A AT⊆  is a reduction of AT  with 

respect to D, if and only if   

{ }( ) ( ) ( )( ( ) ( )).A AT A a ATD D a A D Dγ γ γ γ−= ∧ ∀ ∈ ≠

Proof  Suppose that  A AT⊆  is a reduction of 

AT  with respect to D. Then A is independent on AT 

and ( ) ( ) .A A Tp o s D p o s D=  

So ( ) ( ( )) / ( )A AD ca rd p o s D ca rd Uγ =   

( ( )) / ( ) ( )AT ATcard pos D card U Dγ= =  and for 

any ,a A∈  a is indispensable ， thus 

{ }( ) ( )( )A A apos D pos D a A−≠ ∈
.Therefore, 

{ } ( ) ( ) .A a A TD Dγ γ− ≠
Conversely ， if 

{ }( ) ( ) ( )( ( ) ( )),A AT A a ATD D a A D Dγ γ γ γ−= ∧ ∀ ∈ ≠ then 

( ) ( ) ,A A Tp o s D p o s D=  and 

{ }( ) ( ) ( )A A aa A p o s D p o s D−∀ ∈ ≠
 for  

{ }( )( ( ) ( ))A a ATa A D Dγ γ−∀ ∈ ≠
. That is A is a 

reduction of AT with respect to D. The theorem is 
finished proving. 
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Use this method to solve the same example described 
in [9], we can also get that {P,S,X} is a reduction of 
the incomplete decision table. The computation 
process is omitted here so as to save the space.  

4. Conclusions 

A procedure of partial completion to an incomplete 
decision system is suggested in section 2. Its aim is to 
erase a null value of an object which may be replaced 
by the most frequent value at the same attribute. To 
some extend, it decreases uncertainties. Although the 
result system may still be an incomplete one as the 
procedure supposes to do so, the approach is 
meaningful for reminding that people .do not need to 
hurry up in dealing with data rather than preprocessing. 
In section 3, a formally similar reduction approach to 
incomplete decision table is introduced, compared to 
the case in complete system, but it is rather different 
from the definition by Kryszkiewicz, M in [9]. The 
next research step ofr us is to develop efficient 
algorithms to find reductions of incomplete decision 
tables. 
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