
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

261

Implementation of Invisible Digital Watermarking on Image
Nonlinearly of Arithmetically Compressed Data

Sabyasachi Samanta

Haldia Institute of Technology
Haldia, WB, INDIA

Saurabh Dutta
Dr. B. C. Roy Engineering College Durgapur,

WB, INDIA

Abstract
This paper presents how long textual information are encrypted
and compressed to a number of floating point numbers and it to
binary equivalent; then to substitute that stream of bits some
suitable nonlinear pixel and bit positions about the image
depending upon the key; also to retrieve that hidden data bits
from that pixels and to decompress into its original information.
Key words:
pixel, invisible digital watermarking, arithmetic coding,
nonlinear function.

1. Introduction

Digital Watermarking describes the way or technology
by which anybody can hide information, for example a
number or text, in digital media, such as images, video or
audio. Arithmetic compression technique takes a stream
of input symbols and replaces it with a single floating
point number less than 1 and greater than or equal to 0.
That single number can be uniquely decoded to exact the
stream of symbols that went into its assembly. Most
computers support floating point numbers of up to 80
bits or so. This means, it’s better to finish encoding with
10 or 15 symbols. Also conversion of a floating point
number to binary and binary to same floating point
number is maximum time erroneous. Arithmetic coding
is best to accomplish using standard 16 bit and 32 bit
integer mathematics. A pixel with 32 bit color depth
consists of α value, R (Red), G (Green) and B (Blue)
value. α value is the value of opacity.

11111111 11011100 10101011 11110000

 α R G B

Figure 1.1 Bit Representation of a 32-bit RGB Pixel

First 8 bits of the 32 bits are reserved for this opacity
(transparency of the image) value. If α is 00000000 the
image is fully transparent. Each of three(R, G & B) 8-
bit blocks can range from 00000000 to 11111111(0 to
255) [1] [2] [3] [4].

In this paper, we have proposed a technique, initially to
encrypt through a table and then to encode as a real
number in an interval greater than or equal to 0 and less
than 1. First, we have assembled the table taking a
number of characters or symbols available in keyboard
or the special symbols as per user’s prerequisite. Each
characters (Ch) is assigned a range (rc) indicated by high
(Hc) and low (Lc) range between 0-1. Then taking a set of
characters (maximum 10), a group (G) is defined. Each
group is also assigned a range (rg) indicated by high (Hg)
and low (Lg) range. Hence, we can put maximum 100
characters with unique probability range in table. After
that the long message is broken into a number of small
messages. Every short message(less than or equal to 9
characters) is converted into two floating point numbers,
one for character range (taking rc) and the other one for
where or in which group (G) the character belongs(i.e.
taking rg). Then we have transformed it to unsigned long
integer (removing the floating point) and to equivalent
binary number. Then we have replaced that stream of
bits in nonlinear pixel and bit positions, in any one of
last four significant bit of R,G & B at selected pixels
about an image using nonlinear function and the private
key cryptography technique taking the α value as 255 or
as in the original image [5] [6].
Example: for a text with 24 characters, will be encrypted
to an array of 168 (8+2*((2*30) + (1*20))) bits of
stream. If we use ASCII-8 (American Standard Code for
Information Interchange) to encode 192 bits are required.
In an image with resolution of 800 X 600 has 2, 40,000
pixels. In our work only we are altering any one bit of
last four significant bit of each R, G & B. Here
maximum 56 pixels will be affected by this process. If
any bit generated from characters become same to the
targeted bit of image then there will be no change.
Section 2 represents the scheme followed in the
encryption technique. Section 3 represents an
implementation of the technique. Section 4 is an
analytical discussion on the technique. Section 5 draws a
conclusion.

Manuscript received April 5, 2010
Manuscript revised April 20, 2010

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

262

2. The Scheme

This section represents a description of the actual scheme
used during implementing “Implementation of Invisible
Digital Watermarking on Image Nonlinearly of
Arithmetically Compressed Data” technique. Section 2.1
describes the encryption technique using four algorithms
2.1.1, 2.1.2, 2.1.3 & 2.1.4. While section 2.2 describes
the decryption technique using two algorithms 2.2.1 &
2.2.2 [7].

2.1 Encryption of data bits about the image

2.1.1 Assignment of range for individual characters
and groups

Step I: Take special characters/symbols or characters
available in keyboard.
Step II: Count the number of characters (chlen) and
calculate number of groups (nogp=chlen/10) and
(extch=chlen%10).
Step III: Assigned range (rc) to each characters/symbols
indicated by high (Hc) and low (Lc) range between zero
to one.
Step IV: Taking a set of characters (maximum 10
characters) define a group (G).Also assigned a range (rg)
indicated by high (Hg) and low (Lg) range to each of
these.

Figure 2.1.1.1 Subdivision of Encoded Characters

Step V: If extch =0 then repeat Step II to Step IV for i= 1
to nogp.

Otherwise repeat Step II to Step IV for i= 1 to
(nogp+1).

Step VI: Stop.

Figure 2.1.1.2 Characters in Group

w x y z ? ? � + ? {

D E F G H I J K L M

N O P Q R S T U V W

b ! " # $ % & ' - .G1

G4

G5

G10

Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8 Ch9 Ch10

Characters Range for Range for
 Characters Groups

 (Lc≤ rc<Hc) (Lg ≤rg<Hg)

0.3 ≤ rc < 0.4 0.0 ≤rg < 0.1
& 0.6 ≤ rc < 0.7 0.0 ≤rg < 0.1

A 0.7 ≤ rc <0.8 0.2 ≤rg < 0.3
B 0.8 ≤ rc <0.9 0.2 ≤rg < 0.3

E 0.1 ≤ rc <.0.2 0.3 ≤rg < 0.4
I 0.5 ≤ rc <.0.6 0.3 ≤rg < 0.4
L 0.8 ≤ rc <.0.9 0.3 ≤rg < 0.4

N 0.0 ≤ rc <.0.1 0.4 ≤rg < 0.5
O 0.1 ≤ rc < 0.2 0.4 ≤rg < 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

 Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8 Ch9 Ch10

:
:
:
:

:
:
:
:

:
:
:
:

G= Group of Characters
Ch= Characters belongs to that group

R 0.4 ≤ rc < 0.5 0.4 ≤rg < 0.5

_Table 2.1.1.1: Characters and Groups with High and

Low Ranges

2.1.2 Encode message using arithmetic coding and
store it to encrypted array as binary values

Step I: Take characters as input from keyboard or
special characters (which must be in Table 2.1.1.1).
Step II: Calculate the string length (chlen) from input.

 Step III: Convert the length (chlen) into its 8-bit binary
equivalent. Store that data bits to earr[bit] as LSB (Least
Significant Bit) to earr[1] and MSB (Most Significant
Bit) to earr[8] respectively.
Step IV: Calculate number of broken messages n =
chlen/9 and remaining characters r =chlen%9.
Step V: Taking the range from Table 2.1.1.1 apply
arithmetic coding technique to encode the character set
into a single floating point number in between 0 - 1.

Set low to 0.0
Set high to 1.0

While there are still input characters do
 get an input character

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

263

 code range = high - low.
 high = low + range*high_ range
 low = low + range*low_ range
End of While

Continue this process to get input (1 to 9) for first n
times and (1to r) at (n+1) th time and stop. Output the low.
Step VI: From the Low value and High value convert
Low value (low) to an unsigned long integer number
removing the floating point.
Step VII: Convert that number into equivalent binary
number. For n times if total number of 0 or 1 is less than
30 then left fill with 0’s. For the case of r:
 a) If (r≥6 || r=0) as in Step VII.

b) If (r≥3 || r<6) and if total number of 0 or 1 is
less than 20 then left fill with 0’s.
c) If (r>0 || r<3) and if total number of 0 or 1 is
less than 10 then left fill with 0’s.

Step VIII: Store the binary values, LSB to earr[9] and
rest to earr[bit] respectively.
Step IX: Repeat Step V to Step VIII

a) If r=0 then for i= 1 to (2*n) times
Otherwise for i= 1 to (2*(n+1)) times taking rc
and rg from separately and respectively.

Step X: Stop.

2.1.3 Selection of the nonlinear pixel positions from
the key

Step I: Take a four digit (decimal numbers from 0 to 9
except four successive 0’s) key (K) as an input.
Step II: Take the value of bit from array earr[bit] to
calculate total number of pixels is required as three
following data bit replaced in R, G & B of every pixel.
So calculate number of pixel p= (ceil (bit /3)).
Step III: Take the key (K) and calculate the value of
function

F(x, y) = Kp [i.e. POW (k, p)].

Step IV: Store the exponential long double values into
file one by one.
Step V: Repeat Step III to Step IV for i= (1 to p) and go
to Step VI.
Step VI: Read the values as character up to “e” of the
every line of the file and store it to another file with out
taking the point [.].
Step VII: Modify the value as numeric and store it to an
array arrxyz[p]
Step VIII: Take most three significant digit to arrx [p],
next three digits to array arry [p] and last significant
digit to arrz[p].
Step IX: Repeat Step VI to Step VIII up to end of the file.
Step X: Stop.

2.1.4 Replacement of the array elements with R, G
& B values of pixels

Step I: Calculate the width (w) and height (h) of the
image.
Step II: Set x=arrx[p] and y=arry[p].
Step III: To select the pixel position into image,
compare the value of x and y with the value of w and h
(where addressable pixel position is (0, 0) to (w-1, h-1)).

a) If (x >(w-1)) or (y >(h-1)) then
Set P (x, y) = P (0+(x %(w-1)), (0 +(y %(h-1)))
 Otherwise Set P (x, y) = (x, y).

Step IV: To select the bit position (b) of selected pixel
i.e. with which bit the array data will be replaced. Set z
=arrz [p].

i) If (z%4=0) then b=LSB
ii) If (z%4=1) then b=2nd LSB
iii) If (z%4=2) then b=3rd LSB
Otherwise b=4th LSB of each R, G & B of a
pixel.

Step V: To replace the array elements with the selected
bit position of selected pixel and to reform as a pixel

a) After reading the values of R, G & B convert each
to its equivalent 8-bit binary values.
b) Replace subsequent element of earr[bit] by
following Step III to Step IV.
c) Taking values of R, G & B switch it to the pixel
value and place it to its position of the image (taking α
value as before).

Step VI: For replacing the array element to pixels using
the above mentioned process starting from the 0th
element up to the end of the array.
 A) If bit%3 = 0
 Go to Step VII.
 B) If bit%3 = 1
for 0th element to (bit-1)th element of the array repeat
Step VI (A).For (bit)th element to R, value for G and B
will be remain same. And go to Step VII.

C) If bit%3=2
for 0th element to (bit-2)th element of the array repeat
Step VI (A).For (bit-1)th element to R, (bit)th to G and B
will be remain same. And go to Step VII.

Step VII: Verify the pixel or bit positions which
previously have used or not about the image.

a) If ((P(x, y)= (P(x, y)) || P (x, y)= P (x++, y++))
&& (b=b++])then

Set P ((x, y), b) =P (0, h) and b as Step IV.
Repeat Step VII (a) for j=1 to p;
Repeat Step VII (a) for k=j to p.
Go to Step VIII.

Step VIII: Repeat Step II to Step VII for i=1 to p.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

264

Step IX: Stop.

2.2 Decryption of the data bits from the image

2.2.1 Retrieving the replaced bits from the
encrypted image

Step I: Take the same key (K) input as it was at the time
of encryption.
Step II: To get the pixel positions with in the image and
bit position in R, G & B of selected pixels run through
Step III to Step IX of Algorithm 2.1.3 and Step I to Step
VIII of Algorithm 2.1.4.
Step III: Retrieving the encrypted bits from the selected
bit positions of delectated pixels store it to decrypted
array from darr[1] to darr[bit] respectively.
Step IV: To get the length repeat Step II to Step III for
i= 1 to 3 times (as every pixel contain three data bits).
Step V: Taking data bits of darr [1] as LSB and darr [8]
as MSB calculate the length (chlen) of message.
Step VI: To find out the total number of bits in decoding
array (i.e. value of bit in darr[bit]), calculate n=chlen/9
and r=chlen%9 (as in Step IV Algorithm 2.1.2).
Step VI: Taking the value of n and r calculate bit=
(2*(30*n + rbit) +8).
Where rbit are calculated as

a) If (r≥6) then rbit =30
b) If(r≥3 || r<6) then rbit =20
c) If(r>0 || r<3) then rbit=10 (as in Step VII

algorithm 2.1.2).

Step VII: Now go through Step III to Step IX of
Algorithm 2.1.3 and Step I to Step VIII of Algorithm 2.1.4
for i=4 to p. Store the data’s darr[10] to darr[bit]
respectively.
Step VIII: Stop.

2.2.2 Decompress array elements to text using
decoding algorithm

Step I: To translate the data bits to floating point number
a) If n≠0, assign the value darr[8+n*i] to LSB and

darr[8+30*n] to MSB respectively and covert it to
equivalent decimal number.

If the total number of digits of that decimal
number is less than nine left filling with 0’s
translate it to nine digits floating point number.

b) If r≠0, assign the value darr[(8+30*n) +1] to LSB
and darr[(8+30*n)+1)+rbit] to MSB respectively
and covert it to equivalent decimal number.

If the total number of digits of that decimal
number is less than r left filling with 0’s
translate it to r digits floating point number.

Step II: Apply the decoding algorithm of arithmetic
coding to convert it into individual range.

Get encoded number
Do
Find range from the table
Output the range

Subtract symbol low value from encoded
number

Divide encoded number by range
Until no more symbols or zero.

Step III: Comparing the ranges of first time iteration of
Step II and second time iteration of Step II alongside (i.e.
comparing the range rc and the rg at same time) from the
table (Table 2.1.1.1) find out the encoded characters (Ch).
Step IV: Executing the work of Step (a) go to Step (b)
a) If n≠0 repeat Step I (a) to Step III for i= 1 to 2 times.
Repeat Step IV for i=1 to n times.
b) If r≠0 repeat Step I (b) to Step IV for i=1 to 2 times.
And Go to Step VII.
Step V: Finally put the characters one by one and
assemble the original message.
Step VI: Stop.

3. An implementation

Let the message to be encrypt is NONLINEAR.
So the length of the message

 =09(Decimal equivalent)
 =00001001(8 Bit Binary equivalent)

All the characters of the message are defined in the Table
2.1.1.1 with their distinct range. Starting from the range
0.0 to 0.1 Ch1’s (maximum10 characters from G1 to
G10) are defined. In that range the first character N is
also defined. Applying the technique described in
Algorithm 2.1.2 we get the codeword for the rc as

Figure3.1: Generation of Codeword using rc

 0.0
 Ch1(s)(G1-G10)
 0.1
 Ch2(s)(G1-G10)
 0.2
 Ch3(s)(G1-G10)
 0.3
 Ch4(s)(G1-G10)
 0.4
 Ch5(s)(G1-G10)
 0.5
 Ch6(s)(G1-G10)
 0.6
 Ch7(s)(G1-G10)
 0.7
 Ch8(s)(G1-G10)
 0.8
 Ch9(s)(G1-G10
 0.9
 Ch10(s)(G1-G10)
 1.0

N

O

0.0

0.1

0.01

0.02

0.010850174

0.010850175
Ch1 of G5 Ch2 of G5

Hence we get the codeword for characters

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

265

0.010850174 ≤codeword_for_Ch
 < 0.01050175.

Figure 3.2: Generation of Codeword using rg

And for groups we get

0.444334324≤codeword_for_group
 <0.444334325

Taking the low values for characters
Codeword

 =0.010850174(floating point number)
 =10850174(integer number removing floating

point)
=000000101001011000111101111110
(30 bit binary equivalent)

And taking low value for group we get
codeword=0.444334324 (floating point number)
=444334324 (integer number removing floating point)
=011010011111000000000011110100(30 bit binary
equivalent)
First store the bits form length to encrypted array
earr[bit], then store bits of stream from code words
respectively as,

Figure 3.3: Data Bits in Encrypted Array

Let the key (K) =6379
The image size= 800 X 600(w x h)
Hence, number of affected pixel (p) = [ceil (68/3)] =23

In table 3.1, how the array data’s are replaced with R, G
& B values in selected nonlinear pixels of an image is
described (following Algorithm 2.1.3 & Algorithm 2.1.4).

0.0
 G1
0.1
 G2
0.2
 G3
0.3
 G4
0.4
 G5
0.5
 G6
0.6
 G7
0.7
 G8
0.8
 G9
0.9
 G10
1.0

N

0.4

0.5

0.44

0.45
O

0.44

0.45

0.444

0.445
N

0.444334324

0.444334325

6379,1 6.379000 e+03 1st LSB

Key(K),i Value Value of pixel
P(x,y)

Bit position
b= Z%4

Array data
to replace

P(637,300)
earr[1]
earr[2]
earr[3]

earr[13]
earr[14]
earr[15]

earr[67]
earr[68]
B as same

:::::

: : : ::

6379, 5

6379, 23

1.056241e+19 P(105,024)

3.230789e+87 P(323,079)

2nd LSB

1st LSB

Table 3.1: Replacement of Data Bits about Image

Thus we can transmit the encrypted watermarked image
through any communication channel. Afterward applying
the decryption technique as described in Algorithm 2.2.1
& Algorithm 2.2.2 we will be able to get back the
encrypted message from that watermarked image in the
decryption end. Taking character range and group range
we get the encrypted characters which are defined in
Table 3.2.

Codeword
(Using rc)

Codeword
(Using rg)

Character
Range

Group
Range Character

0.010850174 0.444334325 0.0 < 0.1 0.4 < 0.5 N
0.10850174 0.44334325 0.1 < 0.2 0.4 < 0.5 O
0.0850174 0.4334325 0.0 < 0.1 0.4 < 0.5 N
0.850174 0.334325 0.8 < 0.9 0.3 < 0.4 L
0.50174 0.34325 0.5 < 0.6 0.3 < 0.4 I
0.0174 0.4325 0.0 < 0.1 0.4 < 0.5 N
0.174 0.325 0.1 < 0.2 0.3 < 0.4 E
0.74 0.25 0.7 < 0.8 0.2 < 0.3 A
0.4 0.5 0.4 < 0.5 0.4 < 0.5 R
0.0

rc

rc

rc

rc

rc

rc

rc

rc

rc

rg

rg

rg

rg

rg

rg

rg

rg

rg

earr[1]=1 earr[9]=0 earr[39]=0

 : :

bits for

: :

bits for

: :

bits for

earr[8]=0

length

 earr[38]=0

character

 earr[68]=0

group

Table 3.2: Decode into Original Message

Finally, we get the encrypted message “NONLINEAR”
after assembling the characters.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

266

4. Analysis

By this process, we have taken a number of characters
and groups with there distinct range of probabilities
which is unique to sender and receiver. Here we have
used the default range of probabilities as 0.1. Hence
sender and receiver can change the order of occurrence
and range of probabilities for characters and groups in
Table 2.1.1.1. Using single key we can only replace data
bits of maximum 30 characters (as if anybody takes the
key as four digit maximum number only 77 pixels is
truly addressable). If anybody wants to encrypt long
message using this technique, he or she can use subset of
keys (using digits of key) from the original private key
and different regions of image for every subset. Also if
any body wants to use variable length of key it’s possible,
as message_lenght ∞1 / number_of_keydigit. Binary
values generated form the textual information replaced in
different nonlinear places in the image. As bits are
placed any one bit in lower four bits of each R, G & B,
the change of color of the modified pixels are invisible to
human eye. If size of the text is less then number of
pixels affected from the text will be less. At that time it
will be harder to differentiate the encrypted image from
the original image. If the image size is large and number
of pixels is less then it will also be harder to differentiate
the encrypted image from the original image [1] [2] [8].

5. Conclusion

Finally, we have used a table (Table 2.1.11) with
different ranges of probabilities for distinct characters
and groups which is totally unknown to the attackers (i.e.
except sender and receiver). Furthermore, we have used
the private key and nonlinear function technique
(depending on key and bit length) to select both the pixel
positions and bit position (of each R, G & B pixel) where
the data will be hidden inside the image. If the key
become unknown to anybody who wants to attack the
information, we think, it will be quite impossible to him
or her to find out the information from the watermarked
image [9].

Acknowledgement:
We express our heartiest gratitude to the authority of
Haldia Institute of Technology, Haldia, West Bengal,
INDIA for providing resources used during the
development process.

References:
[1] Vipin Tyagi and J. P. Agarwal “Digital Watermarking”, in

Computer Society of India on 09.26.2008.
[2] Sabyasachi Smanta, S. Kndar, Saurabh Dutta

“Implementing Invisible Digital Watermarking on Image”
in ‘The Bulletin of Engineering and Science’ ISSN:
09747176 SEPTEMBER, 2008 VOL.3| NO.2 Serial
No.-06.

[3] Petitcolas, Ross J. Anderson and Markus G. Kuhn,
“Information Hiding-A Survey” by Fabien A. P.” in
Proceedings of the IEEE, special issue on protection of
multimedia content, 87(7):1062(1078, July 1999).

[4] Todd Owen and Scott Hauck “Arithmetic Compression
on SPIHT Encoded Images” WEE Technical Report ,
Number UWEETR-2002- 0007 of 05/06/2002.

[5] Ian H. Willen, Radford m. Neal, and John G. Cleary,
“Arithmetic coding for Data compression”,
Communications of the ACM, June 1987, Volume 30,
Number 6 (Page no: 520 – 540).

[6] Paul G. Howard, Jeffrey Scott Vitter, “Practical
Implementations of Arithmetic Coding” Department of
Computer Science, Brown University Providence, R.I.
02912-1910.

[7] “Watermarking schemes evaluation” by Fabien A. P.
Petitcolas, Microsoft Research.

[8] Paul G. Howard and Jeffrey Scott Vitter “Arithmetic
Coding for Data Compression” FELLOW, IEEE.

[9] Ashok Banerjee, Ananda Mohan Ghosh, “Multimedia
Technology” TMH, New Delhi.

