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Summary 
The Course Timetabling problem deals with the assignment of 

course (or lecture events) to a limited set of specific timeslots and 

rooms, subject to a variety of hard and soft constraints. All hard 

constraints must be satisfied, obtaining a feasible solution. In this 

paper we establish a new hybrid algorithm to solve course 

timetabling problem based on Genetic Algorithm and Great 

Deluge algorithm. We perform a hybrdised method on standard 

benchmark course timetable problems and able to produce 

promising results. 
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1. Introduction 

University Course Timetabling Problems (UCTPs) is an 

NPhard problem, which is very difficult to solve by 

conventional methods and the amount of computation 

required to find optimal solution increases exponentially 

with problem size. The main idea of this problem is to 

assign a set of lectures to rooms and time periods 

satisfying a number of constraints. The set of constraints 

are usually divided in two sets: hard constraints and soft 

constraints. Hard constraints have a higher priority than 

soft. The objective of this problem is to satisfy the hard 

constraints and to minimise the violation of the soft 

constraints. It is therefore necessary to use efficient search 

methods to produce optimal or near optimal timetable that 

satisfy the constraints.  

 

A large number of diverse methods have been already 

proposed in the literature for solving timetabling problems. 

These methods come from a number of scientific 

disciplines like Operations Research, Artificial Intelligence, 

and Computational Intelligence [1], [2], [3], [4], [5], [6] 

and can be divided into four categories: 

1) Sequential Methods, that deals timetabling 

problems as graph problems. Generally, they 

order the events using domain-specific heuristics 

and then assign the events sequentially into valid 

time slots in such a way that no constraints are 

violated for each timeslot [7]. 

2) Constraint Based Methods, according to which a 

timetabling problem is modeled as a set of 

variables (events) to which values (resources such 

as teachers and rooms) have to be assigned in 

order to satisfy a number of hard and soft 

constraints [8]. 

3) Cluster Methods, in which the problem is divided 

into a number of events sets. Each set is defined 

so that it satisfies all hard constraints. Then, the 

sets are assigned to real time slots to satisfy the 

soft constraints as well [9]. 

4) Meta-heuristic methods, such as genetic 

algorithms (GAs), simulated annealing, tabu 

search, and other heuristic approaches, that are 

mostly inspired from nature, and apply nature-like 

processes to solutions or populations of solutions, 

in order to evolve them towards optimality [1], 

[3], [4],  [10], [11], [13],[14].  

 

    Since then, the literature has hosted a large number of 

papers presenting evolutionary methods and applications 

on such problems with significant success [12].  

 

     The paper is organised as follows, the next section 

introduces the university course timetable problem with a 

set of all hard and soft constraints. In section 3 we 

represent the main concepts about Genetic algorithm. 

Section 4 introduces the great deluge algorithm. 

Hybridization between genetic algorithms and great deluge 

are represented in section 5. The simulation results are 

represented in section 6, and finally conclusion and future 

work are represented in section 7. 

2. Problem description 

The general timetable problem can be expressed in the 

following way: a number of events must be timetabled by 

associating them with timeslots. In university course 
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timetable, a set of events (courses) is scheduled into a 

fixed number of rooms and timeslots within a week. In this 

paper, we test our method on the problem instances 

introduced by Socha et al [13]. The problem presents a set 

of N courses to be scheduled in 5 days of 9 periods each, 

which time T = 45 timeslots, a set R rooms (each room 

have a set of F features and capacity), a set of M students 

and a set of features required by courses. Each student 

attends a subset of courses. Solutions in which all courses 

are assigned to periods and rooms and satisfy all hard 

constraints are called feasible solutions. The hard 

constraints considered for this problem are: 

 

1) No student can be assigned to more than one 

course at the same time. 

2) The room should satisfy the features required by 

the course. 

3) The number of students attending the course 

should be less than or equal to the capacity of the 

room. 

4) No more than one course is allowed at a timeslot 

in each room. 

 

The soft constraints considered for this problem are: 

1) A student has to attend only one course in a day. 

2) A student has to attend more than two courses 

consecutively. 

3) A student has to attend a course in last period in 

any day. 

   The objective of this problem is to satisfy the hard 

constraints and to minimise the violation of the soft 

constraints. 

3. Genetic Algorithms 

GA is the most famous among EA algorithms. GAs have 

been employed as a tool that can handle multi-model 

function and complex search space. They have the 

capability to search complex spaces with high probability 

of success in finding the points of minimum or maximum 

on the search space (i.e. landscape). Genetic Algorithms 

(GAs) are derivative-free stochastic search algorithms. 

GAs applies the concept of natural selection. This idea was 

first introduced by John Holland at the University of 

Michigan in 1975 [1]. GAs have been successful used in 

solving numerous applications in engineering and 

computer science [12, 13, 14, 15]. GA gains a great 

popularity due to their known attributes. These attributes 

include: 

 

 GAs can handle both continuous and discrete 

optimization problems. They require no 

derivative information about the fitness criterion 

[16, 17]. 

 

 GA has the advantageous over other search 

algorithm since it is less likely to be trapped by 

local minimum. 

 

 GA provide a more optimal and global solution. 

They are less likely to be trapped by local optimal 

like Newton or gradient descent methods [18, 19]. 

 

 GA has been shown to be less sensitive to the 

presence of noise and uncertainty in 

measurements [5, 20]. 

 

 GAs use probabilistic operators (i.e. crossover 

and mutation) not deterministic ones. 

 

Genetic algorithms code the candidate solutions of an 

optimization algorithm as a string of characters which are 

usually binary digits [23]. In accordance with the 

terminology that is borrowed from the field of genetics, 

this bit string is usually called a chromosome (i.e. 

individuals). A number of chromosomes generate what is 

called a population. The structure for each individual can 

be represented as follows: 

 

 

1.  

This chromosome has number of genes equal to n. These 

genes are used in the evaluation function f. Thus, f(gene1, 

gene2, . . . , genen) is the function to be minimized or 

maximized. 

 

A. EVOLUTIONARY PROCESS 

 

The evolutionary process of GAs starts by the computation 

of the fitness of the each individual in the initial population. 

While stopping criterion is not yet reached we do the 

following: 

 

 Select individual for reproduction using some 

selection mechanisms (i.e. tournament, rank, etc). 

 Create an offspring using crossover and mutation 

operators. The probability of crossover and 

mutation is selected based on the application. 

 Compute the new generation of GAs. This 

process will end either when the optimal solution 

is found or the maximum number of generations 

is reached. 
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 A flowchart for a simple GA process is given [21] 

in Figure 1 

 

 
Fig. 1. Flowchart of a simple GAs process 

 

B. SELECTION MECHANISM 

 

Selection is the process which guides the evolutionary 

algorithm to the optimal solution by preferring 

chromosomes with high fitness. The chromosomes evolve 

through successive iterations, called generations. During 

each generation, the chromosomes are evaluated, using 

some measure of fitness. To create the next generation, 

new chromosomes, called offspring, are formulated by 

using some operators called crossover and mutation. Thus, 

a new generation will be created by selecting the best 

chromosomes (parents) from the previous generation and 

the best chromosomes from the offspring [22]. 

After several generations of creation the algorithm 

hopefully converges to the optimal solution or at least the 

optimal domain of solution. After computing the fitness of 

each individual, a new population must be created. To do 

this, two operators borrowed from natural genetic, 

crossover and mutations, are used [16, 17]. Crossover 

operator is used to produce new pairs of individuals from 

their parents. The produced individuals (i.e. childes) have 

many features from their parents. There is a high 

probability that the child’s will provide a better fit to the 

problem. 

 

C. CROSSOVER MECHANISM 

 

Crossover is the main genetic operator. In [1] Holland 

indicates that crossover provides the main search operator 

while bit mutation simply serves as a background operator 

to ensure that all possible solutions can enter the 

population. The probabilities commonly assigned to 

crossover and bit mutation reflect this philosophical view. 

It operates on two chromosomes at a time and generates 

offsprings by combining both chromosomes’ features. 

 

One way to do crossover is to choose a random cut-point 

and generate the offspring by combining the segment of 

one parent to the left of the cutpoint with the segment of 

the other parents to the right of the cut-point. This type of 

crossover operates with the bit string representations. 

Single point crossover of two binary string chromosomes is 

presented in Figure 2. 

 

 
Fig. 2. Single-point crossover of two binary string 

chromosomes 

 

For other types of representation other crossover types are 

suggested. Syswerda [23] conducted function optimization 

experiments with number of mutation mechanism. They 

include uniform crossover, two-point crossover and one-

point crossover. He found that uniform crossover can 

provide better solutions with less computational effort. 

 

D. MUTATION MECHANISM 

 

 

Mutation is a background operator which produces 

spontaneous random changes in various chromosomes. 

In genetic algorithms, mutation serves the role of either 

replacing the genes lost from the population during the 

selection process so that they can be tried in a new form or 

providing for genes that were not present in the initial 

population. One way to do mutation would be to alter one 

or more genes. In Figure 3, we show binary string 

chromosomes mutation. 
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Fig. 3. Mutation of binary string chromosomes 

 

GA evaluates the individuals in the population using a 

selected fitness function (criterion). This function indicates 

how good or bad a candidate solution is. The way to select 

the fitness function is a very important issue in the design 

of genetic algorithms, since the solution of the 

optimization problem and the performance of the algorithm 

count mainly on this function. 

 

It is important to recognize that GAs is different from other 

optimization techniques like gradient descent, since they 

evaluate a set of solution in the population at each 

generation, makes them more likely to find the optimum 

solution. 

 

The fitness of the individuals within the population is 

evaluated, and new individuals are generated for the next 

generation using a selection mechanism. Although 

convergence to a global optimum is not guaranteed in 

many cases, these population-based approaches are much 

less likely to converge to local optimal and are quite robust 

in the presence of noise [16, 17]. 

 

4. Great Deluge Algorithm 

The Great Deluge algorithm (GD) is a generic algorithm 

applied to optimization problems, which was introduced by 

Dueck (1993) [19]. It is a local search procedure which has 

certain similarities with simulated annealing but has been 

introduced as an alternative. This approach is far less 

dependent upon parameters than simulated annealing. It 

needs just two parameters: the amount of computational 

time that the user wishes to “spend” and an estimate of the 

quality of solution that a user requires. Apart from 

accepting a move that improves the solution quality, the 

great deluge algorithm also accepts a worse solution if the 

quality of the solution is less than or equal the level.  In 

this work, the “level” is initially set from EM algorithm. 

The GD terminate when the solution reach the estimated 

quality. The search continues until the bound reaches the 

lower limit (estimated quality). The pseudo code for our 

implementation of the great deluge algorithm is presented 

in Figure 4. 

 

 

 
Set initial solution as Sol

best 

taken from GA 

Calculate the initial cost function value, 

f(Sol);  

Set best solution, Sol
best 

← Sol;  

Set estimated quality of final solution, 

estimatedquality from the user. 

Set number of iterations, NumOfIte;  

Set initial level: level ← f(Sol);  

Set decreasing rate  

    β = ((f(Sol)–estimatedquality)/(NumOfIte);  

Set iteration ← 0;  

Set not_improving_counter ← 0;  

do while (iteration < NumOfIte)  

Define neighbourhood of Sol by randomly 

assigning course to a valid timeslot to 

generate a new solution called Sol*;  

     Calculate f(Sol*);  

     if (f(Sol*) < f(Sol
best

))  

        Sol ← Sol*;  

        Sol
best 

← Sol*;  

        not_improving_counter ← 0;  

      else  

         if (f(Sol*)≤ level)  

           Sol ← Sol*;  

           not_improving_counter ← 0;  

         else  

        Increase not_improving_counter by 1;  

          if (not_improving_counter ==  

             not_improving_ length_GDA)  

            exit;  

level = level - β;  

Increase iteration by 1;  

end do; 
Fig. 4: The pseudo code for the great deluge algorithm 

5. Hybrid Genetic Algorithm with Great 

Deluge 

Figure 5 shows a pictorial illustration for the hybridization 

between genetic algorithms and great deluge, as shown, the 

sequence of our proposed method start from initial 

solutions. Applying genetic algorithms as a second step, 

finally applying great deluge mechanism to enhance the 

quality of solution. Great deluge is consider one of the 

powerful local optimization algorithm while GA is one of 

the best known methods of global optimization, combining 

both algorithms means combine the advantages of both 

algorithms. 

 
Fig.5: Pictorial Diagram for Hybrid GA with GD 

http://en.wikipedia.org/wiki/Optimization_(mathematics)
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6. Simulation Results 

The proposed algorithm was programmed using C++ and 

simulations were performed on the Intel Pentium 4 2.33 

GHz computer and tested on a standard benchmark course 

timetable problem as presented in SectionII. Table I shows 

the parameter for the GA algorithm chosen after some 

preliminary experiments, and almost similar with the 

papers in the literature [16], [19]. 

 

Our algorithm is capable to find a feasible timetable for all 

eleven cases. Table II shows the results obtained and the 

comparison with other approaches in the literature such as 

Genetic Algorithms with Local Search (GA & LS) by 

Abdullah et al (2008) [21], the Randomised Iterative 

Improvement Algorithm by Abdullah et al. (2005), a graph 

hyperheuristic by Burke et al. (2005), Extended Great 

Deluge (EGD) [22] by P. McMullan (2007) and Non-

linear Great Deluge (NLGD) by (2008) [20], From Table 

II, it is clear that the result of our proposed algorithm 

produces acceptable timetables. 

 

 
TABLE I 

PARAMETER SETTING FOR EM ALGORITHM 

Parameter Value 

Generation Number 100000 

Population size 50 

Crossover Rate 0.6 

Mutation Rate 0.06 

Selection Method Roulette Wheel selection 

Crossover Type Single point 

 

 

   We ran the experiments for 100000 iterations for GA 

with population size 50. Table II shows the comparison of 

our final results compared to other published results in the 

literature. 

 
TABLE II 

COMPARISON BETWEEN VARIOUS VERSION METHODS  AND OUR METHOD 

 

Data 

Set 

 
Our 

Method 

Best 

GA 

&  

LS 

 

Randomised 

Iterative 

Improvement 

Algorithm 

 

 

Graph 

hyper-

heuristic 

(Best) 

 

 

 

EGD 

 

 

 

NLGD 

s1 0 2 0 6 0 3 

s2 0 4 0 7 0 4 

s3 0 2 0 3 0 6 

s4 0 0 0 3 0 6 

s5 0 4 0 4 0 0 

m1 75 254 242 372 80 140 

m2 100 258 161 419 105 130 

m3 143 251 265 359 139 189 

m4 180 321 181 348 88 112 

m5 125 276 151 171 88 141 

l 650 1027 - 1068 730 876 

7. Conclusion 

In this paper, we employed Genetic Algorithm (GA) and 

great deluge for course timetable problem local search. 

Even though the experiments carried out in this work 

demonstrate that the method presented here only obtains 

two best result, However the proposed method can produce 

a feasible and good quality timetable Moreover, it provides 

results that are consistently good across the all the 

benchmark problems. 

 

References 
[1] D. Abramson, “Constructing school timetables using   simulated 

annealing: sequential and parallel algorithms” Management 

Science, vol. 37, pp. 98–113, 1991. 

[2] E. K. Burke and J. P. Newall, “A new adaptive heuristic 

framework for examination timetabling problems,” in Technical 

Report NOTTCSTR- 2001-5 (submitted to Annals of Operations 

Research), University of Nottingham, UK, School of Computer 

Science & IT, 2002. 

[3] A. Hertz, “Tabu search for large scale timetabling problems,” 

European journal of operations research, vol. 54, pp. 39–47, 

1991. 

[4] B. Paechter, M. G. Norman, and H. Luchian, “Extensions to a 

memetic timetabling system,,” in E.K. Burke and P.M. Ross, eds., 

Proceedings of the 1st International Conference on the Practice 

and Theory of Automated Timetabling, Lawrence Erlbaum 

Associates, 1995. 

[5] A. Schaerf, “A survey of automated timetabling,” Artificial 

Intelligence Review, vol. 13 (2), pp. 87–127, 1993. 

[6] A. Tripathy, “A lagrangian relaxation approach to course 

timetabling,” Journal of the Operational Research Society, vol. 

31, pp. 599 603, 1980. 

[7] M. W. Carter, “A survey of practical applications of examination 

timetabling algorithms,” Operations Research, vol. 34, pp. 193–

202, 1986. 

[8] S. C. Brailsford, C. N. Potts, and B. M. Smith, “Constraint 

satisfaction problems: Algorithms and applications,” European 

Journal of Operational Research, vol. 119, pp. 557–581, 1999. 

[9] G. M. White and P. W. Chan, “Towards the construction of 

optimal examination timetables,” INFOR 17, pp. 219–229, 1979. 

[10] P. Adamidis and P. Arapakis, “Evolutionary algorithms in lecture 

timetabling,” in Proceedings of the 1999 IEEE Congress on 

Evolutionary Computation (CEC 99), pp. 1145–1151, IEEE, 

1999. 

[11] A. Colorni, M. Dorigo, and V. Maniezzo, “Genetic algorithms - a 

new approach to the timetable problem,” in Lecture Notes in 

Computer Science - NATO ASI Series, vol. F 82, pp. 235–239, 

Combinatorial Optimization, (Akgul et al eds), Springer-Verlag, 

1990. 

[12] M. W. Carter and G. Laporte, “Recent developments in practical 

course timetabling,” in In: Burke, E., Carter, M. (Eds.), The 

Practice and Theory of Automated Timetabling II: Selected 

Papers from the 2nd Int’l Conf. on the Practice and Theory of 

Automated Timetabling, Springer Lecture Notes in Computer 

Science Series, vol. 1408, pp. 3–19, 1990. 

[13] M. Chiarandini, K. Socha, and O. R. Doria, “An effective hybrid 

approach for the university course timetabling problem,” 2002. 

[14] S. Abdullah, E. K. Burke, and B. McCollum, “An investigation of 

variable neighbourhood search for university course timetabling,” 

in The 2nd Multidisciplinary International Conference on 

Scheduling: Theory and Applications (MISTA), New York, USA, 

July 18th-21st, pp. 413–427, 2005. 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010 

 

 

288 

 

[15] S. Abdullah, E. K. Burke, and B. McCollum, Using a Randomised 

Iterative Improvement Algorithm with Composite Neighbourhood 

Structures for University Course Timetabling. In Metaheuristics: 

Progress in complex systems optimization (Operations Research / 

Computer Science Interfaces Series), chapter 8. published by 

Springer, ISBN:978-0-387-71919-1, 2007. 

[16] S.I , Birbil :Stochastic global optimization techniques. PhD thesis, 

North Carolina State University (2002). 

[17] S.I , Birbil, S.-C. Fang : An electromagnetism-like mechanism for 

global optimization. Journal of Global Optimization 25, 263–282 

(2003) 

[18] S.I , Birbil, S.-C. Fang, R.-L. Sheu: On the convergence of a 

population-based global optimization algorithm. Journal of 

Global Optimization 30, 301–318 (2004). 
[19] G. Dueck:  New Optimization Heuristics. The Great Deluge 

Algorithm and the Record-to-Record Travel. Journal of 

Computational Physics 104, 86-92. 1993. 

[20] D. Landa-Silva, J. H Obit: Great Deluge with Non-linear Decay 

Rate for Solving Course Timetabling Problem. In the fourth 

international IEEE conference on Intelligent Systems. Varna, 

Bulgaria, September 6-8, 2008. 

[21] S. Abdullah, H. Turabieh, Generating University Course 

Timetable Using Genetic Algorithms and Local Search. In the 

Third 2008 International Conference on Convergence and Hybrid 

Information Technology ICCIT, vol. I, 254-260, 2008. 

[22] Paul McMullan: An Extended Implementation of the Great 

Deluge Algorithm for Course Timetabling, Computational 

Science – ICCS, Part I, LNCS 4487, 538–545, Springer-Verlag 

Berlin Heidelberg 2007. 

[23] J. Holland, Adaptation in Natural and Artificial Systems. Ann 

Arbor, MI: University of Michigan Press, 1975. 

[24] K. A. De Jong, Analysis of Behavior of a Class of Genetic 

Adaptive Systems. PhD thesis, University of Michigan, Ann 

Arbor, MI, 1975. 

[25] D. Goldberg, Genetic Algorithms in Search, Optimization, and 

Machine Learning. New York: Addison-Wesley, 1989. 

[26] K. Kristinsson and G. Dumont, “Genetic algorithms in system 

identification,” in Third IEEE International Symposium Intelligent 

Control, pp. 597–602, IEEE Press, 1988. 

[27] A. Chipperfield, P. J. Fleming, and C. Fonseca, “Genetic 

algorithms tools for control systems engineering,” in Proceedings 

of First International Conference on Adaptive Computing in 

Engineering Design and Control, pp. 128–133, UK, 1994. 

[28] A. Sheta and K. De Jong, “Time-series forecasting using GA-

tuned radial basis functions,” in special issue of the Information 

Scienec Journal, pp. 221–228, 2001. 

[29] A. Sheta and K. DeJong, “Parameter estimation of nonlinear 

systems in noisy environment using genetic algorithms,” in 

Proceedings of the IEEE International Symposium on Intelligent 

Control (ISIC’96), pp. 360–366, 1996. 

[30] H. Al-Duwaish and W. Naeem, “Nonlinear model predictive 

control of hammerstein and winner model using genetic 

algorithms,” in Proceedings of the IEEE International Conference 

on Control Applications, pp. 465–469, 2001. 

[31] M. Gen and R. Cheng, Genetic Algorithms and Engineering 

Design. New York: Jonh Wiley and Sons, Inc, 1997.  

[32] G. Syswerda, “Uniform crossover in genetic algorithms,” in 

Proceedings of the Third International Conference on Genetic 

Algorithms, pp. 2–9, 1989. 

 

 

 

 

 

 

 

Nabeel R. AL-Milli received the B.S. 

in  Computer Science and Computer 

Information Systems from 

Philadelphia University and M.S 

degree in Computer Science from Al-

Balqa Applied University in 2003 and 

2006, respectively.  He worked as a 

developer in ESKADENIA software solutions – Amman. He was 

an administrator and developer at Free zones Corporation, 

currently he is a lecturer in Financial and Business 

Administration and Computer Science Department, Zarqa 

University College, Al-Balqa' Applied University. His research 

interests include Artificial Intelligence, Evolutionary 

Computation and Image Processing. 

 

 

 

 

 

 

 

 


