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Summary 
The complexity of the mobile phones has led to that many mobile 
phone manufacturers have entered into projects where the Linux 
operating system is made as a base for their mobile platforms. In 
this paper, we present some potential vulnerabilities of ALP 2.4 
originate in the Linux kernel and propose countermeasures 
against them. Our proposal to eliminate these vulnerabilities 
contributes secure mobile services on ALP 2.4 or subsequent 
LiMo.  
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1. Introduction 

Advances in hardware manufacturing technology enable 
mobile phones to be equipped with various functional 
modules (e.g. touch screen, camera, accelerometer, GPS, 
etc.). The evolution of mobile hardware and services has 
resulted in alliances of handset manufacturers and 
telephone companies. They began to collaboratively define 
a common open framework, in order to become more 
adaptive, embracing rapid changes in customer demands, 
services, and hardware specifications. Moreover, an open 
framework allows them to avoid proprietary issues and to 
attract third party developers to their ecosystem. 

The efforts of defining an open mobile platform have 
naturally led to use an open source operating system, 
Linux, and resulted in a number of products and projects 
[1, 15, 20, 21, 20, 27]. Those Linux-based mobile 
platforms tend to have a similar composition: fundamental 
operating system services are provided by Linux kernel, 
and a GTK+/Qt-based or Java-compatible application 
development environment is placed on top of the kernel. 
Although they have some architectures in common, detail 
specification could be different. For example, Android 
[21] is working quite differently from LiMo [15]. In case 
of the former, all the programs from third party developers 
are programmed in Java and each of them is running on a 
separate virtual machine, being isolated from each other. 
The latter platform is working in a more similar way as 
ordinary Linux and focuses on using open source 
components that have already been well tested and are 
known to be secure. 

This paper is focusing on security analysis of the ALP 

version 2.4. This version of ALP can be seen as a 
predecessor of LiMo, having the Hiker Framework; the 
heart of both systems. ALP is developed and maintained 
by Access, a company that since then has become a main 
actor in the LiMo project. The latest version of ALP, ALP 
3.0, is actually LiMo compliant [1]. Unfortunately, no 
development kits for LiMo have yet been released for 
public use. While we evaluate the security of ALP, known 
security issues of the Linux operating systems and the 
security mechanisms employed in ALP are taken into 
account. Possible security threats, countermeasures to 
those threats, and potential vulnerabilities in other 
platforms are discussed in the following sections.  

The outline of this paper is as follows: Section 2 
introduces security issues in Linux system and Section 3 
explains security architecture of ALP. Thereafter we 
discuss some possible security threats of ALP and 
countermeasures to them in Section 4 and Section 5, and 
conclude the paper in Section 6. 

2. Related Work 

Although worries about security of the Linux-based 
mobile platforms have grown because of their inherent 
open features, the security of those systems has not been 
intensively studied. On the contrary, there are some 
research achievements on other mobile operating systems: 
Debbabi et al. provided a vulnerability analysis of J2ME 
platform [8], and showed that some mobile phones face 
serious threats such as the Siemens SMS attack. Kingpin 
and Mudge analyzed the design of the Palm OS and 
hardware platform with respect to data storage issues, 
improper security design, and malicious code threats [14]. 
Goovaerts et al. presented the in-depth analysis of 
different vulnerabilities in Palm OS [10]. Murmann and 
Rossnagel examined current mobile operating systems 
such as Symbian OS, with regard to their security and 
concluded that no operation system is secure enough for 
open environments [19]. Thereupon, in the following 
sections, we are going to discuss the security of 
Linux-based mobile framework, especially take an 
example of the framework, Access Linux Platform (ALP), 
into account. 
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3. Security in Linux 

In this section, we present the vulnerabilities that may be 
considered to be the dominating ones of which malware 
makes use on the Linux platform. We then demonstrate 
that some of them are available on ALP as well and some 
further design patterns can be seen as flaws. Finally, we 
discuss the influence exerted by these vulnerabilities. 

3.1 Overview 

Linux has a strict policy on which users are allowed to use 
the system based on their permissions according to the 
POSIX permission standard. When the kernel version 2.6 
was released, an access control system, Linux Security 
Modules (LSM)[32] was merged into Linux kernel. This is 
a framework that combined with a security module which 
defines certain policies strengthens the security control 
over a Linux system. 
 

3.2 Common Exploits in Linux 

There have been several ways to subvert the Linux system 
during its lifetime of almost twenty years. Different 
exploits can be split up into two categories, those that only 
work in userland and those that take control in kernelland. 
The former ones can be protected from fairly easily as 
long as the kernel is still intact, whereas the latter one can 
cause a lot of trouble since the main control of the system 
is then compromised. Two well known ways of infiltrating 
the kernelland are to exploit kernel modules and to directly 
patch the memory data[18]. Especially, Linux Kernel 
Module (LKM)[24] and /dev/(k)mem files[5, 17] have 
been widely exploited in the Linux systems, and those 
techniques are often followed by malicious code 
injection[28]. They are explained in more detail below. 

 
Linux Kernel Modules (LKM): In order to subvert a 
kernel one will have to get access to the area where the 
kernel is working in the memory [24].LKMs are programs 
written with the intention to extend the kernel [24]. They 
are mainly used for the integration of device drivers into 
the system in an easy way. Malware writers have, however, 
found more malign usage of this feature [24]. They have 
naturally discovered that it gives a good opportunity to 
write malwares such as rootkits, which have the possibility 
to partially or completely subvert and take over a system. 

 
Access to Memory Device: The access to the memory 
device (/dev/mem and /dev/kmem) was originally meant 
for debugging purposes, but it has been up to debate for a 
long time about what their features are really useful for. 
The abuse of /dev/kmem was firstly proposed by Silvio 
Cesares in his paper ``Runtime Kernel Kmem Patching"[5]. 
What the feature gives is the possibility to map to the part 

of the memory where the kernel lives. Several rootkits 
came to use this feature, which led people to doubt 
whether it actually was useful for any other type of 
programs. Hence, /dev/kmem became disabled in version 
2.6 or the Linux kernel. However, this modification could 
not quite stop the rootkits, since there was still the 
/dev/mem. As soon as /dev/kmem was deprecated, 
/dev/mem was introduced. Comparing to /dev/kmem 
which only mapped to the virtual memory of the kernel, 
/dev/mem maps to the whole memory in the system. 
Anthony Lineberry presented a method on how to use 
/dev/mem for malware purposes in his paper ``Malicious 
Code Injection via /dev/mem" [17], demonstrating how it 
still is quite possible to subvert the Linux kernel even now 
without too much effort. Some Linux developers have 
taken this problem seriously and several Linux 
distributions grant users limited access to the first 
megabyte in the memory. This memory area is actually 
used by some mainstream applications, but the limitation 
is not set as default in the mainline[17] which has 
consequently led to that distributions where this problem 
has not specifically been addressed are still vulnerable. 

 
Code Injection: Rootkits often replace system hooks and 
redirect the system control flow in order to execute hidden 
malicious procedures. Code injection is one of the methods 
of hiding malicious codes in legitimate processes. While 
the Dynamic Link Libraries (DLLs) are usually victimized 
in Windows environments, the LKMs running in the 
kernel level is usual targets of the code injection in Linux 
environments. ELF stands for Executable and Linkable 
Format and is the file format that Linux uses for its 
executable files, including LKMs. By modifying the 
symbol table of an ELF, an attacker can execute an 
arbitrary function in the ELF-file during a function call. 
Combining this together with the Linux supported feature 
of uniting several ELF-files one can inject an ELF-file 
with harmful code. 

4. ALP Security Framework 

ALP supports various sorts of executables such as Linux 
native applications, Widgets, legacy Palm OS applications, 
and Java MIDlets. In result, the architecture of ALP has 
several sub-platforms on top of the Linux kernel such as 
NetFront Widgets, Garnet OS, and JV-Lite which supports 
the former executable formats, respectively. The task of 
coordinating all the different application types to give a 
common view into the system is the job of the Hiker 
Framework, which also directly handles the native 
applications and the communication between them. In this 
paper we only discuss the Hiker Framework [3] upon 
which the security architecture of the ALP system is based 
on.  
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Figure 1 shows an overview of the ALP Platform 
with a focus on the Hiker Framework, which consists of 
several supporting blocks for an application's execution. 
An application package (called a bundle) is added to the 
system by the Bundle Manager and runs while its life 
cycle is managed by the Application Manager. Interactions 
between applications are intermediated by a broker, the 
Exchange Manager which binds one application's request 
to another application. Events to an application are 
informed by the Notification Manager or the Alarm 
Manager whereas those going to the user are handled by 
the Attention Manager. To provide persistence in 
applications' status, they can store setting information in 
the Global Settings.  
All the above behaviors are governed by the Security 
Policy Framework (SPF) which enforces fine-grained 
access control. The security policy can be provided by the 
device manufacturers or the network operators. The 
enforcement of the policy is based on an LSM specifically 
made for ALP [2] together with a policy file which is 
mapped with the standard POSIX permissions [30]. Each 
loaded application is launched with a unique user-ID, thus 
distinguished and separated from other applications. 

4.1 ALP LSM and Policies 

The most essential part of the security framework is the 
ALP LSM with policies. Access has developed their own 
LSM for the Linux kernel, adapted specifically for the 
needs of ALP. The hooks in the kernel that the LSM 
provides connects to a policy file written in XML [2]. 
Whenever an application wishes to access a file or feature 
in the phone the kernel will call the LSM hooks which 
check with the policy file whether the request for the 
running application should be granted or not. The policy 
file describes three things: 
 
PIN and PUK codes: These two fields contain 
information about the PIN and PUK codes. The respective 
fields contain descriptions about the iteration count the salt 
and finally also their encrypted passwords. 
 
Policies: There can be several policies described, 
depended on the decisions from the mobile operator. In the 
default version from ALP there are six policies described. 
Each policy describes the privileges that should be given 
to the bundles granted the policy, including the GID 
(Group ID), SGID (Set Group ID), the level of trust and 
also specific access level to the components of the mobile 
framework. 
 
Packages: Finally, the mapping of each bundle 
(Sometimes a bundle is referred to as a package in ALP) in 
the system to a policy is made. The unique user-id for each 
bundle is also listed here. 

4.2 The /etc/passwd file 

In the past, the password for each user in Linux was 
described in /etc/passwd. Eventually, the passwords were 
moved out, but the file is still there to describe the users in 
the system. Since ALP represents each application as a 
unique user, a lot of information is saved in this file. Each 
user-id and group-id is also described here. 

4.3 Authentication Methods 

According to source codes [3], two well-known standards, 
Password-Based Cryptography Specification (PKCS#5) 
and Secure/Multipurpose Internet Mail Extensions 
(S/MIME), are being used in ALP. PKCS#5 is used for the 
login procedure of the mobile phone. S/MIME is used for 
signing and certification of the installed applications. 
 
PKCS#5: The dictionary attack is a common way to 
intrude on a password protected system. The PKCS#5 [26] 
suggests a solution to this problem by making sure that the 
pass phrase the user inputs are modified until it is no 
longer recognized as a non-random phrase when it finally 
arrives at the system [33]. This mechanism makes it very 
hard to brute force the password since an attacker has 
pretty much guess phrases randomly among a massive 
amount of possible values. The PKCS#5 consists of a key 
derivation function (KDF) which consists of a pass phrase, 
a salt and an iteration number. The pass phrase p is the 
password the user verifies herself with. ALP is used in two 
scenarios: when inputting the PIN code after the mobile 
has been booted and when inputting the PUK code in the 
case when the verification of the PIN code has failed too 
many times. The salt s is added to the KDF in order to 
enlarge the amount of possible values that can come out 
from the function. It is usually a wide number and the 
recommendations are to let it have a minimum width of 64 
bits. Finally, the underlying function H(x,y) of the KDF is 
executed sequentially a certain number of times, defined 
by the iteration count c. The recommended minimum 
value of c is 1000. The intent of the iteration count is to 
prolong the process of brute forcing with a dictionary 
attack whereas the procedure of computing a key 
legitimately is still feasible in time since it is only done 
once. In effect, the adding of an iteration count is 
equivalent to lengthen the width of the key with (log c) 
amount of bits [3]. In PKCS#5 v2.1, there are 
specifications for two underlying password-based key 
derivation functions (PBKDF): PBKDF1 and PBKDF2. 
The first one applies a hash function, which is either MD2, 
MD5, or SHA-1. Since underlying hash functions are no 
longer recommended for new applications, PBKDF1 is 
now obsolete and should only be used for applications that 
should be compatible with existing ones. Furthermore, the 
derived key length is bound to 16 octets for MD2 and 
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MD5 and 20 octets for SHA-1. PBKDF2 is recommended 
for new applications. Despite the recommendation of using 
PBKDF2 the Hiker Framework is using the PBKDF1 key 
derivation function. 
 
S/MIME: Each bundle should come together with a 
certificate and a signed key. It will run with the lowest 
privileges[30] without a certificate. The certificate and key 
are attained from a certificate coordinator, and are using 
the S/MIME standard. 

5. Security Threats in ALP 

The following security threats were found by evaluating 
the some of the most common known vulnerability classes 
in Linux systems, which were presented in the previous 
section. The following data has been attained by using the 
development kit, including a simulator for the platform 
supported by Access for ALP. The policies and the 
/dev/mem were modified through the simulator using basic 
Linux applications and the gcc compiler, whereas other 
vulnerabilities were found statically by examining the 
source code. The complete source code that was studied 
comes from version 0.9.1 of the Hiker Framework [3], 
whereas the actual version used in ALP 2.4 is a bit newer. 
The version number is not mentioned in the documents 
published by Access. There is, however, just a slight 
difference and a lot of it can be checked by comparing the 
code from version 0.9.1 with the header files in the Hiker 
Framework contained by ALP 2.4. In this section, five 
main concerns are addressed, in regard to the Linux 
vulnerabilities listed in Section 2 and the ALP security 
mentioned in Section 3: 
 
� Root Access: The possibility for a user to become the 

super user. 

 Policy Modification: The possibility to change a 
policy by the user. 

 /dev/mem: The possibility to access all the memory on 
the platform and what consequences that can lead to. 

 Flaws in PKCS#5: The problems with using PKCS#5 
in the way it is used for ALP. 

 Code injection: The possibility for code injection in 
ALP. 

5.1 Root Access 

One of the strengths in any Unix system is its robust 
permission management system. A user is only allowed to 
work within the limitations of the scope it has been 
allowed to work in. The system has at least one user that is 

given super user capabilities, which is called root. The root 
user has the ultimate control over the system and is the one 
with the capabilities to decide over the other users' access 
over the system, the installation of applications and 
configurations of the system. ALP allows the shell access 
to the device via a terminal. This is simply done by 
connecting the device to a computer via USB, and opening 
a telnet session to the device [31]. In the simulator, super 
user privileges could be attained simply by connecting to 
the terminal. If this is the same in the actual product it can 
lead to serious matters. Besides the shell access gives an 
attacker a chance to modify the system, it simply reveals 
the phone owner's private information. Assets like contacts, 
mails, documents, and media files can be directly accessed 
via the shell. This makes losing a cell phone be more than 
the loss of the expensive handset product. 

Some of the vulnerabilities we mention below 
assume that an attacker already has taken the super user 
privilege. Those vulnerabilities are worth considering, 
since we might want to compensate those defects by 
applying other techniques (like cryptography), even after 
the attacker acquired the super user privilege. 

5.2 Policy and User Access Modification 

Security policy enforcement is the main way of restricting 
processes' behavior; thus, the stored policy is indeed 
essential to the security in ALP. That is why it is very 
important to maintain the integrity of the policies. 
However, it is very easy for a user or application with root 
access to modify the policies, since they are simply 
represented as strings in an XML [3] file which is not at all 
protected from root. By modifying the policy file and the 
/etc/passwd file one can widen the limitations of an 
application and change its user id. If the new user id would 
be changed to 0 the application will work as a super user.  

 

5.3 Access to /dev/mem 

Modifying /dev/mem can as already mentioned give a user 
or application the ultimate control over a system. This is of 
course something that a mobile platform, with the purpose 
of protecting the integrity of the mobile operators, has to 
protect itself from. However, the only protection that ALP 
has is the access control mechanism which was already 
shown to be vulnerable in the last subsection. If an attacker 
has come as far as exploiting the possibility, he or she can 
modify the kernel memory and get full control of the 
system, by e.g, searching for and modifying the 
sys_call_table to run malicious code instead of the 
intended system functions [18]. This is of course 
unacceptable.  
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5.4 Flaws in PKCS#5 

The point of using the PKCS#5 as an authentication 
method is to turn the password into a key phrase that 
appears to be just a random sequence. In PKCS#5 v2.1, the 
recommendations are to have an iteration count of at least 
1000, a salt with the width of at least 64 bits and to use the 
PBKDF2 as its underlying encryption function. ALP is 
using the PBKDF1 as its underlying function which relies 
on hash functions that are no longer considered to be safe. 
Even though it in most cases is unlikely that a mobile will 
be the victim to an attack that possibly could break the 
authentication algorithm it makes little sense to just have 
an incomplete certification method, which the PKCS#5 in 
ALP correctly can be considered to be. 

5.5 Code Injection 

Although ALP does not support the dynamic LKM 
architectures, code injection exploits could still be in effect. 
ALP applications can be compiled and installed as shared 
object formats (*.so files). Some known variations of the 
attack exploit these files [25] and can well be used to 
attack ALP. 

6. Consideration 

In this section, some possible solutions to the problems 
mentioned together with some suggestions for 
improvement are presented. 
 
Disabling root ccess: A good thing to consider is if there 
is actually any need for a user to ever run a root, or even to 
run in a shell. Most of the mobile phones out in the market 
do not support those features. If there actually is a need for 
this the user can at least be restricted access to the 
components that the Hiker Framework consists of. The 
system at least needs to hide user's private data, so that the 
confidentiality and the privacy could be guaranteed even 
when the phone is lost. This could be fundamentally 
supported by the cryptographic file systems. 
 
Checking the integrity of the policies: The system can 
protect the integrity of the policies by calculating hash 
digests of each policy or whole policy file. Whenever a 
program needs to access the policies, the operating system 
compares the digests of them with the previous values. 
 
Restricting access to /dev/mem: Many Linux desktop 
distributions disable access to /dev/mem even for the super 
user. Those applications that need access are limited to the 
first megabyte in the memory [17], where actually 
legitimately useful data lies. Not very long ago this was 
not supported by the mainline of the kernel [7], but since a 
while back it gives the option in the source code to enable 

the preprocessor directive CONFIG_STRICT_DEVMEM 
[7]. This is something the developers of ALP should have 
considered already from the start. 
 
Changing the underlying function of PKCS#5: In order 
to strengthen the cryptographic function of PKCS#5 the 
recommendations to apply an underlying function of 
PBKDF2 should be followed since the authentication 
mechanism in ALP is not depended on any older 
application. 
 
Checking the integrity of the system: We can check the 
integrity of the ALP components by using checksums. If 
some files are modified, the new checksum of the system 
does not match the previous checksum. This process 
should be done regularly, e.g. during every system boot. 
Conveniently, checksums come together with most 
bundles when they are installed into the system and can 
hence be used for this purpose. Alternatively, a system 
program (e.g. Tripwire integrity checker) can be used, 
which saves a hash of each file to use as a reference when 
performing a regular system check. The hashes can be 
made for a component as soon as it is added to the system 
to make sure they are made from a ``safe'' component. 
This is a good method to prevent the before-mentioned 
code injection technique. 

7. Conclusion 

We presented some potential vulnerabilities of ALP 2.4 
originate in the Linux kernel and proposed countermeasure 
against them. We showed that an access control 
mechanism provides a secure environment in ALP 2.4. 
Without an access control mechanism, an attacker can 
easily compromise the security mechanism by modifying 
the policy files that are essential for ALP LSM. Next, an 
attacker can control the whole system of ALP by accessing 
the /dev/mem, which directly maps physical memory. As 
the result, an attacker can inject malicious code to other 
executables. This vulnerability can be eliminated by 
limiting shell access to mobile phones. An access control 
system that prohibits access to /dev/mem and permits 
partial access to the first megabyte of the memory is also 
beneficial; it is already used for several Linux distributions. 
Furthermore, we found a potential vulnerability in the 
authentication mechanism; its password-based key 
derivation PKCS#5 uses an obsolete function PBKDF1 
including old hash functions MD2, MD5, and SHA-1. 
PBKDF2 is recommended for new applications and 
systems. Although it may be hard for an attacker to get 
physical access to another person's phone via these 
vulnerabilities, they still can be exploited to ``hack'' his or 
her own mobile phone, for example, compromise the 
copyright protection mechanism. Thus, the elimination of 
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these vulnerabilities is essential to provide secure mobile 
services on ALP 2.4 or subsequent LiMo.  
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