
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

160

Manuscript received May 5, 2010
Manuscript revised May 20, 2010

Increasing System Fault Tolerance with Software Rejuvenation
in E-government System

Manish Pokharel† and Jong Sou Park††

Network Security Lab, Korea Aerospace University, South Korea

Summary
The main goal of E-government system is to provide the
services to its user in 24/7/365 philosophy. User expects the
entire required services from e-government system at any point
of time and location. It is always expected that the e-
government system should run without any type of
interruptions or faults. A system should have the capability
enough to tolerate the faults and operate continuously in spite
of faults and interruptions. In this paper, we try to mention the
need of fault tolerant system in e-government and also propose
architecture for fault tolerant approach in e-government system
with the concept of availability and reliability. We use design
diversity and software rejuvenation together in this paper to
increase the system fault tolerance capability.
Keywords
Availability, Reliability, Fault Tolerant, Design Diversity, E-
government

1. Introduction

Electronic government is the method of automating
governments’ activities to gain maximum efficiency and
effectiveness. Efficiency and effectiveness can be
evaluated by various ways. A system is said to be
effective and efficient only if the service is available to
the citizen on time. The services that we expect from
the system should be available any time of the year or
day. This we call as availability of the services in the
system. During the life cycle of the system, it goes into
different phases and there is a high probability of
malfunctioning or getting attacked by unauthorized users.
A good system always promises to provide the services
in spite of being attacked or component malfunctioning
and such capability of system is known as fault tolerant
capability. A system with high fault tolerance capability
is always desire in e-government system. Here, we
provide the solution to enhance the fault tolerance of a
system with a two separate designed systems and fix the
fault with software rejuvenation.
Besides, the fault tolerance, reliability and availability
are also main concerned in system. System reliability is
concerned with the quality of output that it gives, the
time taken to produce the output, the capability of system
to operate in undesired environment. The more reliability
the less chance of system failure. We always desire for

maximum reliability in the system. As per the survey
based upon the users’ perspective, reliability ranks first
on the list of customer satisfaction. [11] The cost
involved on it and the effort involved in this during
developing the system is very high especially in the case
of e-government where many efforts from many sectors
are required to build it. The country has to put huge
amount of budget to develop the system. Especially in
the case of developing countries, it is very hard to
manage huge budget and use it in a proper way. In an
average more than US$30 million is required to develop
the e-government system. This is the huge budget for any
nation and specially developing nations. In Nepal, total
estimated budget for e-government system is US$31.2
million. Unfortunately, even after investing these
amounts, it is very difficult to get the reliable system.
Country like Nepal cannot bear any fail or loss after
putting such a huge amount of budget. As per the Heek’s
survey, in total, 85% projects are failure, including total
and partial failure. [13]
In order to increase the fault tolerance in e-government
system, in this paper, we mention the present status in
Section 2 and Section 3. We propose architecture and
solution for taking care of fault tolerance in Section 4
and Section 5 and conclude it in Section 6 with the
conclusion.

2. State of Arts and Related Works

In most of e-government master plan or in project the
concept of fault tolerance is not clearly defined or
discussed. None of the document mentioned about the
recovery model and still there is a huge confusion and
big debate on it. There are many cases of system down
in e-government system especially in the developing
countries. The system does not work for a long time and
there is a very less effort to fix the fault. There are some
cases in which the system is alright but services are not
available. Sometimes, only partial services are available.
Even it is fixed; it does not run for a long time. This
gives the frustration for citizens and ultimately gives the
negative impact on e-government system. Let’s take the
example, if farmers are using land registration system for
certain period of time and if this system goes down

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

161

because of fault, the farmer would be deprived with such
facilities. The time to fix this fault would be very high.
By the time, the system gets fixed; farmers would lose
their patient and ultimately affects the goal of e-
government system. There are many such examples in e-
government system.
We try to find out the solution for handling such fault in
the master plan of e-government system of developing
countries, especially in Nepal but unfortunately we did
not find any mechanism for fault management. There is
not a single chapter in these issues. Few terminologies
like hot standby and high availability is mentioned but
the significance and use of these terminologies are not
clearly discussed. The country like Afghanistan has tried
very good effort in implementing e-government system
but they also miss such approach like fault tolerant
approach in their ICT strategy. Discussing on two
developing countries does not mean that it applies on
developing countries alone. It is not only for developing
countries, even developed countries require to give more
emphasize in these areas. After reviewing the case of
Nepal and Afghanistan, we have proposed the
architecture for solving the failure system.
There are many works done related in availability,
reliability and fault tolerant system but very less work
done in e-government system. Rene Meier and Paddy
Nixon have worked in managing fault tolerant
transparently using CORBA services. They have
suggested architecture for banking system. Aaron B.
Brown and David A. Patterson also have contributed in
the area of availability. Service Oriented Architecture
(SOA) is used in some cases to address these challenges
but it is in very immature stage. Professor Kishor Trivedi
from Duke University, USA has contributed a lot in
these domains. Professor Trivedi has demonstrated the
modeling concept of high availability systems using
Markov chain and evaluated using SHARPE software
packages. [5]

3. Proposed Solution

In this section, we propose the architecture and the
technologies that we apply on it to provide the best fault
tolerance capability in e-government system.

3.1 Proposed Architecture

Fig 1: Architecture for Reliable E-Government System

In the architecture in Figure 1, there are two systems
running together for the same purpose. System 1 is
designed separately than system 2. There are two more
components including system 1 and system 2. A
component known as watch dog is a software component
that monitors continuously to both the systems. If a
watch dog identifies the problem or if it observes some
abnormalities in any one of the two systems then it
immediately informs manager about such abnormalities.
A manager examines the defective system and repairs it
with the approach of software rejuvenation. We propose
the entire e-government system to be designed with
separate design and provide the effective services to the
citizen. In most of the cases there are many systems
which are separately designed in design diversity but in
our case, to be more cost effective and to make
economically feasible we propose only two separate
systems along with a watch dog and manager to enhance
the fault tolerance capability and increase the system’s
properties. A manager is assumed to be very smart to
rejuvenate the design defect in the system and switching
to new design.
In this paper, the failures mean software failures. The
main reason of focusing on it is system failures because
of software fault. There are many approaches in
addressing software faults like backward recovery,
forward recovery etc. After going through all these
techniques we have proposed a very popular approach
like “Design Diversity” for e-government system.

3.2 Software Rejuvenation

Software Rejuvenation is an act of preventing
unexpected error termination by terminating the program
before it suffers an error. It restarts the system with
clean state. Software rejuvenation refers to the
rejuvenation of the environment in which the software is
executing. A software system is known to suffer from
outages due to transient errors and the state of software
system degrades as time goes. [12]So there is a need of
proactive approach for managing such faults. In our
architecture, a manager takes the responsibility for doing
task of software rejuvenation. The system 1 and system 2
in Figure 1 are the software components with a set of
software applications. As the nature of the software, after
some span of time, the process corresponding to the
software slowly degrades with respect to the effective
use of their system resources. Process aging in both
systems is because of memory leaking, file and data
corruption etc. Process aging affects the performance of
the system and finally leads to fail. [14] We need
software rejuvenation approach to manage the process
aging of the both systems.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

162

3.3 Design Diversity

It is the method of providing same services through
separate design and implementation. In Design Diversity,
different teams make a different system for same purpose.
These teams develop the system independently. This is
known as Multi-version system or N-version system. The
number and the type of versions depend upon the
discretion of the developer. Multiple applications are
executed in parallel; the best result is used in the system.
This decision is made by an independent entity called
watchdog.
In e-government system, we list out the number of
services or functions that we expect from the system. As
per the nature of services, we make more than one design.
Each design has the responsibility of providing the
services. If fault occurs because of one design then the
system will switch to other design immediately without
disturbing the functionality of the system.

Fig 2: Design Diversity

In Figure 2, there are n numbers of design for some
specified set of services provided by the system. One
design module operates at one time. If this fails then it
will switch to the other design module. The other
module has the design diversity for the same services.
We can put n numbers of such design module. We have
to be very careful in designing the number of modules.

3.3.1Why Design Diversity?
The presence of software is getting increased day by day
in e-government system. It is not possible to think e-
government system without considering the
involvements of software. At one side the use of
software is increasing and other side the chances of
failure are also increasing. The more use of software is
more prone to the failure. A special effort is required to
overcome the failure with the maximum use of software.
There are some hardware components in e-government

system but the probability of failure in hardware is very
less as compare to software. The main sources of
hardware faults are component aging and environment
effects. This can be reduced with a single redundant
hardware component which is designed in such a way
that it can tolerate the hardware faults.
 In the case of software, it is different. The source of
software faults is right from requirement gathering,
specification, design and till implementation. It is very
challenging to tolerate such faults. In e-government, the
percentage of software faults is very high. The
application which is built to support the e-government
system is not made properly i.e. very less attention is
given during requirement gathering, and system
development. This is one of the reasons that why do we
need multiple version of same application in the system.
This is the philosophy of design diversity.
Redundancy and dependability are two key words in
software applications. Redundancy is the approach of
providing extra energy or capabilities and resources that
are required to find out the faults and mechanism to
tolerate it. Here we give more focus on software
redundancy which contains nothing but additional
programs, modules, components, architecture etc.
Dependability is the intensity of trusting the software. If
there is high level dependability then we can obtain high
level of trustworthy. The need of dependable software is
mandatory and there are many researches going on these
topics. The use of redundancy to improve the system
dependability is based on the assumption that if one
version fails, the remaining versions will take care of this.
[2]
The MLDD(Multi-Layered Design diversity)
architecture is based on three tier architectures, in which
design diversity is applied to every layers of application
programs.[3] Service Oriented Architecture (SOA),
which is based upon the three layers architectures as:
Client , Service Provider, and Repository, the MLDD can
be used. Service Oriented Architecture is considered as
one of the solutions for e-government systems. Fault
tolerance through design diversity has been suggested
both for achieving higher reliability. [4]Most of the time
software bug makes the problem in system development
because of its nature of spreading. The bug can move to
another domain if same logic, same code or same design
is used in another module. In the case of design diversity,
we use different design, different code and different logic
for same problem in different modules. Design diversity
can take care of this. Hence Design diversity is the
solution for reliability, availability and ultimately for
developing fault tolerant system.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

163

4. Analysis:

In order to perform the analysis, we consider the two
states diagram. One system is with manager, which is
assumed to be very smart enough to do task of software
rejuvenation, switching from one design to another and
another without manager. A system with manager
consists of design diversity where as a system without
manager does not contain the design diversity.

4.1 With Manager (Design Diversity):

We develop following state diagram based upon the
proposed architecture in Figure 1.

Fig 3: State Diagram

[1, 1]: Both designs are in upstate i.e., both designs
are active.
[X, 1]: Design I is in problem where as design II is in
upstate or active.
[M, 1]: Design I is getting recovered i.e. in recovery
state. Design II is in upstate.
[0, 1]: Design I is down, it does not provide services.
Design II is in upstate
[0, X]: Design I is down. Design II gets problem i.e. it
is in problematic state.
[0, M]: Design I is down. Design II is getting
recovered.
[0, 0]: Both designs are down. This is the failure state.

The above state transition diagram in Figure 3, has seven
states in total. These states are identified as per the
behavior of the proposed system. Each state has two
blocks. Each block represents the status of one design.
Initially both designs are in upstate. [1, 1] One of them
provides the service where as another is ready to provide
services if something wrong happens to first design.

With the fault rate 1λ it changes its state to [X, 1] where
first design encounters the problem and second one is in

upstate. With the recovery rate 2λ it moves to the state
[M, 1]. If it does not move to recovery state then it
moves to the state in which first design is fail and

another takes care with the switchover rate 3λ . Here, the
techniques of software rejuvenation are applied to
recover the fault. If the design I gets recovered then it

moves to the healthy state with repair rate 1μ .
After some time, this also may get problem with the

second fault rate 4λ . Here also approach of software
rejuvenation is applied to fix the design problems so it

moves to recovery state with rate 5λ and if not then it

moves to the total failure state with rate 6λ . If it gets
fixed, it will be in switchover state with design II up It is
assumed that the total failure can be addressed with some
manual repairing activities. It can go to the healthy state
with given repairing rate.
We use CTMC (Continuous Time Markov Model) to
model the architecture given in Figure 1. We calculate
the state probability of each state and use the balance
equation to get the final equation for Good State. We
emphasize on the probability of a system in which both
design works i.e. Good state. In our state diagram in
Figure 3, state 1, 1, is a good state. We get the following
equation for a system to be in good state.
Good
State=

()
() () ()

()
()

()
()

()
()

()

1
2 3 5 6 1 1 2 5 6 2 3 1 1 21 1 2

2 3 1 2 3 2 3 6 4 2 3 6

2 3 1 5 1 2 5 2 3 1 1 2

2 3 6 2 2 3

1
λ λ λ λ λ λλ λ λ λ λ λ λλλ λλ

λ λ μ λ λ λ λ λλ λ λ λ

λ λ λλ λλλ λ λ λ λλ
λ λ λμ λ λ μ

−
⎛ ⎞+ + − + + −
+ + + + +⎜ ⎟+ + + +⎜ ⎟
⎜ ⎟+ − + −⎜ ⎟+⎜ ⎟+ +⎝ ⎠

As per the nature of proposed architecture, we assume
the following parameters, frequencies and their
respective values given in Table 1.

Table 1: Parameters and its Values
S.N. Parameters Frequency
1 λ1 1 time in a six months
2. λ2 1 time in a day
3. µ1 1 time in an hour
4. λ4 1 time in a six months
4. λ3 1 time in a week
5. λ5 1 time in a day
6. λ6 1 time in a month
7. µ2 1 time in an hour
8. µ 1 time in a day

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

164

4.1.1 Availability:
It is a probability of a system which provides the services
in a given instant of time. In e-government system, it is
the probability of a system that makes service available
to the citizen. We calculate the steady state availability
with the following given equation.
Availability= 1- Unavailability (1)
A system does not provide the service when it is in state
[0, M] and [0, 0]. Hence the availability is given by,
Availability = 1- {[0, M][0,0]}

4.1.2 Survivability:
It is the probability of a system in which the system
survives or continuous to provide the service in spite of
attack or failure.
Survivability = Availability- Service Unavailable (2)
Survivability = Availability – [0, M]

4.1.3 Downtime:
It is a duration that the system goes down. We consider
the whole one year calculating it. Downtime can be
calculated with following equation.
Downtime= Service unavailable x L (3)
Where,
L is a one year.
We calculate the properties that make the system to
counterattack the faults. The properties such as
availability, downtime, survivability and reliability are
calculated and verifies with SHARPE.

4.1.4 Reliability:
It is the probability of a system in which the system
provides the service in a given range of time. We can
calculate the reliability from following equation.
Reliability= 1-Unreliability (4)
A system is unreliable if it is in states of service
unavailability i.e. states [0.M] and [0, 0]

4.2 Without Manager (No Design Diversity):

We also consider the case in which there is no design
diversity. It is the system in which there is no alternative
design.

Fig 4: Without Design Diversity

The Figure 4 is the state diagram of a system without
design diversity. There are four states in Figure 4. The
states, G, D, R, and F are equivalent to states [1, 1], [X,
1], [M, 1] and [0, 0] in Figure 3. Here, also we use
CTMC (Continuous Time Markov Chain) and try to find
the properties such as availability, survivability,
downtime and reliability as we did before with same
operation parameters. We also plot the graph in Figure 5
that shows the properties values with the repair rate.

5. Results:

We use above CTMC and corresponding equations to
find out the properties of the system. The Table 2 shows
the values of obtained properties.

Table 2: With Manager (Design Diversity)

S.
N

Manager
Rate(λ2
and λ5)

Avail
ability

Downti
me

Survivabil
ity

Reliabil
ity

1 1 Time
in a day

0.999
65

181
hours 0.99930 0.99965

2 2 Times
in a day

0.999
81

97.2
hours 0.99963 0.99981

3. 3 Times
in a day

0.999
87

66.3
hours 0.99974 0.99987

4. 4 Times
in a day

0.999
90

50.5
hours 0.99980 0.99990

5. 6 Times
in a day

0.999
93

33.9
hours 0.99987 0.99993

6. 8 Times
in a day

0.999
95

25.8
hours 0.99990 0.99995

7. 12 Times
in a day

0.999
96

17.1
hours 0.99993 0.99996

The values in Table 2 are obtained with the increase of
manager rate from one time in a day to 12 times in a day.
The equivalent graph is plotted in Section 5.1.

5.1 Graph:

We plot the graph of availability verses rate of
rejuvenation on design.

Fig 5: Availability, Survivability and Reliability Verses Rejuvenation

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

165

The graph in Figure 5 shows the increase in availability,
survivability and reliability as per the increase of times
of rejuvenation. We start it from 1 time in a day to 12
times in a day and find the increase trend and it can be
achieved almost five 9’s.

Table 3: Without Manager (Design Diversity)

S.
N

Repair
Rate
(λ2)

Availability
Dow
ntim

e

Surviv
ability Reliability

1 1 Time
in a day 0.99736 4250

hours
0.9947

3 0.99737

2 2 Times
in a day 0.99740 2850 0.9948

1 0.99740

3. 3 Times
in a day 0.99741 2380 0.9948

2 0.99741

4. 4 Times
in a day 0.99742 2140 0.9948

4 0.99742

5. 6 Times
in a day 0.99742 1890 0.9948

5 0.99742

6. 8 Times
in a day 0.99743 1780 0.9948

6 0.99743

7.
12

Times
in a day

0.99743 1650 0.9948
7 0.99743

The Table 3 and Figure 6 show the clear picture of
obtained data and their differences with and without
manager. The properties such as availability,
survivability, and reliability are better in with manager
rather than without manager. It means maximum
properties can be obtained with design diversity as
compare to without design diversity.

Fig 6: Comparison between with and without manager (Design

Diversity).

Fig 7: Down Time: With and without manager (Design Diversity)

The above Figure shows the differences in downtime
with and without manager. Here, also it shows the
downtime is very less with manager and whereas
downtime is very high without manager.

6. Conclusion

E-government system has become the integral part of
human civilization. People around the world are
depending more and more on it. People have a lot of
expectations from e-government system. These
expectations can be fulfilled in some extent with the
consideration of availability, reliability and fault tolerant.
We proposed a architecture that consists of design
diversity and software rejuvenation to enhance the fault
tolerance capability of a system. We identified the
differences on availability, survivability; downtime and
reliability between with and without manager and these
properties can be increased or decreased as per the
switching rate of the software rejuvenation. The
obtained results clearly showed that features such as
availability, survivability and reliability can be achieved
maximum with design diversity. The given approach is
very suitable to run and sustain the e-government system.

References
[1] Aaron B. Brown and David A. Patterson, Embracing

Failure: A Case for Recovery-Oriented Computing
(ROC), High Performance Transaction Systems
Workshop, University of California at Berkeley 2001

[2] Hawthrone Matthew J. and Perry Dewayne E. Applying
Design Diversity to Aspects of system Architectures and
Deployment configuration to Enhance System
Dependability, The University of Texas at Austin.

[3] Watanabe Aki, Takada Hiroaki, Sakamura Ken. The
Multi-Layered Design Diversity Architecture: Application
of The Design Diversity Approach to Multiple System
Layers. IEEE 1992. [4] Littlewood Bev, Popov Peter,
Strigini Lorenzo. Modeling Software Design Diversity
– A Review.ACM Computing Surveys, Vol. 33, No. 2
June 2001, 177-208.

[4] Trivedi S. Kishor, Vasirreddy Ranjith;, Modeling High
Availiability systems, Duke University, Durham, NC,
USA

[5] Trivedi S. Kishor. Probability and Statistics with
Relaibility, Queuing and Computer Science
Application, Second Edition, Wiley, 2001

[6] KIPA, Government of Nepal, e-Government Master Plan
Consulting Report, 2006

[7] Heeks, R. Implementing and Managing eGovernment,
Vistar Publication, 2006.

[8] Asian Development Bank, Proposed Asian Development
Fund Grant Nepal: Information and Communication
Technology Development Project.(Dec. 2007)

[9] Pullum Laura L. Software Fault Tolerance, Techniques
and Implementation, Artech House, 2001.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

166

[10] Zhang Miaomiao, Liu Zhiming, Ravn Anders P. Design
and Verification of a Fault-Tolerant System, UNU-IIST
Report No. 387, November 2007.

[11] Trivedi Kishor S., Vaidyanathan Kalyanaraman, Goseva-
Popstojanova Katerina., Duke University Durham, NC
USA

[12] Heeks Richard, Implementing and Managing
eGovernment., Vistar Publication 2006

[13] Huang Yennum, Kintalla Chandra, Koletiss Nick, and
Fulton N. Dubley., Software Rejuvenation: Analysis,
Module and Application, IEEE-1995

Manish Pokharel obtained his
Bachelor of Engineering in
Computer Science from Karnataka
University, India. He received his
Master of Engineering in Software
System from Birla Institute of
Technology and Science, Pilani,
India. He is currently a Ph.D.
student in Korea Aerospace
University since September 2007.

His research interests are in E-government, Enterprise
Architecture, Software Technology, Fault Tolerance and Cloud
Computing.

Jong Sou Park received the M.S.
degree in Electrical and Computer
Engineering from North Carolina
State University in 1986. And he
received his Ph.D in Computer
Engineering from The Pennsylvania
State University in 1994. From 1994
- 1996, he worked as an assistant
Professor at The Pennsylvania State
University in Computer Engineering
Department and he was president of

the KSEA Central PA, Chapter. He is currently a full professor
in Computer Engineering Department, Korea Aerospace
University. His main research interests are information security,
embedded system and hardware design. He is a member of
IEEE and IEICE and he is an executive board member of the
Korea Institute of Information Security and Cryptology and
Korea Information Assurance Society.

