
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010 267

Towards Model based Generation of Self - Priming and Self -
Checking Conformance Tests for Implementing Atomic Read/Write

Shared Memory in Mobile Ad hoc Networks

Fatma.A. Omara1 and Reham.A.Shihata2,

1Computer science department, Cairo University,
Information Systems and Computers Faculty, Cairo-Egypt.University.

2 Math's Department. Science Faculty,
EL Minufiya University, Shebin-El Kom -Egypt.

Summary
This paper describes a model-based approach to generate
conformance tests for interactive applications .this method
address generation of small yet effective set of test frames for
testing individual operations, then a set up sequence that brings
the system under test in an appropriate state for a test frame (self
– priming), also a verification sequence for expected output and
state changes (self – checking), finally, negative test cases in the
presence of exceptions. This method exploits a novel mutation
scheme applied to operations modeled as relationships among
parameters and state variables; a set of novel abstraction
techniques which result in a compact Finite State Automaton
(FSA); and search techniques to automatically generate the set
up and verification sequences. We illustrate this method with a
geoquorum approach for implementing atomic read/write shared
memory in mobile ad hoc networks as a simple application.
Key words:
software engineering lifecycle, conformance test, specification
phase, FSA, mobile ad hoc networks

1. Introduction

In this paper, we use a model-based approach to generate
conformance tests for the geoquorum approach which is
considered the application of this paper .This model is
proposed to that specify some contributions which are:

1. Abstraction techniques for extracting FSA. And

show how to extract a compact FSA from a test
specification. The abstraction techniques include
variable hiding which eliminates certain system
state variables from the state labels and state
merging which merges two states with different
labels but same transitions [1].

2. Generation of verification scripts, the issue is
addressed of verification scripts by exploiting a
common characteristics of several interactive
systems: availability of reader operations a reader
operation propagates certain aspects of the

system state information to the external
environment.

3. Generation of negative test cases, the negative
test cases are generated for an operation in
presence of exceptional results by exploiting the
state updates of the operations successful result
[2]. Conformance test generation techniques
based on FSA representation of operations in
communication protocols have been reported in
[2].

Verification sequences for the control part of a protocol
entity use one of these: First, Distinguishing sequence
which produces a district output when applied to every
state in FSA. Second, A unique Input/Output sequence for
each state S in the FSA, which distinguishes S from all
other states in the FSA is determined. Third, a
characterization set which consists of operation sequences
such that the last output observed from the application of
these sequences is different at each state of the FSA.

2. The Geoquorum-Approach(the application)

In this paper the Geoquorum algorithm is presented for
implementing the atomic read/write in shared memory of
mobile ad hoc networks. This approach is based on
associating abstract atomic objects with certain geographic
locations. It is assumed that the existence of Focal Points,
geographic areas that are normally "populated" by mobile
nodes. For example: a focal point may be a road Junction,
a scenic observation point. Mobile nodes that happen to
populate a focal point participate in implementing a shared
atomic object, using a replicated state machine approach.
These objects, which are called focal point objects, are
prone to Occasional failures when the corresponding
geographic areas are depopulated. The Geoquorums
algorithm uses the fault-prone focal point objects to
implement atomic read/write operations on a fault-tolerant

 Manuscript received April 5, 2010
Manuscript revised April 20, 2010

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010 268

virtual shared object. The Geoquorums algorithm uses a
quorum- based strategy in which each quorum consists of
a set of focal point objects. The quorums are used to
maintain the consistency of the shared memory and to
tolerate limited failures of the focal point objects, which
may be caused by depopulation of the corresponding
geographic areas. The mechanism for changing the set of
quorums has presented, thus improving efficiency [4].
Overall, the new Geoquorums algorithm efficiently
implements read/write operations in a highly dynamic,
mobile network. In this chapter, a new approach to
designing algorithms for mobile ad hoc networks is
presented. An ad hoc network uses no pre-existing
infrastructure, unlike cellular networks that depend on
fixed, wired base stations. Instead, the network is formed
by the mobile nodes themselves, which co-operate to route
communication from sources to destinations. Ad hoc
communication networks are by nature, highly dynamic.
Mobile nodes are often small devices with limited energy
that spontaneously join and leave the network. As a
mobile node moves, the set of neighbors with which at can
directly communicate may change completely. The nature
of ad hoc networks makes it challenging to solve the
standard problems encountered in mobile computing, such
as location management using classical tools. The
difficulties arise from the lack of a fixed infrastructure to
serve as the backbone of the network. In this chapter
developing a new approach that allows existing distributed
algorithm to be adapted for highly dynamic ad hoc
environments one such fundamental problem in distributed
computing is implementing atomic read/ write shared
memory [5]. Atomic memory is a basic service that
facilitates the implementation of many higher level
algorithms. For example: one might construct a location
service by requiring each mobile node to periodically
write its current location to the memory. Alternatively, a
shared memory could be used to collect real – time
statistics, for example: recording the number of people in a
building here, a new algorithm for atomic multi
writes/multi- reads memory in mobile ad hoc networks.
The problem of implementing atomic read/write memory
is divided into two parts; first, we define a static system
model, the focal point object model that associates abstract
objects with certain fixed geographic locales. The mobile
nodes implement this model using a replicated state
machine approach. In this way, the dynamic nature of the
ad hoc network is masked by a static model. Moreover it
should be noted that this approach can be applied to any
dynamic network that has a geographic basis. Second, an
algorithm is presented to implement read/write atomic
memory using the focal point object model. The
implementation of the focal point object model depends on
a set of physical regions, known as focal points .The
mobile nodes within a focal point cooperate to simulate a

single virtual object, known as a focal point object. Each
focal point supports a local broadcast service, LBcast
which provides reliable, totally ordered broadcast. This
service allows each node in the focal point to
communicate reliably with every other node in the focal
point. The focal broadcast service is used to implement a
type of replicated state machine, one that tolerates joins
and leaves of mobile nodes. If a focal point becomes
depopulated, then the associated focal point object fails.
(Note that it doesn't matter how a focal point becomes
depopulated, be it as a result of mobile nodes failing,
leaving the area, going to sleep. etc. Any depopulation
results in the focal point failing). The Geoquorums
algorithm implements an atomic read/write memory
algorithm on top of the geographic abstraction, that is, on
top of the focal point object model. Nodes implementing
the atomic memory use a Geocast service to communicate
with the focal point objects. In order to achieve fault
tolerance and availability, the algorithm replicates the
read/write shared memory at a number of focal point
objects. In order to maintain consistency, accessing the
shared memory requires updating certain sets of focal
points known as quorums. An important aspect of our
approach is that the members of our quorums are focal
point objects, not mobile nodes. The algorithm uses two
sets of quorums (I) get-quorums (II) put- quorums with
property that every get-quorum intersects every put-
quorum. There is no requirement that put-quorums
intersect other put-quorums, or get-quorums intersect
other get-quorums. The use of quorums allows the
algorithm to tolerate the failure of a limited number of
focal point objects. Our algorithm uses a Global Position
System (GPS) time service, allowing it to process write
operations using a single phase, prior single-phase write
algorithm made other strong assumptions, for example:
relying either on synchrony or single writers. This
algorithm guarantees that all read operations complete
within two phases, but allows for some reads to be
completed using a single phase: the atomic memory
algorithm flags the completion of a previous read or write
operation to avoid using additional phases, and
propagates this information to various focal paint
objects[4]. As far as we know, this is an improvement on
previous quorum based algorithms. For performance
reasons, at different times it may be desirable to use
different times it may be desirable to use different sets of
get quorums and put-quorums. For example: during
intervals when there are many more read operations than
write operations, it may be preferable to use smaller get-
quorums that are well distributed, and larger put-quorums
that are sparsely distributed. In this case a client can
rapidly communicate with a get-quorum while
communicating with a put – quorum may be slow. If the
operational statistics change, it may be useful to reverse

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010 269

the situation. The algorithm presented here includes a
limited "reconfiguration" Capability: it can switch between
a finite number of predetermined quorum systems, thus
changing the available put-quorums and get –quorums. As
a result of the static underlying focal point object model,
in which focal point objects neither join nor leave, it isn't a
severe limitation to require the number of predetermined
quorum systems to be finite (and small). The resulting
reconfiguration algorithm, however, is quite efficient
compared to prior reconfigurable atomic memory
algorithms. Reconfiguration doesn't significantly delay
read or write operations, and as no consensus service is
required, reconfiguration terminates rapidly [5].

The mathematical notation for the geoquorums
approach
 - I the totally- ordered set of node identifiers.

- I0 є I, a distinguished node identifier in I that is
smaller than all order identifiers in I.

- S, the set of port identifiers, defined as N >0×
OP×I,

 Where OP= {get, put, confirm, recon- done}.
- O, the totally- ordered, finite set of focal point

identifiers.
- T, the set of tags defined as R ≥0 × I.
- U, the set of operation identifiers, defined as R ≥0

× S.
- X, the set of memory locations for each x є X:
 - Vx the set of values for x
 - v0,x є Vx , the initial value of

 X
- M, a totally-ordered set of configuration names
- c0 є M, a distinguished configuration in M that is
smaller than all Other names in M.
- C, totally- ordered set of configuration identifies, as
defined as: R ≥0 ×I ×M
- L, set of locations in the plane, defined as R× R

Fig .1 Notations Used in The Geoquorums Algorithm.

Variable Types for Atomic Read/Write object in
Geoquorum Approach
 for Mobile Ad Hoc Network
The specification of a variable type for a read/write object
in geoquorum approach for mobile ad hoc network is
presented. A read/write object has the following variable
type (see fig .2) [4].

Put/get variable type τ
State

Tag ∈ T, initially< 0.i0>
Value ∈ V, initially v0

Config-id ∈ C, initially< 0, i0, c0>
Confirmed-set C T, initially Ø
Recon-ip, a Boolean, initially false

Operations
Put (new-tag, new-value, new-Config-id)
If (new-tag> tag) then
Value ←new-value
Tag ← new-tag
If (new-Config-id > Config-id) then
Config-id ← new-config-id
Recon-ip ← true
Return put-Ack (Config-id, recon-ip)
Get (new-config-id)
If (new-config-id >Config-id) then
Config-id ← new-Config-id
Recon-ip ←true
Confirmed ← (tag ∈ confirmed-set)
Return get-ack (tag, value, confirmed, Config-id, recon-ip)
Confirm (new-tag)
Confirmed-set ←confirmed –set U {new-tag}
Return confirm-Ack
Recon –done (new-Config-id)
If (new-Config-id=Config-id) then
Recon-ip ←false
Return recon-done-Ack ()

Fig .2 Definition of the Put/Get Variable Type τ

2.1 Operation Manager

In this section the Operation Manger (OM) is presented,
an algorithm built on the focal/point object Model. As the
focal point Object Model contains two entities, focal point
objects and Mobile nodes, two specifications is presented ,
on for the objects and one for the application running on
the mobile nodes [5] .

(A) Operation Manager Client
This automaton receives read, write, and recon requests
from clients and manages quorum accesses to implement
these operations (see fig .3). The Operation Manager
(OM) is the collection of all the operation manager clients
(OMi, for all i in I).it is composed of the focal point
objects, each of which is an atomic object with the put/get
variable type:
Operation Manager Client Transitions
Input write (Val) i
Effect:
Current-port-number
Current-port-number +1
Op < write, put, <clock, i>, Val, recon-ip, <0,
i0, c0>, Ø>
Output write-Ack () i
Precondition:
Conf-id=<time-stamp, Pid, c>
If op .recon-ip then
√ C/ ∈ M, э P ∈put-quorums(C/): P C op. acc
Else

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010 270

Э P ∈put-quorums(C): P C Op. acc
Op .phase=put
Op. type=write
Effect:
Op. phase idle
Confirmed confirmed U {op. tag}
Input read () i
Effect:
Current-port-number
Current-port-number +1
Op < read, get, ┴, ┬, recon-ip, <0, i0, c0>,
Ø>
Output read-ack (v)i
Precondition:
Conf-id=<time-stamp, Pid, c>
If op. recon-ip then
√ C/ ∈ M, э G ∈get-quorums(C/): G C op. acc
Else
Э G ∈get-quorums(C): G C op. acc
Op. phase=get
Op. type=read
Op. tag ∈confirmed
v= op. value
Effect:
Op .phase idle
Internal read-2()i
Precondition:
Conf-id=<time-stamp, Pid, c>
√ C/ ∈ M, э G ∈get-quorums(C/): G C op. acc
Else
Э G ∈get-quorums(C): G C op. acc
Op. phase=get
Op. type=read

Op. tag ∈ confirmed
 Effect:
Current-port-number
Current-port-number +1
Op. phase put
Op. Recon. ip recon-ip
Op. acc Ø
Output read-Ack (v)i
Precondition:
Conf-id=<time-stamp, Pid, c>
If op. recon-ip then
√ C/ ∈ M, э P ∈put-quorums(C/): P C op. acc
Else
Э P ∈put-quorums(C): P C op. acc
Op. phase=put
Op. type=read
v=op. value
Effect:
Op. phase idle
Confirmed confirmed U {op. tag}
Input recon (conf-name)i

Effect:
Conf-id <clock, i, conf-name>
Recon-ip true
Current-port-number
Current-port-number +1
Op < recon, get, ┴, ┴, true, conf-id, Ø>
Internal recon-2(cid) i
Precondition
√ C/ ∈ M, э G ∈get-quorums(C/): G C op. acc
√ C/ ∈ M, э P ∈put-quorums(C/): P C op. acc
Op. type=recon
Op. phase=get
Cid=op. recon-conf-id
Effect
Current-port-number
Current-port-number +1
Op. phase put
Op. acc Ø
Output recon-Ack(c) i
Precondition
Cid=op. recon-conf-id
Cid= <time-stamp, Pid, c>
Э P ∈put-quorums(C): P C op. acc
Op. type=recon
Op. phase=put
Effect:
If (conf-id=op. recon-conf-id) then
Recon-ip false
Op. phase idle
Input geo-update (t, L) i
Effect:
Clock 1

Fig .3 Operation Manager Client Read/Write/Recon and
Geo-update Transitions for Node

2.2 Focal Point Emulator Overview

The focal point emulator implements the focal point object
Model in an ad hoc mobile network. The nodes in a focal
point (i.e. in the specified physical region) collaborate to
implement a focal point object. They take advantage of the
powerful LBcast service to implement a replicated state
machine that tolerates nodes continually joining and
leaving .This replicated state machine consistently
maintains the state of the atomic object, ensuring that the
invocations are performed in a consistent order at every
mobile node [4].In this section an algorithm is presented to
implement the focal point object model. the algorithm
allows mobile nodes moving in and out of focal points,
communicating with distributed clients through the
geocast service, to implement an atomic object (with port
set q=s)corresponding to a particular focal point. We refer
to this algorithm as the Focal Point Emulator (FPE). The
FPE client has three basic purposes. First, it ensures that

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010 271

each invocation receives at most one response (eliminating
duplicates).Second, it abstracts away the geocast
communication, providing a simple invoke/respond
interface to the mobile node [5]. Third, it provides each
mobile node with multiple ports to the focal point object;
the number of ports depends on the atomic object being
implemented. The remaining code for the FPE server is in
fig .4.When a node enters the focal point, it broadcasts a
join-request message using the LBcast service and waits
for a response. The other nodes in the focal point respond
to a join-request by sending the current state of the
simulated object using the LBcast service. As an
optimization, to avoid unnecessary message traffic and
collisions, if a node observes that someone else has
already responded to a join-request, and then it does not
respond. Once a node has received the response to its join-
request, then it starts participating in the simulation, by
becoming active. When a node receives a Geocast
message containing an operation invocation, it resends it
with the Lbcast service to the focal point, thus causing the
invocation to become ordered with respect to the other
LBcast messages (which are join-request messages,
responses to join requests, and operation
invocations).since it is possible that a Geocast is received
by more than one node in the focal point ,there is some
bookkeeping to make sure that only one copy of the same
invocation is actually processed by the nodes. There exists
an optimization that if a node observes that an invocation
has already been sent with LBcast service, then it does not
do so. Active nodes keep track of operation invocations in
the order in which they receive them over the LBcast
service. Duplicates are discarded using the unique
operation ids. The operations are performed on the
simulated state in order. After each one, a Geocast is sent
back to the invoking node with the response. Operations
complete when the invoking node with the response.
Operations complete when the invoking node remains in
the same region as when it sent the invocation, allowing
the geocast to find it. When a node leaves the focal point,
it re-initializes its variables .A subtle point is to decide
when a node should start collecting invocations to be
applied to its replica of the object state. A node receives a
snapshot of the state when it joins. However by the time
the snapshot is received, it might be out of date, since
there may have been some intervening messages from the
LBcast service that have been received since the snapshot
was sent. Therefore the joining node must record all the
operation invocations that are broadcast after its join
request was broadcast but before it received the
snapshot .this is accomplished by having the joining node
enter a "listening" state once it receives its own join
request message; all invocations received when a node is
in either the listening or the active state are recorded, and
actual processing of the invocations can start once the

node has received the snapshot and has the active status.
A precondition for performing most of these actions that
the node is in the relevant focal point. This property is
covered in most cases by the integrity requirements of the
LBcast and Geocast services, which imply that these
actions only happen when the node is in the appropriate
focal point.
Focal Point Emulator Server Transitions
Internal join () Obj , i
Precondition:
Location ∈ FP-location
Status=idle
Effect:
Join-id ←<clock, i>
Status← joining
Enqueue (Lbcast-queue, <join-req, join-id>)
Input Lbcast- rcv (< join-req, jid>) obj, i
Effect:

^ If ((status=joining)) (jid=Join-id)) then
Status ←listening

 ^)If ((status=active)) jid ∉answered-join-reqs)) then
Enqueue (LBcast-queue, < join-ack, jid, val>)
Input Lbcast- rcv (<join-ack, jid, v>) obj, i
Effect:
Answered-join-reqs ← answered-join-reqs U {jid}

^ If ((status=listening) (jid =join-id)) then
Status ← active
val ← V
Input Geocast –rcv (< invoke, inv, oid, loc, FP-loc>) obj,i
Effect:
If (FP-loc=FP-location) then
If (<inv, oid, loc>∉ pending-ops U completed ops) then
Enqueue (Lbcast-queue, <invoke, inv, oid, loc>)
Input LBcast –rcv (< invoke, inv, oid, loc>) obj,i
Effect:
If ((status=listening V active) ^
(<inv, oid, loc>∉pending-ops U completed-ops)) Then
Enqueue (pending-ops, <inv, oid, loc>)
Internal simulate-op (inv) obj, i
Precondition:
Status=active
Peek (pending-ops) =<inv, oid, loc>
Effect:
(Val, resp)← δ (inv, val)
 Enqueue (geocost- queue, < response, resp, oid, loc>)
Enqueue (completed-ops, Dequeue (pending-ops))
Internal leave () obj, i
Precondition:
Location ∉fp-location
Status ≠ idle
Effect:
Status← idle
Join-id← <0, i0>
Val ← v0

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010 272

Answered -join- reqs← Ø
Pending –ops ← Ø
Completed-ops ← Ø
Lbcast-queue ← Ø
Geocast-queue ← Ø
Output Lbcast (m) obj, i
Precondition:
Peek (Lbcast-queue) =m
Effect:
Duqueue (Lbcast- queue)
Output geocast (m) obj, i
Precondition:
Peek (geocast-queue) =m
Effect:
Dequeue (geocost- queue)
Input get-update (l, t) obj,i
Effect:
Location ← l
Clock← t
Fig. 4 FPE server transitions for client i and object Obj of

variable type τ = <V, v0, invocations, responses, δ >

The illustration of the above terminology and motivate
the testing method with the GeoQuorum Algorithm for
implementing atomic read/write shared memory in
mobile ad hoc networks:
<Component> Mobile ad hoc network
Port <current- port-number, confirm, i>
T tag
nv new-value
nt new-tag
C config-id
nc new-config-id
re recon-ip
< /Component >
<FUNCTION> put invocation
In pin =
{New-value, new-tag, config-id}
Out rc =new-config – id
REQUIRES (new-tag >tag, new-config–id > config–id
EXCEPTION
(Recon – ip = false).
RESULT
Put-invocation = put-Ack–response
< DATA>
New-value = {INT}
New-tag = {INT}
New-config-id = {INT}
</DATA>
</FUNCTION>
<FUNCTION> get-invocation
In amt = {config-id}
Out rc = {new-config-id}
REQUIRES (new-config-id> config-id)

EXCEPTION
(Tag > new-tag)
RESULT
Get-invocation = get-Ack response
< DATA>
Tag, new-tag = {INT}
Config-id, new-config – id = {INT}
</DATA>
<FUNCTION>
<FUNCTION> confirm – invocation
In nt = {new-tag, confimed-set}
Out cs = {new –confirmed-set}
REQUIRES(new-confirmed-set= (confirmed-set)

{new-tag}) ∪
EXCEPTION
(Confirmed-set > new-confirmed-set)
RESULT
Confirm-invocation=confirm-Ack-response
<DATA>
New-tag = {INT}
Confirmed – set, new-confirmed-set = {INT}
</DATA>
<FUNCTION>
<FUNCTION>
Recon-done invocation
In nm = {config-id, recon-ip}
Out bs = {new-config-id, op. recon-conf-id}
REQUIRES ((new-config-id =config-id) recon-ip =
true).

∨

EXCEPTION (conf -id < > op. recon-conf-id recon-ip =
false)
RESULT
Recon-done-invocation = recon-done-Ack
<DATA>
Conf-id, new-conf-id = {INT}
Op-recon-conf-id = {INT}
Recon-ip = {Boolean}
</FUNCTION>
<SUCCESS>
Put-Ack-response = Okay
Get-Ack- response = Okay
Confirm-Ack-response = Okay
Recon-done-Ack = Okay
</SUCCESS>

 Fig.5 Functional Description for implementing atomic
read/write shared memory in mobile ad hoc network

application

The Values for Specification and Abstraction Language
for Testing
F = {put-invocation, get-invocation, confirm-invocation,
recon-done- invocation}
φ= { t, nv, nt, c, nc,re}
Rput = {rc}

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010 273

ϑ Put = {put – ack – response}
R Get = {rc}
ϑ Get = {get – ack – response}
R confirm = {cs}
ϑ Confirm = {confirm – ack – response}
R recon-done = {bs}
ϑ Recon-done = {recon- done – ack}
D pin = invalid valid ∪
 Put
V pin = {integer}
 Put
D pin= invalid valid ∪
 Get
V pin = {integer}
 Get
D pin = invalid ∪ valid
 Confirm
V pin = {integer}
 Confirm
D pin = invalid ∪ valid
Recon-done
V pin = {integer}
Recon-done

φ init = {t = 0, nv = 1, nt =1, c=1, nc = 1, re =1}

3. Analysis and Test Generation

3.1 Issues in Conformance Testing:

For testing a software system which implements atomic
object read/write shared memory in mobile ad hoc
networks specification manually, a test designer
enumerates relevant conformance issues Table. 1
illustrates some example conformance issue for the mobile
ad hoc network application. Each row in table poses a
conformance issue in the form of a question and a sample
test case.

Table.1 Example Conformance Questions and a Sample
Target Test Case

Row Conformance issue A sample (Partial) Test Case

1 Does new-tag smaller than tag? new-tag > tag

2
Does new config-id smaller than

config-id?
new-config-id > config-id

3
Can put-invocation be put-Ack-

response?

put-invocation=put-Ack-

response

4
Can get-invocation be get- Ack -

response?

get-invocation=get-Ack-

response

5
Can confirm- invocation be

confirm-Ack-response?

confirm-invocation=confirm-

Ack-response

6
Can recon-done invocation be
recon-done-Ack?

recon-done-
invocation=recon-done-
Ack

3.2 Derivation of Test Frames:

In this paper, the important issue is automatically
generating test cases which address the conformance
issues of interest based only on the specification furnished
in fig.6 from the foregoing discussion about Table.1; this
figure explains all nodes of the related work can be tested.
It is evident that derivation of test frames is crucial step of
the test generation process; we select test frames based on
the intuition that each test frame should target exactly one
interesting aspect of the operations behavior [6].

3.3 FSA Extraction:

An enumerated state transition diagram for implementing
atomic read/write shared memory in mobile ad hoc
networks where each state is labeled by valuation of each
context variable has an infinite number of states, since
values can be unbounded with an infinite string of
successive invocations of the deposit operation. To prune
the number of states in the transition diagram, we employ
three kinds of abstractions: Variable Hiding: The variable
hiding is used to eliminate certain context variables from
the state label. We use the notion of Absolute partitions,
which are independent of other variables, to identify the
subset of context variables relevant for labeling the states
[7].Abstract Interpretation: Even after eliminating the
irrelevant context variables, the resulting state diagram
could contain states which are not meaningful from testing
perspective. This is a consequence of using variable values
as state labels [7]. State Merging: The state labels in the
FSA of Fig.7 consist of a predicate on each relevant
variable. However, not all predicates are relevant in all
states we exploit this observation in our last abstraction
technique, called states merging, to collapse a pair of
states which differ only in the predicates of variables
which are independent in all the operations eligible in both
states. Fig.7 shows the final FSA for implementing atomic
read/write shared memory in mobile ad hoc network after
all of our abstraction techniques have been employed with
the important states of the application with out any
emulators.

3.4 FSA Traversal:

After constructing the abstract FSA for the specification,
we use the techniques developed to test FSAs to guide the
test generation. Specifically we used the algorithm to
complete the transition tour of the abstract FSA from

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010 274

adapted to account for nondeterministic and infeasible
transitions in the FSA [8].

Fig.6. an FSA for Atomic Read/Write Shared Memory in Mobile Ad Hoc Networks

Fig.7 Final FSA for Atomic Read/Write Shared Memory in Mobile Ad Hoc Networks

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010 275

3.5 Generation of Negative Tests:

To generate negative tests cases, we employ a novel
variation of the mutation theme. In traditional mutation
based approach to test generation, the target is mutated
through deletion or modification of the information in the
target [7] [9]. In this approach, inserting information in the
target thus inserting the actions associated with a normal
result of an operation into the state updates of its

exceptional results. Then regenerating the abstract FSA
and attempt to identify distinguishing sequences as before,
in the next figures we separate the basic states in fig.7 into
four states with explanations of their conditions which
satisfied and not satisfied as explained in (Fig. 8, 9, 10,
11).

Fig.8Mutated- configurations for put- invocation in atomic read/write shared Memory in mobile ad hoc networks

Fig.9 Mutated- configurations for get- invocation in atomic read/write shared memory in mobile ad hoc networks

Focal
point
object

Update the
value

New –tag> tag
New-config-id>

config

Config-id
>new-config-d

Put-Ack
response

Put-

invocatio
n

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010 276

Fig.10 Mutated- configurations for confirm- invocation in atomic read/write shared memory in mobile ad hoc networks

Fig.11 Mutated- configurations for recon-done invocation in atomic read/write shared memory in mobile ad hoc networks

4. Issues in Optimization

4.1 Free Variables

An operation specification may contain free parameters
which don't participate in any guard. In the absence of any
prior information about interactions among partitions of
free parameters, one test variation with particular partition
value for a free parameter is as good as any other. We
adopt this philosophy to minimize the number of
generated test variations. The test generation algorithm
ensures that all partitions of free parameters are covered at
least once [9].

4.2 Minimization of Data Values

The test designer specifies a finite number of data values
to be used for partition of input parameters. This method
guarantees that each data value gets used at least once
however, two issues regarding how often each data value
gets used need to be addressed [10]. First, a parameter
partition may be eligible for more than one result of the
operation: should each value for the parameter get used for
each result?. Second, a given result may be eligible in
more than one configuration with the same parameter
partitions: should each value for the partition get used to
produce the result in each configuration? In this method,
distinguishing between normal and exceptional results to
address both these issues, for partitions which are

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010 277

applicable only for exceptional results, each value gets
used at least once (not necessarily in each eligible
configuration). For partitions which are applicable in both
exceptional and normal results we assume that one
demonstration of an abnormal result is adequate and don't
ensure that each eligible value gets used. However, each
eligible data value gets used in each normal result at least
once (again, not necessarily in every configuration).

Conclusions and Future Work

In this paper, we have tested the implementation of atomic
object read/write shared memory in mobile ad hoc
network using a new method to automatically generate
self-priming and self checking conformance test cases
from a system model developed by the test designer. The
system model consists of specification of operations in
terms of relationships among parameters that they take and
context variables that they manipulate. However, the
mutation operators that are used in this paper are simple.
We would like to conduct experiments to study their
effectiveness and investigate other operators and their
effect on both the test suite size and fault detection
capabilities.

Acknowledgment

The authors would like to thank the Conference INFOS
2010 (Cairo University) reviewers for their constructive
comments and suggestions.

References
[1] I.EL-Far, Automated Construction of Software Behavior

Models, Master's Thesis, Florida Institute of Technology,
Melbourne, FL, 1999.

[2] E.Farchi, A. Hartman, S.S.Pinter, "Using a Model-Based
Test Generator to Test for Standard Conformance," IBM
Syst.J.41 (2002)89-110.

[3] W.Greskamp, Y.Gurevich, W.shculte, M.Veanes,"
Generating Finite State Machines from Abstract State
Machines", In: Proceedings of the 2002 International
Symposium of Software Testing Analysis July (2002) 112-
122.

[4] Dolev,S.,Gilbert,S.Lynch,N.A.,Shvartsman,A.A.,Welch,J.L:
"Geoquorums:Implementing Atomic Memory in Mobile Ad
Hoc Networks ".In: Proceeding of The 17th International
Conference on Distributed Computing,PP:306-320(2003).

[5] Haas, Z.J., Liang, B.A., "Ad Hoc Mobile Management with
Uniform Quorum Systems", IEEE/ACM Transactions on
Networking 7(2), PP: 228-240(2002).

[6] KO, Y.B., Vaidya, N.,"A Protocol for Geocasting in Mobile
Ad Hoc Networks, In: Proceedings of the IEEE
International Conference on Network Protocols, PP: 240-
249(2000).

[7] A.M.Memon, M.E.Pollock, M, L.Soffa,"Using a Goal-
Driven Approach to Generate Test Cases for GUIS," In:
Proceedings of the 21st International Conferences of
Software Engineering, May, ACM Press New York, 2000,
PP: 257-266.

[8] P. Froehlich, J. Link "Automated Test Generation from
Dynamic Models," In: Proceedings of the ECOOP2000,
LNCS 1850, Springer, Berlin, 2000, PP: 472-491.

[9] A.M. Paradkar," An Integrated to Automate Generation of
Function Tests for APIS", In: Proceedings of the
International Symposium of Software Reliability
Engineering, 2000, October (2000) PP: 304-316.

[10] A. Paradkar," Towards Model-Based Generation of Self-
Priming and Self-Checking Conformance Tests for
Interactive Systems ", In: Proceedings of the Information
and Software Technology 46(2004), PP: 315-322.

