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Summary 
In this paper, we derive a sufficient condition for asymtotic 
stability of the zero solution of delay- difference system of 
cellular neural networks in terms of certain matrix inequalities by 
using a discrete version of the Lyapunov second method. The 
result is applied to obtain new asymptotic stability codition in 
terms of matrix inequalities for some class of delay- difference 
system of cellular neural networks such as delay- difference 
system of cellular neural networks with multiple delays in terms 
of certain matrix inequalities. Our results can be well suited for 
computational purposes. 
Key words: 
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1. Introduction 

In recent decades, cellular neural  networks have been 
extensly studied in many aspects and successfully applied 
to many fields such as pattern identifying, voice 
recognizing, system controlling, signal processing systems, 
static image treatment, and solving nonlinear algebraic 
system , etc. Such applications are based on the existence 
of equilibrium points, and qualitative properties of systems. 
In electronic implementation, time delays occur due to 
some reasons such as circuit integration, switching delays 
of the amplifiers and communication delays is of 
particular importance to manufacturing high quality 
microelectronic celluar neural networks. 

While stability analysis of continuous-time neural 
networks can employ the sability theory of 
differentialsystem [13],it is much harder to study the 
stability of discrete-time neural networks[7] with time 
delays [2] or impulses [9]. The techniqes currently 
available in the literature for discrtr-time systems are 
mostly based on the construction Lyapunov second 
method [10].For Lyapunov second method, it is well 
known that no general rule exists to guide the construction 
of a proper Lyapuonv function. 
For a given system. In fact, the construction of the 
Lyapunov function becomes a very difficult task. 
In this paper , we consider delay – difference system of 
cellular neural networks of the form 
S(d+1)=- MS(d)+AL(S(d))+BL(S(d-k)) + g, 
(1) 

( ) nS d R⊆  is the neuron state vector, 

{ }10, , , , 0, 1,2,...,n ik m diag m D m m i≥ = ≥ = n  

is the nⅹn constant relaxation matrix, , 
iA iB , 

1, 2 , .. . ,i n=  are the nⅹn constant weight matrices, 

1( , , ) n
ng g D g R= ∈  is the  constant external 

input vector and [ ]1 1( ) ( ), , ( ) T
n nL z L z K L z= with 

1 , ( 1,1)il C R⎡ ⎤
⎣ ⎦∈ −  where is the neuron 

activations and monotonically increasing for each 
iL

1, 2 , ...,i n= The asymptotic stability of the zero 
solution of the dealy-differential system of Hopfield 
neural networks has been developed durring the past 
several years. We refer to monographs by Burton [3] an 
Ye [13] and the references cited therein. Much less is 
known regarding the asymptotic stability of the zero 
solution of the dealy-differential system of cellular neural 
networks. Therefore , the purpose of thise paper is to 
establish sufficient condition for the asymptotic stability of 
the zero solution of (1)in terms of certain matrix 
inequlilites. 

2. PRELIMINARIES 

We will define the following notations . R +  is the set of 
all nonnegative real numbers , Z +  is the set of all 
nonnegative integers ,  is the n finite dimensional 
euclidean space with the euclidean norm 

nR
.  and the scalar 

product between  and  is defined by ;T nx y R m×  

denotes the set of all (  matrices and )n m× TA  

denotes the transpose of the matrix A ; Matrix 
n mV R ×∈  is positive semidefinite if ( 0 )≥V

0 , nV x x≥ ∀ ∈ R . If  
0 ( 0 , )T Tx V x x V v re s p> < . It is easy to verify 

that 0 , ( 0 , )V V re s> < p  if  
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∃ > ≤ − ∀ ∈
 

 
Fact 2.1 For any positive scalar  and vectors   and  , the 
following inequality holds: 

1 .T T T Tx y y x x x y yλ λ −+ ≤ +  

Let us denote { }:nQ x xα α= ∈ <  

Lemma2.1 [10] The zero solution of difference system is 
asymptoti stability if there exists a positive definite 
function  such that ( ) : nQ x R R +⎯⎯→

2
0: ( ( )) ( ( 1)) ( ( )) ( ) ,Q x d Q x d Q x d x dβ β∃ > Δ = + − ≤−

Along the solution of the system . In  case the above 
condition holds for all ( )x d Q α∈  , we say that the 
zero solution is locally asymptotically stable. 
We present the following technical lemmas , which be 
used in the proof of our main result. 
Lemma2.2 [6] For any constant symmetric matrix 

0n m TM M M×∈ = >  { }/ 0l +∈  

vector function , vector function  { }/ 0l +
∈

: 0 , nW l⎡ ⎤
⎣ ⎦ →

, we have 

1 1

0 0
( ( ) ( )) ( ) ( ) .

Tl l
T

i i
l W i M W i W i M W i

− −

= −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

≥∑ ∑
1

0

l

i

−

−
∑

=

 

3 MAIN RESUULTS 

In this section , we consider the sufficient condition for 
asymptotic stability of the zero solution  of (1) in terms of 
certain matrix inqualities .without loss of generality, we  
 
can assume that  and g =0 ( for 

otherwise, we let 
* 0, (0) 0s s=

*x S S= −  and define 
* *( ) ( ) ( )L x L x S L S= + − .  

The new form of (1)is now given by 
( 1) ( ) ( ( )) ( ( )).x d Mx d A L x d BL x d k− = − + + −  

(2) 
Throughout this paper we assume the neuron activations 

( ), 1, 2 , ...,i il x i n=  is bounded and monotonically 

nondecreasing on R , and  is Lipschitz 

continuous, that is , there exist constant  

(i il x )

n0 , 1, 2 , . . . ,iq i> =  such that 

1 2 1 2 1 2( ) ( ) , , .i i il v l v q v v v v− ≤ − ∀ ∈  

(3) 

By condition (3) ,  satisfy (i il x )
( ) , 1, 2, ...,i i i il x l x i n≤ = .  

(4) 
Theorem 3.1 The zero solution of the delay-difference 
system (2) is asymptotically stable if there exist symmetric 
positve definite matrices P,G,W and  

1,. . . , 0nJ d iag j j⎡ ⎤
⎢ ⎥⎣ ⎦

= >  satisfying the following 

matrix inequalities: 
(1,1) 0

0 (2 , 2 ) 0
0 (3, 3)

0

0
ϕ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

0= <
 

(5) 
 
( ) 1

21,1 T T T T T Tg Pg p kG W A PBB PA JA PBB PAJ JA PAJ JJα α α−= − + + + + +

, 
1 1

1 2( 2 , 2 ) ,TJ B P B L J J J J Wα α− −= + + −  
( 3 , 3 ) .k G= −  
Proof Consider the Lyapunov function 

1 2 3( ( ) ) ( ( ) ) ( ( ) ) ( ( ) )Q y d Q y d Q y d Q y d= + + , 

where 

1
1

2

1

3

( ( ) ) ( ) ( ) ,

( ( ) ( ) ( ) ( ) ,

( ( ) ) ( ) ( ) ,

T

d
T

i d k
d

T

i d k

Q y d x d P x d

Q y d k d i x i G x

Q y d x i W x i

−

= −
−

= −

i

=

= − +

=

∑

∑

 

 
P,G,W being symmetric positive definite solutions (5) and 

( ) ( ) , (y d x d x d k⎡ ⎤
⎣ ⎦= −  

Then difference of  along trajectory of 
solutions of (2) is given by 

( ( ))Q y d

1 2 3( ( )) ( ( )) ( ( )) ( ( ))Q y d Q y d Q y d Q y dΔ =Δ +Δ +Δ  

 
. where 
 

  



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010 252 

( ( )) ( ( 1)) ( ( ))1 1 1

( ) ( ) ( ( ))

( ( )) ( ) ( ) ( ( )) ( )
( ( )) (

( ) ( ( )) ( ( )) ( ) ( )

( ) ( ) ( ) ( ))

Q y d Q x d Q x d

T

T T T T T

T T

M x d A L x B L x d k P

L x d A PM x d x d M PB L x d k B PM x d
L x d A PB L x

T

T T T T

M x d A L x d B L x d k x d Px d

x d M PM P x d x d M PA L x

Δ = + −

⎡ ⎤
⎣ ⎦
⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

= − + + −

×

− − −

+

− + + − −

= − −

1

1

1
3

( )) ( ( )) ( ( ))
( ( )) ( ( ))

( (

( ) ( ) ( ) ( ) ( )

( ) ( )

( ( )) ( ) ( )

( )

2

)) ( ( )),

( ( ))

(

and

T T

T T

T

d T T
i d k

d T
i d k

d T
i d k

T

d k L x d k B PA L x d
L x d A PA L x d

L x d

k d i x i G x i k x d G x d

x i G x i

Q y d x i W x i

x d

Tk B PB L x d k

Q y d

W x k

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

=

−

= −
−

= −

−

= −

− + −

+

+

Δ − +

−

Δ = Δ

− −

Δ = ∑

∑

∑

) ( ) ( )Tx d k W x d k− − −
(6) 
Where (4) and Fact 2.1 are utilized in (6), respectively. 
Note that 

1
( ) ( ( )) ( ( )) ( )
( ) ( ) ( ( )) ( ( ))

T T T T

T T T T
x d M PAS x d L x d A PMx d
x d M PAA PMx d L x d L x dα α−

− − ≤
+

 

1
1 1

1
( ) ( ( )) ( ( )) ( )

( ) ( ) ( ( )) ( ( ))

T T T T

T T T T
x d M PBS x d k L x d k B PMx d

x d M PBB PMx d L x d k L x d kα α− −
− − − −

+ −
≤
−

 

2
1

2

( ( )) ( ( )) ( ( )) ( ( )) ( ) ( )
( ( )) ( ( ))

T T T T T T

T

L x d A PBL x d k L x d k B PAL x d L d PBB PAL d
L x d k L x d k

α
α −

− + − ≤
+ − −

( )( ( )) ( ( )) ( ) ,TT T T PBJx d kL x d k B PBL x d k x d k JAB −− − ≤ −  

( ( )) ( ( )) ( ) ( ),T T T TL x d A PAL x d x d JA PAJx d≤  

2 2( ) ( ( )) ( ) ( ),T T T T TL d A PAL x d x d JA PBB PAJx dα α≤  

1 1
22 ( ( ) ( ( )) ( ) ( )T TL x d k L x d k x k d JJx k dα α− −− − ≤ − −  

and 
1 1( ( )) ( ( )) ( ) ( ),T TL x d L x d x d JJx dα α− −≤

Hence 
1 1( ) ( ) ( ) ( ) ( ) ( )  T T T T T T T T TQ x d g pg P x d x d A PBB PAx d x d g PBB Pgx dα α⎡ ⎤Δ ≤ − + +⎣ ⎦
T T T T T T T

2( ) ( ) ( ) ( ) ( ) ( )x d k JB PBJx d k x d JA PAJx d x d JA PBB PAJx dα+ − − + +

)T T T

 
1 1 1

1 2( ) ( ) ( ) ( ) ( ) ( .x d k JJx d k x d k JJx d k x d JJx dα α α− − −+ − − + − − +

Q

x d g pg P kG W A PBB PA J PBB PJ JA PBB PAJ JA PAJ JJ x d

x d k JB PBJ JJ JJ W x d k

x i Gx i

α α α α

α α

−

− −

−

= −

Δ ≤

⎡ ⎤− + + + + + + +⎣ ⎦
⎡ ⎤+ − + + − −⎣ ⎦

−∑

 
Then we have 
 

1
1 2

1 1
1 2

1

( ) ( )

( ) ( )

( ) ( ).

T T T T T T T T T T

T T

d
T

i d k

Using lemma 2.2 ,we obtain 

 

1 11 1( ) ( ) ( ) ( ) ( )
Td d

T

i d k i d k i d k

1d
x i G x i x i k G x ik k

− −

= − = − = −

⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎜ ⎟ ⎜

− ⎞
⎟

⎝ ⎠ ⎝
≥∑ ∑ ∑ ⎟

⎠

 

From the above inequlaity it follows that: 

1
1 2

1 1
1 2

1 1

( ) ( )

( ) ( )

1 1( ) ( ) ( ) .

T T T T T T T T T T

T T

Td d

i d k i d k

Q

x d g pg P kG W A PBB PA J PBB PJ JA PBB PAJ JA PAJ JJ x d

x d k JB PBJ JJ JJ W x d k

x i kG x i
k k

α α α α

α α

−

− −

− −

= − = −

Δ ≤

⎡ ⎤− + + + + + + +⎣ ⎦
⎡ ⎤+ − + + − −⎣ ⎦

⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑

1

1

( )
1( ), ( ), ( ( )) ( )

1( (

(1,1) 0
0 (2, 2) 0

0 (3,3)

0

0

d
T T T

i d k d

i d k

x d
x d x d k x i x d k

k
))x i

k

−

= − −

= −

⎛ ⎞
⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎜ ⎟= − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟

⎝ ⎠

∑
∑

( ) ( ) ,Ty k y dϕ=  
where 
( ) 1

21,1 T T T T T Tg Pg p kG W A PBB PA JA PBB PAJ JA PAJ JJα α α−= − + + + + +
1 1

1 2( 2 , 2 ) ,TJ B P B L J J JJ Wα α− −= + + −  
( 3 , 3 ) ,k G= −  

1

( )
y ( d ) = ( ) .

1( (
d

i d k

x d
x d k

) )x ik
−

= −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

−

∑

 

And By the condition (5), Δ  is negative 
definite, namely there is a number 

( ( ))Q y d
0χ >  such that 

2
( ( ) ) ( ) ,Q y d y dχΔ ≤ −  and hence, the 

asymptotic stability of the system immediately follows 
from lemma 2.1 . This completes the proof. 
Remark 3.1 Theorem 3.1 gives a sufficient condition for 
the asymptotic stability of delay – difference system (2) 
via matrix inequalities. These conditions are described in 
terms of certain diagonal matrix inequalities, which can 
realized by using the linear matrix inequality algorithom 
proposed in 4⎡ ⎤

⎣ ⎦
⎤
⎦

 But Hu and wang ⎡
⎣

 these conditions 

are described in terms of certain symmetric matrix 
inequalites,which can be realized by using the schur 
complement lemma and linear matrix inequlities, which 
can be realzed by using the schur complement lemma and 
linear matrix inequlity algorithm proposed in

9

4⎡ ⎤
⎣ ⎦

. 

4. APPLICATIONS 

In this section, we apply the main result of thise paper , 
which provides a sufficient condition for the asymptotic of 
dealy-difference system of cellular neural networks with 
multiple dealays in terms of certain matrix inequaities. 
We consider dealy-difference system of cellular neural 
networks with multiple dealays of the form 
S(d+1)=- MS(d)+AL(S(d)) + ∑ + g,                         

(7) 
1

( ( ))
n

i
i

B L S d k
=

− i

( ) nS d R⊆  is the neuron state vector, 

1 1
1 1( ( ) ( ( )) ( ) ( )T TL x d k L x d k x k d JJx k dα− −− − ≤ − −α
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{ }1 10 0, , , , 0, 1, 2,...,n n ik D k M diag m D m m i n≤ ≤ ≤ ≥ = ≥ =

is the nⅹ n constant relaxation matrix,  A,
iB , 

1, 2,...,i = n
∈

 are the n ×  n constant weight matrices, 

1( , , ) n
ng g D g R=  is the  constant external 

input vector and [ ]1 1( ) ( ) , , ( ) T
n nL z L z K L z= with 

1 , ( 1,1)il C R⎡ ⎤
⎣ ⎦∈ −  where is the neuron 

activations and monotonically increasing for each 
. 

iL

1, 2,...,i n=
We consider the sufficient condition for asymptotic 

stability of the zero solution  of (7) in terms of certain 
matrix inequalities. Without loss of generality , we can 
assume that  and g=0 for 
otherwise, we let 

*S
* 0 , ( 0 ) 0S S= = (

*x S S= −  and define 
*( ) ( ) ( )).L x L x S L S= + − *

.

 Then new form of 
(7) is now given by 

1

( ( ))( 1) ( ) ( ( ))
n

i i
i

B L S d kx d Mx d AL x d
=

−− =− + +∑  

(8) 
Theorem 4.1 The zero solution of dealy-difference system 
(8) is asymptotically stable if there exist symmetric 
positive definite matrices 

, , , 1, 2 , . . . ,i iP G W i n= and 

1 , , 0nJ d iag j D j⎡ ⎤
⎢ ⎥⎣ ⎦

= >  satisfying the 

following matrix inequalities: 

(0,0) 0 0 J 0 0 0 0 J 0 

0 (1,1) (1,2) J (1,n
) 0 0 0 J 0 

0 (2,1) (2,2) J (2,n
) 0 0 0 J 0 

M M M 0 M M M M M M 

= 0 (n,1) (n,2) J (n,n
) 0 0 0 J 0 

0 0 0 J 0 (n+1,n+
1) 0 0 J 0 

0 0 0 0 0 0 (n+2,n+2) 0 J 0 
M M M M M M 0 0 0 M 
0 0 0 0 0 0 M 0 0 0 

0 0 0 0 0 0 0 J 0 (2n,2n
) 

ϕ <0 
(9) 
Where 

11 1

1
1 2

1 11 1

(0,0)

,

n n n
T T T

ri i i
ri i

n n n n
T T T T T T

rJi i
r ri i

g Pg P kG W A PB B PA

g PB B Pg J A PB B PAJ JA PAJ JJ

α

α α α

== =

−

= − + + + +

+ + +

∑ ∑∑

∑∑ ∑∑
= == =

{ }1 1
1 2( , ) , 1,2, ,T

ri ii r JB PB J JJ JJ W i r D nα α− −= + + − ∀ = =

{ }1 1
1 2 ,( , ) , 1,2, ,T

ri andi r JB PB J JJ JJ i r D nα α− −= + + ∀ ≠ =  

{ }( , ) , 1 , 2 , , 2ii r k G i r n n D n= − ∀ = = + +
 

Proof Consider the Lyapunov function 

1 2 3( ( )) ( ( )) ( ( )) ( ( ))Q y d Q y d Q y d Q y d= + + , 

where 

1

1

1

1

2

1

3

( ) ( ) ( ) ,

( ( ) ) ( ) ( ) ,

( ( )

( ( )) ( ) ( ) ,

n d
T

i r d k

n

i

T

d
T

r d k

k d i x i G x i

Q y d x d P x d

Q y d

Q y d x i W x i

−

= = −

=

−

= −

− +

=

=

=

∑ ∑

∑ ∑

 

, , , 1, 2,...,i iP G W i n=  being symmetric positive 

definte solution of (9) and 

1( ) ( ), ( ), , ( ) .ny d x d x d k D x d k⎡ ⎤
⎣ ⎦= − −  

The diffrence of  along trajectory of solution 
of (8) is given by 

( ( ) )Q y d

1 2 3( ( )) ( ( )) ( ( )) ( ( ))Q y d Q y d Q y d Q y dΔ =Δ +Δ +Δ  

,where  
1 1 1 3( ( )) ( ( 1)) ( ( )) ( ( ))Q y d Q x d Q x d Q y dΔ =Δ + −Δ +Δ  

1
( ( ))

1

( ) ( ( )) ( )

( (

( ) ( ( )) ( ( )) ( )

( ) ( ( )) ( ) ( ( ))

( ) ( )

( ) ( )

( )) ( ( ))( ))

n

i i
i

T T T
i i i i

i

B L x d k
T

n

i i
i

T

Mx d AL x d x d P

LPA X X

x d LPB M X d k M x d k B PLx d

T

T T

T T

Mx d AL x d x d B L x d k

x d Px d

x d M PM P x d

x M d PA L x dd

=

=

⎡ ⎤
−⎢ ⎥

⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

=

= − + +

×

− − −

∑

− + + − −

= −

−

−

∑

1 1

1 1

1 1

1 1

1
( ( )) ( ( ))

( ( )) ( ( )) ( ( )) ( ( ))

( ( )) ( ( )) ( ( )) ( ( ))

( ( )) ( ( ))

(2( ( ))

n n
T T

i i r r
i i

n n

i
n n

T T T T
i i i i

i i
n n

T T T T
i i i i

i i
n

T T

i
L x d k B PB L x d k

L x d A PB L x d k L x d k B PAL x d

L x d A PB L x d k L x d k B PAL x d

L x d A PAL x d

kQ y d

= =

=

= =

= =

=
− −

− −

− −

+

Δ

+ +

+ +

+∑∑

Δ =

∑ ∑

∑ ∑

∑ ∑

∑

1

1

1 1

1

1 1

1

1
3

) ( ) ( )

( ) ( ) ( )

( ( )) ( ) ( )

( ) ( ) ( ) ( )

i

i

i

n

i
i

n n d
T T

i i
i i r d k

n

i

n n
T T

i i i i
i i

and

d T
r d k

d T
r d k

d r x r Gx r

k x G x d x i Gx i

Q y d x r Wx r

x d W x d x d k W x d k

=

−

= = = −

=

= =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

−

= −

−

= −

− +

= −

Δ =Δ

= − −

∑ ∑

∑ ∑ ∑

∑ ∑

∑ ∑−
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The rest of the proof is similar to that of Theorem 3.1 
need hold. 

5.CONCLUSIONS 

In this paper, based on a discrete analog of the Lyapunov 
second method,we have established a sufficint condition 
for the asymptotc stability of deay-difference system of 
cellular neural networks in terms of certain matrix 
inqualities.The result is appllied to obtain new stability 
condition in terms of certain matrix inqualities for some 
class of deay-difference system of cellular neural networks 
with multiple delays in terms of certain matrix inequalities. 
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