
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

283

Manuscript received April 5, 2010

Manuscript revised April 20, 2010

Hybrid Genetic Algorithms with Great Deluge For Course

Timetabling

Nabeel R. AL-Milli

Financial and Business Administration and Computer Science Department

Zarqa University College

Al-Balqa' Applied University

Summary
The Course Timetabling problem deals with the assignment of

course (or lecture events) to a limited set of specific timeslots and

rooms, subject to a variety of hard and soft constraints. All hard

constraints must be satisfied, obtaining a feasible solution. In this

paper we establish a new hybrid algorithm to solve course

timetabling problem based on Genetic Algorithm and Great

Deluge algorithm. We perform a hybrdised method on standard

benchmark course timetable problems and able to produce

promising results.

Key words:
Course timetabling, Genetic algorithms, Great deluge

1. Introduction

University Course Timetabling Problems (UCTPs) is an

NPhard problem, which is very difficult to solve by

conventional methods and the amount of computation

required to find optimal solution increases exponentially

with problem size. The main idea of this problem is to

assign a set of lectures to rooms and time periods

satisfying a number of constraints. The set of constraints

are usually divided in two sets: hard constraints and soft

constraints. Hard constraints have a higher priority than

soft. The objective of this problem is to satisfy the hard

constraints and to minimise the violation of the soft

constraints. It is therefore necessary to use efficient search

methods to produce optimal or near optimal timetable that

satisfy the constraints.

A large number of diverse methods have been already

proposed in the literature for solving timetabling problems.

These methods come from a number of scientific

disciplines like Operations Research, Artificial Intelligence,

and Computational Intelligence [1], [2], [3], [4], [5], [6]

and can be divided into four categories:

1) Sequential Methods, that deals timetabling

problems as graph problems. Generally, they

order the events using domain-specific heuristics

and then assign the events sequentially into valid

time slots in such a way that no constraints are

violated for each timeslot [7].

2) Constraint Based Methods, according to which a

timetabling problem is modeled as a set of

variables (events) to which values (resources such

as teachers and rooms) have to be assigned in

order to satisfy a number of hard and soft

constraints [8].

3) Cluster Methods, in which the problem is divided

into a number of events sets. Each set is defined

so that it satisfies all hard constraints. Then, the

sets are assigned to real time slots to satisfy the

soft constraints as well [9].

4) Meta-heuristic methods, such as genetic

algorithms (GAs), simulated annealing, tabu

search, and other heuristic approaches, that are

mostly inspired from nature, and apply nature-like

processes to solutions or populations of solutions,

in order to evolve them towards optimality [1],

[3], [4], [10], [11], [13],[14].

 Since then, the literature has hosted a large number of

papers presenting evolutionary methods and applications

on such problems with significant success [12].

 The paper is organised as follows, the next section

introduces the university course timetable problem with a

set of all hard and soft constraints. In section 3 we

represent the main concepts about Genetic algorithm.

Section 4 introduces the great deluge algorithm.

Hybridization between genetic algorithms and great deluge

are represented in section 5. The simulation results are

represented in section 6, and finally conclusion and future

work are represented in section 7.

2. Problem description

The general timetable problem can be expressed in the

following way: a number of events must be timetabled by

associating them with timeslots. In university course

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

284

timetable, a set of events (courses) is scheduled into a

fixed number of rooms and timeslots within a week. In this

paper, we test our method on the problem instances

introduced by Socha et al [13]. The problem presents a set

of N courses to be scheduled in 5 days of 9 periods each,

which time T = 45 timeslots, a set R rooms (each room

have a set of F features and capacity), a set of M students

and a set of features required by courses. Each student

attends a subset of courses. Solutions in which all courses

are assigned to periods and rooms and satisfy all hard

constraints are called feasible solutions. The hard

constraints considered for this problem are:

1) No student can be assigned to more than one

course at the same time.

2) The room should satisfy the features required by

the course.

3) The number of students attending the course

should be less than or equal to the capacity of the

room.

4) No more than one course is allowed at a timeslot

in each room.

The soft constraints considered for this problem are:

1) A student has to attend only one course in a day.

2) A student has to attend more than two courses

consecutively.

3) A student has to attend a course in last period in

any day.

 The objective of this problem is to satisfy the hard

constraints and to minimise the violation of the soft

constraints.

3. Genetic Algorithms

GA is the most famous among EA algorithms. GAs have

been employed as a tool that can handle multi-model

function and complex search space. They have the

capability to search complex spaces with high probability

of success in finding the points of minimum or maximum

on the search space (i.e. landscape). Genetic Algorithms

(GAs) are derivative-free stochastic search algorithms.

GAs applies the concept of natural selection. This idea was

first introduced by John Holland at the University of

Michigan in 1975 [1]. GAs have been successful used in

solving numerous applications in engineering and

computer science [12, 13, 14, 15]. GA gains a great

popularity due to their known attributes. These attributes

include:

 GAs can handle both continuous and discrete

optimization problems. They require no

derivative information about the fitness criterion

[16, 17].

 GA has the advantageous over other search

algorithm since it is less likely to be trapped by

local minimum.

 GA provide a more optimal and global solution.

They are less likely to be trapped by local optimal

like Newton or gradient descent methods [18, 19].

 GA has been shown to be less sensitive to the

presence of noise and uncertainty in

measurements [5, 20].

 GAs use probabilistic operators (i.e. crossover

and mutation) not deterministic ones.

Genetic algorithms code the candidate solutions of an

optimization algorithm as a string of characters which are

usually binary digits [23]. In accordance with the

terminology that is borrowed from the field of genetics,

this bit string is usually called a chromosome (i.e.

individuals). A number of chromosomes generate what is

called a population. The structure for each individual can

be represented as follows:

1.

This chromosome has number of genes equal to n. These

genes are used in the evaluation function f. Thus, f(gene1,

gene2, . . . , genen) is the function to be minimized or

maximized.

A. EVOLUTIONARY PROCESS

The evolutionary process of GAs starts by the computation

of the fitness of the each individual in the initial population.

While stopping criterion is not yet reached we do the

following:

 Select individual for reproduction using some

selection mechanisms (i.e. tournament, rank, etc).

 Create an offspring using crossover and mutation

operators. The probability of crossover and

mutation is selected based on the application.

 Compute the new generation of GAs. This

process will end either when the optimal solution

is found or the maximum number of generations

is reached.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

285

 A flowchart for a simple GA process is given [21]

in Figure 1

Fig. 1. Flowchart of a simple GAs process

B. SELECTION MECHANISM

Selection is the process which guides the evolutionary

algorithm to the optimal solution by preferring

chromosomes with high fitness. The chromosomes evolve

through successive iterations, called generations. During

each generation, the chromosomes are evaluated, using

some measure of fitness. To create the next generation,

new chromosomes, called offspring, are formulated by

using some operators called crossover and mutation. Thus,

a new generation will be created by selecting the best

chromosomes (parents) from the previous generation and

the best chromosomes from the offspring [22].

After several generations of creation the algorithm

hopefully converges to the optimal solution or at least the

optimal domain of solution. After computing the fitness of

each individual, a new population must be created. To do

this, two operators borrowed from natural genetic,

crossover and mutations, are used [16, 17]. Crossover

operator is used to produce new pairs of individuals from

their parents. The produced individuals (i.e. childes) have

many features from their parents. There is a high

probability that the child’s will provide a better fit to the

problem.

C. CROSSOVER MECHANISM

Crossover is the main genetic operator. In [1] Holland

indicates that crossover provides the main search operator

while bit mutation simply serves as a background operator

to ensure that all possible solutions can enter the

population. The probabilities commonly assigned to

crossover and bit mutation reflect this philosophical view.

It operates on two chromosomes at a time and generates

offsprings by combining both chromosomes’ features.

One way to do crossover is to choose a random cut-point

and generate the offspring by combining the segment of

one parent to the left of the cutpoint with the segment of

the other parents to the right of the cut-point. This type of

crossover operates with the bit string representations.

Single point crossover of two binary string chromosomes is

presented in Figure 2.

Fig. 2. Single-point crossover of two binary string

chromosomes

For other types of representation other crossover types are

suggested. Syswerda [23] conducted function optimization

experiments with number of mutation mechanism. They

include uniform crossover, two-point crossover and one-

point crossover. He found that uniform crossover can

provide better solutions with less computational effort.

D. MUTATION MECHANISM

Mutation is a background operator which produces

spontaneous random changes in various chromosomes.

In genetic algorithms, mutation serves the role of either

replacing the genes lost from the population during the

selection process so that they can be tried in a new form or

providing for genes that were not present in the initial

population. One way to do mutation would be to alter one

or more genes. In Figure 3, we show binary string

chromosomes mutation.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

286

Fig. 3. Mutation of binary string chromosomes

GA evaluates the individuals in the population using a

selected fitness function (criterion). This function indicates

how good or bad a candidate solution is. The way to select

the fitness function is a very important issue in the design

of genetic algorithms, since the solution of the

optimization problem and the performance of the algorithm

count mainly on this function.

It is important to recognize that GAs is different from other

optimization techniques like gradient descent, since they

evaluate a set of solution in the population at each

generation, makes them more likely to find the optimum

solution.

The fitness of the individuals within the population is

evaluated, and new individuals are generated for the next

generation using a selection mechanism. Although

convergence to a global optimum is not guaranteed in

many cases, these population-based approaches are much

less likely to converge to local optimal and are quite robust

in the presence of noise [16, 17].

4. Great Deluge Algorithm

The Great Deluge algorithm (GD) is a generic algorithm

applied to optimization problems, which was introduced by

Dueck (1993) [19]. It is a local search procedure which has

certain similarities with simulated annealing but has been

introduced as an alternative. This approach is far less

dependent upon parameters than simulated annealing. It

needs just two parameters: the amount of computational

time that the user wishes to “spend” and an estimate of the

quality of solution that a user requires. Apart from

accepting a move that improves the solution quality, the

great deluge algorithm also accepts a worse solution if the

quality of the solution is less than or equal the level. In

this work, the “level” is initially set from EM algorithm.

The GD terminate when the solution reach the estimated

quality. The search continues until the bound reaches the

lower limit (estimated quality). The pseudo code for our

implementation of the great deluge algorithm is presented

in Figure 4.

Set initial solution as Sol

best

taken from GA

Calculate the initial cost function value,

f(Sol);

Set best solution, Sol
best

← Sol;

Set estimated quality of final solution,

estimatedquality from the user.

Set number of iterations, NumOfIte;

Set initial level: level ← f(Sol);

Set decreasing rate

 β = ((f(Sol)–estimatedquality)/(NumOfIte);

Set iteration ← 0;

Set not_improving_counter ← 0;

do while (iteration < NumOfIte)

Define neighbourhood of Sol by randomly

assigning course to a valid timeslot to

generate a new solution called Sol*;

 Calculate f(Sol*);

 if (f(Sol*) < f(Sol
best

))

 Sol ← Sol*;

 Sol
best

← Sol*;

 not_improving_counter ← 0;

 else

 if (f(Sol*)≤ level)

 Sol ← Sol*;

 not_improving_counter ← 0;

 else

 Increase not_improving_counter by 1;

 if (not_improving_counter ==

 not_improving_ length_GDA)

 exit;

level = level - β;

Increase iteration by 1;

end do;
Fig. 4: The pseudo code for the great deluge algorithm

5. Hybrid Genetic Algorithm with Great

Deluge

Figure 5 shows a pictorial illustration for the hybridization

between genetic algorithms and great deluge, as shown, the

sequence of our proposed method start from initial

solutions. Applying genetic algorithms as a second step,

finally applying great deluge mechanism to enhance the

quality of solution. Great deluge is consider one of the

powerful local optimization algorithm while GA is one of

the best known methods of global optimization, combining

both algorithms means combine the advantages of both

algorithms.

Fig.5: Pictorial Diagram for Hybrid GA with GD

http://en.wikipedia.org/wiki/Optimization_(mathematics)

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

287

6. Simulation Results

The proposed algorithm was programmed using C++ and

simulations were performed on the Intel Pentium 4 2.33

GHz computer and tested on a standard benchmark course

timetable problem as presented in SectionII. Table I shows

the parameter for the GA algorithm chosen after some

preliminary experiments, and almost similar with the

papers in the literature [16], [19].

Our algorithm is capable to find a feasible timetable for all

eleven cases. Table II shows the results obtained and the

comparison with other approaches in the literature such as

Genetic Algorithms with Local Search (GA & LS) by

Abdullah et al (2008) [21], the Randomised Iterative

Improvement Algorithm by Abdullah et al. (2005), a graph

hyperheuristic by Burke et al. (2005), Extended Great

Deluge (EGD) [22] by P. McMullan (2007) and Non-

linear Great Deluge (NLGD) by (2008) [20], From Table

II, it is clear that the result of our proposed algorithm

produces acceptable timetables.

TABLE I

PARAMETER SETTING FOR EM ALGORITHM

Parameter Value

Generation Number 100000

Population size 50

Crossover Rate 0.6

Mutation Rate 0.06

Selection Method Roulette Wheel selection

Crossover Type Single point

 We ran the experiments for 100000 iterations for GA

with population size 50. Table II shows the comparison of

our final results compared to other published results in the

literature.

TABLE II

COMPARISON BETWEEN VARIOUS VERSION METHODS AND OUR METHOD

Data

Set

Our

Method

Best

GA

&

LS

Randomised

Iterative

Improvement

Algorithm

Graph

hyper-

heuristic

(Best)

EGD

NLGD

s1 0 2 0 6 0 3

s2 0 4 0 7 0 4

s3 0 2 0 3 0 6

s4 0 0 0 3 0 6

s5 0 4 0 4 0 0

m1 75 254 242 372 80 140

m2 100 258 161 419 105 130

m3 143 251 265 359 139 189

m4 180 321 181 348 88 112

m5 125 276 151 171 88 141

l 650 1027 - 1068 730 876

7. Conclusion

In this paper, we employed Genetic Algorithm (GA) and

great deluge for course timetable problem local search.

Even though the experiments carried out in this work

demonstrate that the method presented here only obtains

two best result, However the proposed method can produce

a feasible and good quality timetable Moreover, it provides

results that are consistently good across the all the

benchmark problems.

References
[1] D. Abramson, “Constructing school timetables using simulated

annealing: sequential and parallel algorithms” Management

Science, vol. 37, pp. 98–113, 1991.

[2] E. K. Burke and J. P. Newall, “A new adaptive heuristic

framework for examination timetabling problems,” in Technical

Report NOTTCSTR- 2001-5 (submitted to Annals of Operations

Research), University of Nottingham, UK, School of Computer

Science & IT, 2002.

[3] A. Hertz, “Tabu search for large scale timetabling problems,”

European journal of operations research, vol. 54, pp. 39–47,

1991.

[4] B. Paechter, M. G. Norman, and H. Luchian, “Extensions to a

memetic timetabling system,,” in E.K. Burke and P.M. Ross, eds.,

Proceedings of the 1st International Conference on the Practice

and Theory of Automated Timetabling, Lawrence Erlbaum

Associates, 1995.

[5] A. Schaerf, “A survey of automated timetabling,” Artificial

Intelligence Review, vol. 13 (2), pp. 87–127, 1993.

[6] A. Tripathy, “A lagrangian relaxation approach to course

timetabling,” Journal of the Operational Research Society, vol.

31, pp. 599 603, 1980.

[7] M. W. Carter, “A survey of practical applications of examination

timetabling algorithms,” Operations Research, vol. 34, pp. 193–

202, 1986.

[8] S. C. Brailsford, C. N. Potts, and B. M. Smith, “Constraint

satisfaction problems: Algorithms and applications,” European

Journal of Operational Research, vol. 119, pp. 557–581, 1999.

[9] G. M. White and P. W. Chan, “Towards the construction of

optimal examination timetables,” INFOR 17, pp. 219–229, 1979.

[10] P. Adamidis and P. Arapakis, “Evolutionary algorithms in lecture

timetabling,” in Proceedings of the 1999 IEEE Congress on

Evolutionary Computation (CEC 99), pp. 1145–1151, IEEE,

1999.

[11] A. Colorni, M. Dorigo, and V. Maniezzo, “Genetic algorithms - a

new approach to the timetable problem,” in Lecture Notes in

Computer Science - NATO ASI Series, vol. F 82, pp. 235–239,

Combinatorial Optimization, (Akgul et al eds), Springer-Verlag,

1990.

[12] M. W. Carter and G. Laporte, “Recent developments in practical

course timetabling,” in In: Burke, E., Carter, M. (Eds.), The

Practice and Theory of Automated Timetabling II: Selected

Papers from the 2nd Int’l Conf. on the Practice and Theory of

Automated Timetabling, Springer Lecture Notes in Computer

Science Series, vol. 1408, pp. 3–19, 1990.

[13] M. Chiarandini, K. Socha, and O. R. Doria, “An effective hybrid

approach for the university course timetabling problem,” 2002.

[14] S. Abdullah, E. K. Burke, and B. McCollum, “An investigation of

variable neighbourhood search for university course timetabling,”

in The 2nd Multidisciplinary International Conference on

Scheduling: Theory and Applications (MISTA), New York, USA,

July 18th-21st, pp. 413–427, 2005.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010

288

[15] S. Abdullah, E. K. Burke, and B. McCollum, Using a Randomised

Iterative Improvement Algorithm with Composite Neighbourhood

Structures for University Course Timetabling. In Metaheuristics:

Progress in complex systems optimization (Operations Research /

Computer Science Interfaces Series), chapter 8. published by

Springer, ISBN:978-0-387-71919-1, 2007.

[16] S.I , Birbil :Stochastic global optimization techniques. PhD thesis,

North Carolina State University (2002).

[17] S.I , Birbil, S.-C. Fang : An electromagnetism-like mechanism for

global optimization. Journal of Global Optimization 25, 263–282

(2003)

[18] S.I , Birbil, S.-C. Fang, R.-L. Sheu: On the convergence of a

population-based global optimization algorithm. Journal of

Global Optimization 30, 301–318 (2004).
[19] G. Dueck: New Optimization Heuristics. The Great Deluge

Algorithm and the Record-to-Record Travel. Journal of

Computational Physics 104, 86-92. 1993.

[20] D. Landa-Silva, J. H Obit: Great Deluge with Non-linear Decay

Rate for Solving Course Timetabling Problem. In the fourth

international IEEE conference on Intelligent Systems. Varna,

Bulgaria, September 6-8, 2008.

[21] S. Abdullah, H. Turabieh, Generating University Course

Timetable Using Genetic Algorithms and Local Search. In the

Third 2008 International Conference on Convergence and Hybrid

Information Technology ICCIT, vol. I, 254-260, 2008.

[22] Paul McMullan: An Extended Implementation of the Great

Deluge Algorithm for Course Timetabling, Computational

Science – ICCS, Part I, LNCS 4487, 538–545, Springer-Verlag

Berlin Heidelberg 2007.

[23] J. Holland, Adaptation in Natural and Artificial Systems. Ann

Arbor, MI: University of Michigan Press, 1975.

[24] K. A. De Jong, Analysis of Behavior of a Class of Genetic

Adaptive Systems. PhD thesis, University of Michigan, Ann

Arbor, MI, 1975.

[25] D. Goldberg, Genetic Algorithms in Search, Optimization, and

Machine Learning. New York: Addison-Wesley, 1989.

[26] K. Kristinsson and G. Dumont, “Genetic algorithms in system

identification,” in Third IEEE International Symposium Intelligent

Control, pp. 597–602, IEEE Press, 1988.

[27] A. Chipperfield, P. J. Fleming, and C. Fonseca, “Genetic

algorithms tools for control systems engineering,” in Proceedings

of First International Conference on Adaptive Computing in

Engineering Design and Control, pp. 128–133, UK, 1994.

[28] A. Sheta and K. De Jong, “Time-series forecasting using GA-

tuned radial basis functions,” in special issue of the Information

Scienec Journal, pp. 221–228, 2001.

[29] A. Sheta and K. DeJong, “Parameter estimation of nonlinear

systems in noisy environment using genetic algorithms,” in

Proceedings of the IEEE International Symposium on Intelligent

Control (ISIC’96), pp. 360–366, 1996.

[30] H. Al-Duwaish and W. Naeem, “Nonlinear model predictive

control of hammerstein and winner model using genetic

algorithms,” in Proceedings of the IEEE International Conference

on Control Applications, pp. 465–469, 2001.

[31] M. Gen and R. Cheng, Genetic Algorithms and Engineering

Design. New York: Jonh Wiley and Sons, Inc, 1997.

[32] G. Syswerda, “Uniform crossover in genetic algorithms,” in

Proceedings of the Third International Conference on Genetic

Algorithms, pp. 2–9, 1989.

Nabeel R. AL-Milli received the B.S.

in Computer Science and Computer

Information Systems from

Philadelphia University and M.S

degree in Computer Science from Al-

Balqa Applied University in 2003 and

2006, respectively. He worked as a

developer in ESKADENIA software solutions – Amman. He was

an administrator and developer at Free zones Corporation,

currently he is a lecturer in Financial and Business

Administration and Computer Science Department, Zarqa

University College, Al-Balqa' Applied University. His research

interests include Artificial Intelligence, Evolutionary

Computation and Image Processing.

