
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

12

Manuscript received May 5, 2010
Manuscript revised May 20, 2010

Security Analysis of Access Linux Platform

Andreas Sjöström1, Kazuhide Fukushima, Shinsaku Kiyomoto, Wook Shin and Toshiaki Tanaka

KDDI R&D Laboratories Inc., Fujimino, Japan

1 Currently, he belongs to Integrated Electronic System Design at Chalmers University of Technology in Gothenburg, Sweden.

Summary
The complexity of the mobile phones has led to that many mobile
phone manufacturers have entered into projects where the Linux
operating system is made as a base for their mobile platforms. In
this paper, we present some potential vulnerabilities of ALP 2.4
originate in the Linux kernel and propose countermeasures
against them. Our proposal to eliminate these vulnerabilities
contributes secure mobile services on ALP 2.4 or subsequent
LiMo.
Key words:
Access Linux, Security, Open Platform, Mobile, Vulnerability

1. Introduction

Advances in hardware manufacturing technology enable
mobile phones to be equipped with various functional
modules (e.g. touch screen, camera, accelerometer, GPS,
etc.). The evolution of mobile hardware and services has
resulted in alliances of handset manufacturers and
telephone companies. They began to collaboratively define
a common open framework, in order to become more
adaptive, embracing rapid changes in customer demands,
services, and hardware specifications. Moreover, an open
framework allows them to avoid proprietary issues and to
attract third party developers to their ecosystem.

The efforts of defining an open mobile platform have
naturally led to use an open source operating system,
Linux, and resulted in a number of products and projects
[1, 15, 20, 21, 20, 27]. Those Linux-based mobile
platforms tend to have a similar composition: fundamental
operating system services are provided by Linux kernel,
and a GTK+/Qt-based or Java-compatible application
development environment is placed on top of the kernel.
Although they have some architectures in common, detail
specification could be different. For example, Android
[21] is working quite differently from LiMo [15]. In case
of the former, all the programs from third party developers
are programmed in Java and each of them is running on a
separate virtual machine, being isolated from each other.
The latter platform is working in a more similar way as
ordinary Linux and focuses on using open source
components that have already been well tested and are
known to be secure.

This paper is focusing on security analysis of the ALP

version 2.4. This version of ALP can be seen as a
predecessor of LiMo, having the Hiker Framework; the
heart of both systems. ALP is developed and maintained
by Access, a company that since then has become a main
actor in the LiMo project. The latest version of ALP, ALP
3.0, is actually LiMo compliant [1]. Unfortunately, no
development kits for LiMo have yet been released for
public use. While we evaluate the security of ALP, known
security issues of the Linux operating systems and the
security mechanisms employed in ALP are taken into
account. Possible security threats, countermeasures to
those threats, and potential vulnerabilities in other
platforms are discussed in the following sections.

The outline of this paper is as follows: Section 2
introduces security issues in Linux system and Section 3
explains security architecture of ALP. Thereafter we
discuss some possible security threats of ALP and
countermeasures to them in Section 4 and Section 5, and
conclude the paper in Section 6.

2. Related Work

Although worries about security of the Linux-based
mobile platforms have grown because of their inherent
open features, the security of those systems has not been
intensively studied. On the contrary, there are some
research achievements on other mobile operating systems:
Debbabi et al. provided a vulnerability analysis of J2ME
platform [8], and showed that some mobile phones face
serious threats such as the Siemens SMS attack. Kingpin
and Mudge analyzed the design of the Palm OS and
hardware platform with respect to data storage issues,
improper security design, and malicious code threats [14].
Goovaerts et al. presented the in-depth analysis of
different vulnerabilities in Palm OS [10]. Murmann and
Rossnagel examined current mobile operating systems
such as Symbian OS, with regard to their security and
concluded that no operation system is secure enough for
open environments [19]. Thereupon, in the following
sections, we are going to discuss the security of
Linux-based mobile framework, especially take an
example of the framework, Access Linux Platform (ALP),
into account.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

13

3. Security in Linux

In this section, we present the vulnerabilities that may be
considered to be the dominating ones of which malware
makes use on the Linux platform. We then demonstrate
that some of them are available on ALP as well and some
further design patterns can be seen as flaws. Finally, we
discuss the influence exerted by these vulnerabilities.

3.1 Overview

Linux has a strict policy on which users are allowed to use
the system based on their permissions according to the
POSIX permission standard. When the kernel version 2.6
was released, an access control system, Linux Security
Modules (LSM)[32] was merged into Linux kernel. This is
a framework that combined with a security module which
defines certain policies strengthens the security control
over a Linux system.

3.2 Common Exploits in Linux

There have been several ways to subvert the Linux system
during its lifetime of almost twenty years. Different
exploits can be split up into two categories, those that only
work in userland and those that take control in kernelland.
The former ones can be protected from fairly easily as
long as the kernel is still intact, whereas the latter one can
cause a lot of trouble since the main control of the system
is then compromised. Two well known ways of infiltrating
the kernelland are to exploit kernel modules and to directly
patch the memory data[18]. Especially, Linux Kernel
Module (LKM)[24] and /dev/(k)mem files[5, 17] have
been widely exploited in the Linux systems, and those
techniques are often followed by malicious code
injection[28]. They are explained in more detail below.

Linux Kernel Modules (LKM): In order to subvert a
kernel one will have to get access to the area where the
kernel is working in the memory [24].LKMs are programs
written with the intention to extend the kernel [24]. They
are mainly used for the integration of device drivers into
the system in an easy way. Malware writers have, however,
found more malign usage of this feature [24]. They have
naturally discovered that it gives a good opportunity to
write malwares such as rootkits, which have the possibility
to partially or completely subvert and take over a system.

Access to Memory Device: The access to the memory
device (/dev/mem and /dev/kmem) was originally meant
for debugging purposes, but it has been up to debate for a
long time about what their features are really useful for.
The abuse of /dev/kmem was firstly proposed by Silvio
Cesares in his paper ``Runtime Kernel Kmem Patching"[5].
What the feature gives is the possibility to map to the part

of the memory where the kernel lives. Several rootkits
came to use this feature, which led people to doubt
whether it actually was useful for any other type of
programs. Hence, /dev/kmem became disabled in version
2.6 or the Linux kernel. However, this modification could
not quite stop the rootkits, since there was still the
/dev/mem. As soon as /dev/kmem was deprecated,
/dev/mem was introduced. Comparing to /dev/kmem
which only mapped to the virtual memory of the kernel,
/dev/mem maps to the whole memory in the system.
Anthony Lineberry presented a method on how to use
/dev/mem for malware purposes in his paper ``Malicious
Code Injection via /dev/mem" [17], demonstrating how it
still is quite possible to subvert the Linux kernel even now
without too much effort. Some Linux developers have
taken this problem seriously and several Linux
distributions grant users limited access to the first
megabyte in the memory. This memory area is actually
used by some mainstream applications, but the limitation
is not set as default in the mainline[17] which has
consequently led to that distributions where this problem
has not specifically been addressed are still vulnerable.

Code Injection: Rootkits often replace system hooks and
redirect the system control flow in order to execute hidden
malicious procedures. Code injection is one of the methods
of hiding malicious codes in legitimate processes. While
the Dynamic Link Libraries (DLLs) are usually victimized
in Windows environments, the LKMs running in the
kernel level is usual targets of the code injection in Linux
environments. ELF stands for Executable and Linkable
Format and is the file format that Linux uses for its
executable files, including LKMs. By modifying the
symbol table of an ELF, an attacker can execute an
arbitrary function in the ELF-file during a function call.
Combining this together with the Linux supported feature
of uniting several ELF-files one can inject an ELF-file
with harmful code.

4. ALP Security Framework

ALP supports various sorts of executables such as Linux
native applications, Widgets, legacy Palm OS applications,
and Java MIDlets. In result, the architecture of ALP has
several sub-platforms on top of the Linux kernel such as
NetFront Widgets, Garnet OS, and JV-Lite which supports
the former executable formats, respectively. The task of
coordinating all the different application types to give a
common view into the system is the job of the Hiker
Framework, which also directly handles the native
applications and the communication between them. In this
paper we only discuss the Hiker Framework [3] upon
which the security architecture of the ALP system is based
on.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

14

Figure 1 shows an overview of the ALP Platform
with a focus on the Hiker Framework, which consists of
several supporting blocks for an application's execution.
An application package (called a bundle) is added to the
system by the Bundle Manager and runs while its life
cycle is managed by the Application Manager. Interactions
between applications are intermediated by a broker, the
Exchange Manager which binds one application's request
to another application. Events to an application are
informed by the Notification Manager or the Alarm
Manager whereas those going to the user are handled by
the Attention Manager. To provide persistence in
applications' status, they can store setting information in
the Global Settings.
All the above behaviors are governed by the Security
Policy Framework (SPF) which enforces fine-grained
access control. The security policy can be provided by the
device manufacturers or the network operators. The
enforcement of the policy is based on an LSM specifically
made for ALP [2] together with a policy file which is
mapped with the standard POSIX permissions [30]. Each
loaded application is launched with a unique user-ID, thus
distinguished and separated from other applications.

4.1 ALP LSM and Policies

The most essential part of the security framework is the
ALP LSM with policies. Access has developed their own
LSM for the Linux kernel, adapted specifically for the
needs of ALP. The hooks in the kernel that the LSM
provides connects to a policy file written in XML [2].
Whenever an application wishes to access a file or feature
in the phone the kernel will call the LSM hooks which
check with the policy file whether the request for the
running application should be granted or not. The policy
file describes three things:

PIN and PUK codes: These two fields contain
information about the PIN and PUK codes. The respective
fields contain descriptions about the iteration count the salt
and finally also their encrypted passwords.

Policies: There can be several policies described,
depended on the decisions from the mobile operator. In the
default version from ALP there are six policies described.
Each policy describes the privileges that should be given
to the bundles granted the policy, including the GID
(Group ID), SGID (Set Group ID), the level of trust and
also specific access level to the components of the mobile
framework.

Packages: Finally, the mapping of each bundle
(Sometimes a bundle is referred to as a package in ALP) in
the system to a policy is made. The unique user-id for each
bundle is also listed here.

4.2 The /etc/passwd file

In the past, the password for each user in Linux was
described in /etc/passwd. Eventually, the passwords were
moved out, but the file is still there to describe the users in
the system. Since ALP represents each application as a
unique user, a lot of information is saved in this file. Each
user-id and group-id is also described here.

4.3 Authentication Methods

According to source codes [3], two well-known standards,
Password-Based Cryptography Specification (PKCS#5)
and Secure/Multipurpose Internet Mail Extensions
(S/MIME), are being used in ALP. PKCS#5 is used for the
login procedure of the mobile phone. S/MIME is used for
signing and certification of the installed applications.

PKCS#5: The dictionary attack is a common way to
intrude on a password protected system. The PKCS#5 [26]
suggests a solution to this problem by making sure that the
pass phrase the user inputs are modified until it is no
longer recognized as a non-random phrase when it finally
arrives at the system [33]. This mechanism makes it very
hard to brute force the password since an attacker has
pretty much guess phrases randomly among a massive
amount of possible values. The PKCS#5 consists of a key
derivation function (KDF) which consists of a pass phrase,
a salt and an iteration number. The pass phrase p is the
password the user verifies herself with. ALP is used in two
scenarios: when inputting the PIN code after the mobile
has been booted and when inputting the PUK code in the
case when the verification of the PIN code has failed too
many times. The salt s is added to the KDF in order to
enlarge the amount of possible values that can come out
from the function. It is usually a wide number and the
recommendations are to let it have a minimum width of 64
bits. Finally, the underlying function H(x,y) of the KDF is
executed sequentially a certain number of times, defined
by the iteration count c. The recommended minimum
value of c is 1000. The intent of the iteration count is to
prolong the process of brute forcing with a dictionary
attack whereas the procedure of computing a key
legitimately is still feasible in time since it is only done
once. In effect, the adding of an iteration count is
equivalent to lengthen the width of the key with (log c)
amount of bits [3]. In PKCS#5 v2.1, there are
specifications for two underlying password-based key
derivation functions (PBKDF): PBKDF1 and PBKDF2.
The first one applies a hash function, which is either MD2,
MD5, or SHA-1. Since underlying hash functions are no
longer recommended for new applications, PBKDF1 is
now obsolete and should only be used for applications that
should be compatible with existing ones. Furthermore, the
derived key length is bound to 16 octets for MD2 and

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

15

MD5 and 20 octets for SHA-1. PBKDF2 is recommended
for new applications. Despite the recommendation of using
PBKDF2 the Hiker Framework is using the PBKDF1 key
derivation function.

S/MIME: Each bundle should come together with a
certificate and a signed key. It will run with the lowest
privileges[30] without a certificate. The certificate and key
are attained from a certificate coordinator, and are using
the S/MIME standard.

5. Security Threats in ALP

The following security threats were found by evaluating
the some of the most common known vulnerability classes
in Linux systems, which were presented in the previous
section. The following data has been attained by using the
development kit, including a simulator for the platform
supported by Access for ALP. The policies and the
/dev/mem were modified through the simulator using basic
Linux applications and the gcc compiler, whereas other
vulnerabilities were found statically by examining the
source code. The complete source code that was studied
comes from version 0.9.1 of the Hiker Framework [3],
whereas the actual version used in ALP 2.4 is a bit newer.
The version number is not mentioned in the documents
published by Access. There is, however, just a slight
difference and a lot of it can be checked by comparing the
code from version 0.9.1 with the header files in the Hiker
Framework contained by ALP 2.4. In this section, five
main concerns are addressed, in regard to the Linux
vulnerabilities listed in Section 2 and the ALP security
mentioned in Section 3:

� Root Access: The possibility for a user to become the

super user.

 Policy Modification: The possibility to change a
policy by the user.

 /dev/mem: The possibility to access all the memory on
the platform and what consequences that can lead to.

 Flaws in PKCS#5: The problems with using PKCS#5
in the way it is used for ALP.

 Code injection: The possibility for code injection in
ALP.

5.1 Root Access

One of the strengths in any Unix system is its robust
permission management system. A user is only allowed to
work within the limitations of the scope it has been
allowed to work in. The system has at least one user that is

given super user capabilities, which is called root. The root
user has the ultimate control over the system and is the one
with the capabilities to decide over the other users' access
over the system, the installation of applications and
configurations of the system. ALP allows the shell access
to the device via a terminal. This is simply done by
connecting the device to a computer via USB, and opening
a telnet session to the device [31]. In the simulator, super
user privileges could be attained simply by connecting to
the terminal. If this is the same in the actual product it can
lead to serious matters. Besides the shell access gives an
attacker a chance to modify the system, it simply reveals
the phone owner's private information. Assets like contacts,
mails, documents, and media files can be directly accessed
via the shell. This makes losing a cell phone be more than
the loss of the expensive handset product.

Some of the vulnerabilities we mention below
assume that an attacker already has taken the super user
privilege. Those vulnerabilities are worth considering,
since we might want to compensate those defects by
applying other techniques (like cryptography), even after
the attacker acquired the super user privilege.

5.2 Policy and User Access Modification

Security policy enforcement is the main way of restricting
processes' behavior; thus, the stored policy is indeed
essential to the security in ALP. That is why it is very
important to maintain the integrity of the policies.
However, it is very easy for a user or application with root
access to modify the policies, since they are simply
represented as strings in an XML [3] file which is not at all
protected from root. By modifying the policy file and the
/etc/passwd file one can widen the limitations of an
application and change its user id. If the new user id would
be changed to 0 the application will work as a super user.

5.3 Access to /dev/mem

Modifying /dev/mem can as already mentioned give a user
or application the ultimate control over a system. This is of
course something that a mobile platform, with the purpose
of protecting the integrity of the mobile operators, has to
protect itself from. However, the only protection that ALP
has is the access control mechanism which was already
shown to be vulnerable in the last subsection. If an attacker
has come as far as exploiting the possibility, he or she can
modify the kernel memory and get full control of the
system, by e.g, searching for and modifying the
sys_call_table to run malicious code instead of the
intended system functions [18]. This is of course
unacceptable.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

16

5.4 Flaws in PKCS#5

The point of using the PKCS#5 as an authentication
method is to turn the password into a key phrase that
appears to be just a random sequence. In PKCS#5 v2.1, the
recommendations are to have an iteration count of at least
1000, a salt with the width of at least 64 bits and to use the
PBKDF2 as its underlying encryption function. ALP is
using the PBKDF1 as its underlying function which relies
on hash functions that are no longer considered to be safe.
Even though it in most cases is unlikely that a mobile will
be the victim to an attack that possibly could break the
authentication algorithm it makes little sense to just have
an incomplete certification method, which the PKCS#5 in
ALP correctly can be considered to be.

5.5 Code Injection

Although ALP does not support the dynamic LKM
architectures, code injection exploits could still be in effect.
ALP applications can be compiled and installed as shared
object formats (*.so files). Some known variations of the
attack exploit these files [25] and can well be used to
attack ALP.

6. Consideration

In this section, some possible solutions to the problems
mentioned together with some suggestions for
improvement are presented.

Disabling root ccess: A good thing to consider is if there
is actually any need for a user to ever run a root, or even to
run in a shell. Most of the mobile phones out in the market
do not support those features. If there actually is a need for
this the user can at least be restricted access to the
components that the Hiker Framework consists of. The
system at least needs to hide user's private data, so that the
confidentiality and the privacy could be guaranteed even
when the phone is lost. This could be fundamentally
supported by the cryptographic file systems.

Checking the integrity of the policies: The system can
protect the integrity of the policies by calculating hash
digests of each policy or whole policy file. Whenever a
program needs to access the policies, the operating system
compares the digests of them with the previous values.

Restricting access to /dev/mem: Many Linux desktop
distributions disable access to /dev/mem even for the super
user. Those applications that need access are limited to the
first megabyte in the memory [17], where actually
legitimately useful data lies. Not very long ago this was
not supported by the mainline of the kernel [7], but since a
while back it gives the option in the source code to enable

the preprocessor directive CONFIG_STRICT_DEVMEM
[7]. This is something the developers of ALP should have
considered already from the start.

Changing the underlying function of PKCS#5: In order
to strengthen the cryptographic function of PKCS#5 the
recommendations to apply an underlying function of
PBKDF2 should be followed since the authentication
mechanism in ALP is not depended on any older
application.

Checking the integrity of the system: We can check the
integrity of the ALP components by using checksums. If
some files are modified, the new checksum of the system
does not match the previous checksum. This process
should be done regularly, e.g. during every system boot.
Conveniently, checksums come together with most
bundles when they are installed into the system and can
hence be used for this purpose. Alternatively, a system
program (e.g. Tripwire integrity checker) can be used,
which saves a hash of each file to use as a reference when
performing a regular system check. The hashes can be
made for a component as soon as it is added to the system
to make sure they are made from a ``safe'' component.
This is a good method to prevent the before-mentioned
code injection technique.

7. Conclusion

We presented some potential vulnerabilities of ALP 2.4
originate in the Linux kernel and proposed countermeasure
against them. We showed that an access control
mechanism provides a secure environment in ALP 2.4.
Without an access control mechanism, an attacker can
easily compromise the security mechanism by modifying
the policy files that are essential for ALP LSM. Next, an
attacker can control the whole system of ALP by accessing
the /dev/mem, which directly maps physical memory. As
the result, an attacker can inject malicious code to other
executables. This vulnerability can be eliminated by
limiting shell access to mobile phones. An access control
system that prohibits access to /dev/mem and permits
partial access to the first megabyte of the memory is also
beneficial; it is already used for several Linux distributions.
Furthermore, we found a potential vulnerability in the
authentication mechanism; its password-based key
derivation PKCS#5 uses an obsolete function PBKDF1
including old hash functions MD2, MD5, and SHA-1.
PBKDF2 is recommended for new applications and
systems. Although it may be hard for an attacker to get
physical access to another person's phone via these
vulnerabilities, they still can be exploited to ``hack'' his or
her own mobile phone, for example, compromise the
copyright protection mechanism. Thus, the elimination of

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

17

these vulnerabilities is essential to provide secure mobile
services on ALP 2.4 or subsequent LiMo.

References
[1] ACCESS Co., LTD. The access linux platform.
[2] ACCESS Co., LTD. Access application framework -

Technical overview. (Version 0.9.1), Dec 2006.
[3] ACCESS Co., LTD. hiker-0.9.1 source codes, 2006.
[4] Owen Arden and Charlie Miller. Opencore insufficient

boundary checking during mp3 decoding. oCert #2009-002,
http://www.ocert.org/advisories/ocert-2009-002.html, 2009.

[5] S. Cesare. Runtime kernel KMEM patching.
http://biblio.l0t3k.net/kernel/en/, Nov 1998.

[6] corbet. Complete coverage in linux security modules.
http://lwn.net/Articles/154277/, Oct 2005.

[7] corbet. Who needs /dev/kmem?
http://lwn.net/Articles/147901/, Aug 2005.

[8] M. Debbabi, M. Saleh, C. Talhi, and S. Zhioua. Java for
mobile devices: A security study. Proc. of the 21st Annual
Computer Security Applications Conference (ACSAC 2005),
pages 234–244, 2005.

[9] Antony Edwards, Trent Jaeger, and Xiaolan Zhang. Runtime
verification of authorization hook placement for the linux
security modules framework. In ACM conference on
Computer and Communications Security, pages 225–234.
ACM, 2002.

[10] T. Goovaerts, B. D. Win, B. D. Decker, and W. Joosen.
Assessment of palm os susceptibility to malicious code
threats. Proc. of the 9th IFIP TC-6 TC-11 Conference on
Communications and Multimedia Security (CMS2005),
3677, LNCS:240–249, 2005.

[11] Michael Ihde and Tom Brown. An experimental study of
file permission vulnerabilities caused by single-bit errors in
the selinux kernel policy file. UIUC SIGMIL Meeting,
2004.

[12] Trent Jaeger, Antony Edwards, and Xiaolan Zhang.
Consistency analysis of authorization hook placement in the
linux security modules framework. volume 7, pages
175–205. ACM, 2004.

[13] Kingcope. Debian openssh selinux privilege escalation
vulnerability. SecurityFocus, Bugtraq ID: 30276, Jul 2008.

[14] Kingpin and Mudge. Security analysis of the palm operating
system and its weaknesses against malicious code threats.
Proc. of the 10th conference on USENIX Security
Symposium, pages 135–151, 2001.

[15] LiMo Foundation. Limo. http://www.limofoundation.org.
[16] LiMo Foundation. Security policy enforcement framework

(SPEF) foundation api. (Version 1.0), Mar. 2008.
[17] A. Lineberry. Malicious code injection via /dev/mem. 2009.
[18] Anthony Lineberry. Alice in kernel land. Black Hat Europe,

Apr 2009.
[19] T. Murmann and H. Rossnagel. How secure are current

mobile operating systems? Proc. of the 8th IFIP TC-6 TC-11
Conference on Communications and Multimedia Security
(CMS2004), pages 47–58, 2004.

[20] Nokia. Maemo. http://maemo.org/.
[21] Open Handset Alliance. Android.
 http://developer.android.com/.
[22] Openmoko, Inc. Openmoko. http://www.openmoko.org/.
[23] Alfredo Ortega. Android web browser gif file heap-based

buffer overflow vulnerability. Bugtraq ID 28005,

http://www.securityfocus.com/bid/28005, Mar 2008.
[24] Rául Siles Peláez. Linux kernel rootkits: protecting the

systems ``ring-zero''. GIAC Unix Security Administrator
(GCUX), May 2004.

[25] Quake2th. PLT redirection through shared object injection
into running process.

http://www.codeproject.com/KB/cpp/shared_object_injection_1.
aspx, Dec 2008.

[26] RSA Laboratories. PKCS #5 v.2.1: Password-based
cryptography standard. 1999.

[27] The Linux Foundation. Moblin. http://moblin.org.
[28] truff. Infecting loadable kernel modules. Phrack Issues #61,

Volume 0x0b, Issue 0x3d, Aug. 2003.
[29] US-CERT/NIST. Linux 2.6 kernel capability lsm module

local privilege elevation National Vulnerability Database,
CVE-2004-1337, Dec 2004.

[30] Greg Wilson. Access linux platform application
programming. (Document Number3136-001), Jul 2008.

[31] Greg Wilson and Jeffrey Osier-Mixon. Development tools.
(Document Number 3151-001), Jul. 2008.

[32] C. Wright, C. Cowan, and J. Morris. Linux security
modules: General security support for the linux kernel,
2002.

[33] F. F. Yao and Y. L. Yin. Design and analysis of
password-based key derivation functions. 51(9):3292–3297,
2005.

Andreas Sjöström has a B.E in
Computer Engineering and is
currently studying his M.E in
Integrated Electronic System
Design at Chalmers University of
Technology in Gothenburg, Sweden.
He was a trainee at the Information
Security lab in KDDI R & D
Laboratories, Inc. in the fall of
2009.

Kazuhide Fukushima received his
M. E. in Engineering from Kyushu
University, Japan, in 2004. He
joined KDDI and has been engaged
in research on digital rights
management (DRM) technologies,
including software obfuscation and
key-management schemes. He is
currently a researcher at the

Information Security Lab. of KDDI R&D Laboratories,
Inc. He received his Doctorate in Engineering from
Kyushu University in 2009. He is a member of Institute of
Electronics, Information and Communication Engineers,
the Information Processing Society of Japan, and ACM.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

18

Shinsaku Kiyomoto received his
B.E. in Engineering Sciences, and
his M.E. in Materials Science, from
Tsukuba University, Japan, in1998
and 2000, respectively. He joined
KDD (now KDDI) and has been
engaged in the research on stream
cipher, cryptographic protocol, and
mobile security. He is currently a

senior researcher of the Information Security Lab. in
KDDI R&D Laboratories, Inc. He received the Dr. degree
in engineering from Kyushu University in 2006. He was a
visiting researcher of the Information Security Group,
Royal Holloway University of London from 2008 to 2009.
He received the Young Engineer Award from IEICE in
2004. He is a member of the Physical Society of Japan and
Institute of Electronics, Information and Communication
Engineers.

Wook Shin is a researcher at KDDI
R&D Laboratories, Inc. His
research interests include secure
operating systems, web services,
and healthcare systems. He
received his BA from Dongguk
University, Korea and MS and PhD
from Gwangju Institute of Science
and Technology, Korea. He was a
postdoctoral research assistant at

University of Illinois at Urbana-Champaign, U.S.A.

Toshiaki Tanaka received B.E. and
M.E. degrees in communication
engineering from Osaka University,
Japan, in 1984 and 1986
respectively. He joined KDD (now
KDDI) and has been engaged in the
research on cryptographic protocol,
mobile security, digital rights
management, and intrusion
detection. He is currently an

executive director in KDDI R&D Laboratories, Inc. He
received his doctorate of engineering from Kyushu
University in 2007. He is a member of Institute of
Electronics, Information and Communication Engineers,
the Information Processing Society of Japan.

