
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

305

Manuscript received May 5, 2010
Manuscript revised May 20, 2010

Bulwark Against SQL Injection Attack– An Unified Approach

Prof (Dr.) Sushila Madan† and Ms Supriya Madan††

†Department of Computer Science, Lady Shri Ram College, University of Delh, India
†† Head of Department, Department of Information Technology, Vivekananda Institute of Professional Studies (Affiliated to

GGSIP University), Delhi, India

Abstract
Data security has become a topic of primary discussion for
security expert. Vulnerabilities are pervasive resulting in
exposure of organizations and firms to a wide array of risks.
Code Injection attack, a major concern for web security, occurs
when user input is either incorrectly filtered for string literal
escape characters embedded in SQL statements or when user
input is not strongly typed and thereby unexpectedly executed,
causing an error due to improper setup or coding such that the
system fails to handle or properly respond to exceptional or
unexpected data or conditions, which results in a situation
wherein user credentials can be captured by injecting exceptional
data. In spite of many tools and techniques, attacks on web
application especially through SQL Injection Attacks are at a rise.
Threat modeling is an important risk assessment and mitigation
practice that provides the capability to secure a web application.
A comprehensively designed threat model can provide a better
understanding of the risks and help determine the extent of
mitigation action. This paper aims to initiate the threat risk model
ADMIRE which is a comprehensive, structured and stepwise
approach, which would help to identify and mitigate Code
Injections attacks and shield the database lying in the database
servers, which may be unauthorizedly accessed for malafide
reasons from the web applications.
Keywords :
Security, SQL Injection, Threat modeling, Vulnerability, Web
Application

1. Application Security

Web applications coupled with the communication
technology provides an interface between the user and the
database that results in user centric information which is
very valuable and confidential. It is precisely for this
reason, that web application security has become a primary
topic of discussion for security experts, as attacks on
application layer are constantly on rise. No matter how
strong the firewall rule sets are or how diligent the
patching mechanism may be, if the web application
developers do not follow secured coding practices,
attackers will gain easy unauthorized access to systems
through port 80. One of the more common threats to web
application is the SQL Injection vulnerability. SQL
Injection derives from a software vulnerability, that allows
a malicious user to inject custom code in the server engine
by taking advantage of the unchecked assumptions the

system makes about the inputs [1]. SQL Injection attacks
are a top threat to today's internet [2]. With this kind of
attacks, a malicious user can view sensitive information,
destroy or modify protected data or even crash the entire
application [3]. These attacks have proliferated in recent
years causing severe security problems in systems and
applications. Most web applications are typically
developed in a General Purpose Language (GPL) for
example PHP, ASP, along with a Domain Specific
Language (DSL) which is used to address the needs of
specific tasks. Hence language like SQL, XML play a very
important role in the development of every modern web
application. SQL Injection vulnerability is a type of
security hole that is found in a multi-tiered application. An
attacker can trick a database server into running an
arbitrary, unauthorized, unintended SQL query by
piggybacking extra SQL elements on top of an existing,
predefined query that was intended to be executed by the
application. The web application accepts user input and
embeds this input inside an SQL query. This query is sent
to the application’s database server where it is executed.
Also by providing certain malformed input, an attacker can
manipulate the SQL query in such a way that its execution
could have unintended consequences. To check if a web
site is susceptible to SQL Injection Attack, techniques like
(a) using input variations embedded in SQL query have
number of enumerations like using ' to close string for
example string='; password circumvention for example
user=admin and password= ' or '1'='1; comment injection
for example user=admin';-- and password=’anything’;
statement concatenation for example string='; INSERT
INTO adminusers (username, password) VALUES
('hacked', 'xxx');--; (b) Another way to get almost any data
from any database driven website application is by
retrieving data from ODBC error messages. For example
one can use information from error message produced by
the MS SQL Server to get almost any data (c) Also the
observations made on the use of system stored procedures
would enable remote execution.
Almost all SQL databases and programming languages are
potentially vulnerable. MS SQL Server, Oracle, MySQL,
Postgres, DB2, MS Access, Sybase, Informix, accessed
through applications developed using Perl and CGI scripts
that access databases, ASP, JSP, PHP [4][5], XML, XSL,
XSQL, MFC, and other ODBC-based tools and APIs. The

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

306

more powerful the dialect of SQL supported by the
database, the more susceptible the database is to attack [6].
The SQL Injection Attack can be broadly classified into
two types. (a) Verbose: In this type, there is lack of error
handling which provides a detailed feedback to the
browser. It is highly prone to attack (b) Blind: In this type
of attack the input is still vulnerable to SQL Injection, but
error handling is performed to prevent ODBC errors from
being displayed on the browser.
SQL injection attacks have been shown to be lethal. SQL
injections tip copiousness of lists as a many prevalent
equates to of attacking front-end Web applications and
back-end databases to compromise data. In a "Breach
Report for 2010" released by 7Safe progressing in
February 2010, a whopping 60 percent of all breach
incidents examined involved SQL injections [7].
According to Open Web Application Security Project
report 2010 (OWASP) [8] Injection attacks are on the top.
Similarly, new published reports research of a Web
Hacking Incidents Database (WHID) shows SQL
injections as a tip conflict vector, making up 19 percent of
all confidence breaches examined by WHID [9].
According to Computer Security Institute [10] the leading
reports on security, the menace of SQL injections has
caused a major incursion into the area of cyber security
and is one of the major contributors to financial frauds.

2. Common Logical Controls To Safeguard
against SQL Injection Attacks

There are some common safe guards against SQL
Injection attack which are simple to implement but due to
ignorance and lackadaisical attitude regarding the security
measures, precautions are not adhered to during designing
and developing of web sites. SQL Injection attacks can be
used like a sledgehammer or a scalpel and they are
difficult to track down, hence security should be built into
the Software Development Life Cycle to catch
vulnerabilities as soon as possible. It has a known fact that
the longer security vulnerability is left unsolved, it takes
more efforts and are time consuming to resolve. The
following safe guards are universally recommended.

1. Validation for all inputs is a must both at client side and
server side: In security perspective, Server side validation
is mandatory, client side validation can be easily bypassed
by turning off javascript and vbscript in the browser. But
for several other benefits, client side validation should be
done along with server side.

2. Sanitize the input data : It is necessary to ensure that all
valid data is accepted, while potentially dangerous data is
rejected or sanitized. This can be difficult when valid

characters or sequences of characters also have special
meaning to the subsystem and may involve validating the
data against a grammar For example, a simple approach to
sanitising data that is displayed in a browser is to convert
“ to ", < to < , > to > .

3. Use parameterized stored procedure with embedded
parameters: This will prevent commands inserted from
user input from being executed as the logic of a query is
separated from its data. If one query is inadvertently
bypassed, that could be enough to leave the application
vulnerable. Example 1 shows a sample SQL statement that
is SQL injectable.
Example 1 Query which is vulnerable to SQL
Injection:

sSql = "SELECT LocationName FROM
Locations ";
sSql = sSql + " WHERE LocationID = " +
Request["LocationID"];
oCmd.CommandText = sSql;

The query shown in Example 2 utilizes parameterized
queries, and is safe from SQL Injection attacks.
Example 2 Query not susceptible to SQL Injection:

sSql = "SELECT * FROM Locations ";
sSql = sSql + " WHERE LocationID =
@LocationID";
oCmd.CommandText = sSql;
oCmd.Parameters.Add("@LocationID",

Request["LocationID"]);

The application will send the SQL statement to the server
without including the user’s input. Instead, a parameter-
@LocationID- is used as a placeholder for that input. In
this way, user input never becomes part of the command
that SQL executes. Any input that an attacker inserts will
be effectively negated. An error would still be generated,
but it would be a simple datatype conversion error, and not
something which an attacker could exploit.

4. Use a low privileged account to run the database :
Running an application that connects to the database using
the database's administrator account has the potential for
an attacker to perform almost limitless commands with the
database.

5. Delete system stored procedures In case the default
installation of SQL Server is running as SYSTEM, the
equivalent to Administrator Level in Windows then an
attacker could use stored procedures like
master..xp_cmdshell to perform remote execution (by
intruding strings like ‘; exec master..xp_cmdshell .’-- to
your SQL query). Therefore, delete stored procedures like

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

307

master..Xp_cmdshell, xp_startmail, xp_sendmail,
sp_makewebtask . Example 3 is an excerpt from a
USENET message, which reflects some common
misconceptions about stored procedure

Example 3 showing misconceptions about stored
procedure:

<%
strSQL = "sp_adduser '" &
Replace(Request.Form("username"),"'","'
'") & "','"
&
Replace(Request.Form("password"),"'","'
'") & "'," &
Replace(Request.Form("userlevel"),"'","
''")
%>

This was intended to show how a stored procedure can be
safely called avoiding SQL Injection. The name
'sp_adduser' is intended to represent some user - written
stored procedure rather than the system stored procedure
of the same name. There are two observations made first,
any query string that is composed with “’’’’” would
imperil the security through SQL Injection attack even if it
is calling a stored procedure. Second, closer examination
of the final parameter will reveal that it is not delimited
with single quotes. Presumably this reflects a numeric field,
where the attacker to submit a 'userlevel' that looked like
stated in Example 4

Example 4 :

1; shutdown --

…the SQL server would shut down, given appropriate
privileges. Once you're submitting arbitrary SQL, single
quotes are not needed because the 'char' function can be
used to compose strings .

The Prepared Statement restricts the way the input can
affect the execution of the statement. It is stated that batch
SQL Statement can not be converted using
PreparedStatement. The batch jobs cannot be handled
since the JDBC Prepared Statement interface does not
currently allow for multiple independent queries in the
same batch Prepared Statement.

Many solutions have been put in literature for preventing
SQL Injection Attacks. Another key preventive measure is
to use bind variables in all programmatically generated
SQL statements. One should not create a SQL string
dynamically by concatenating the SQL statement with
variable values. Bind variables prevent the use of quotes
being injected into the SQL. A bind variable is a

placeholder in a SQL command for a value that will be
supplied at runtime by the application [25]. Bind variables
can improve performance by eliminating the costly step of
reparsing an application's SQL statements [20]. Bind
variables are also valid in a LIKE clause and should be
used. % and _ characters should be directly appended to
the string as shown in Example 5 rather than concatenating
the SQL statement as stated in Example 6 .

Example 5 SQL query using LIKE and % not
susceptible to SQL Injection :

String name =
request.getParameter("name");
name =
query.append("%").append(name).append("
%");
 pstmt = conn.prepareStatement("SELECT
id FROM users WHERE name LIKE ?");
pstmt.setString (1, name);

Example 6 SQL query using Like and % susceptible to
SQL Injection:

String name =
request.getParameter("name");
conn.prepareStatement("SELECT id FROM
users WHERE name LIKE '%" + name +
"%'");

Although Prepared Statements helps in defending against
SQL Injection, there are possibilities of SQL Injection
attacks through inappropriate usage of Prepared
Statements To prevent SQL Injection a bind variable must
be used with the PreparedStatement as shown in Example
7 and Example 8

 Example 7 Bind variable with PreparedStatement :

String selectStatement = "SELECT * FROM
User WHERE userId = ? ";
PreparedStatement prepStmt =
con.prepareStatement(selectStatement);
prepStmt.setString(1, userId);
ResultSet rs = prepStmt.executeQuery();

Example 8 Bind variable with PreparedStatement
PreparedStatement pstmt =
conn.prepareStatement ("insert into EMP
(ENAME) values (?)");
String name =
request.getParameter("name");
pstmt.setString (1, name);
pstmt.execute();
pstmt.close();

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

308

The example below explains such a scenario where the
input variables are passed directly into the Prepared
Statement and thereby paving way for SQL Injection
attacks as shown in Example 9.

Example 9 PreparedStatement vulnerable to SQL
Injection :
String name =
request.getParameter("name");
PreparedStatement pstmt =
conn.prepareStatement("insert into EMP
(ENAME) values ('" + name + "')");
pstmt.execute();
pstmt.close();

6. Error Handling : Error messages are useful to an
attacker because they give additional information about the
database that might not otherwise be available. It is often
thought of as being helpful for the application to return an
error message to the user if something goes wrong so that
if the problem persists they have some useful information
to tell the technical support team. A better solution that
does not compromise security would be to display a
generic error message that simply states an error has
occurred with a unique id. The unique id means nothing to
the user, but it will be logged along with the actual error
diagnostics on the server which the technical support team
have access to.

3. Proposed Threat Risk Model ADMIRE for
Countering SQL Injection Attacks

Security threat modeling is a process of assessing and
documenting a system’s security risk. Threat modeling
enables one to understand a system’s threat profile by
examining it through the eyes of the potential foe. With
techniques such as entry point identification, privilege
boundaries and threat tree, one can identify strategies to
mitigate potential threats to the system. The threat
modeling efforts also enables the team to justify security
features within a system, or security practices for using the
system, to protect the corporate assets [11]. Threat
modeling is the process of systematically deriving the key
threats relevant to an application, in order to efficiently
identify and mitigate potential security weakness before
releasing it [12]. Threat modeling is a sound approach to
addressing software risks at the design level [13]. Threat
modeling is an essential process for secure web application
development [14][15][16][17][18]. The need for the
security necessitates the evaluation of the threat involved.
As new technologies are developing, the security
requirements and the measures to counter threats need to
be constantly reviewed [19][20].

The authors of this paper have proposed the model
ADMIRE a threat risk model which analyses risk
assessment. ADMIRE as shown in figure 1 is based on a
structured and step wise approach for countering SQL
Injection Attacks. The six steps enunciated are (i) Analyze
the security objectives (ii) Divide the application (iii)
Mark the vulnerabilities (iv) Identify the threats (v)
Rank the threat (vi) Eliminate the threat.

Figure 1: ADMIRE Threat Risk Model

The threat risk model – ADMIRE is explained in the
following steps:

Step 1 - Analyze the security objectives
Identification of security objectives is the initial point of
the threat model process and the various facets of security
like identity abuse, financial risk, and loss of reputation,
privacy intrusion, and protection of guarantees, regulations
and corporate information security policy have to be the
area of focus and goal. It is very vital to take into account
the identification of the information as an asset that needs
to be protected. In fact they represent the value the attacker
is looking for. In this case the principal asset that we want
to protect is the data stored in the database. Data protection
involves satisfying two main requirements namely the
integrity of the stored data and their confidentiality. In
addition to data the second fundamental asset that needs to
be protected is the data management service for which
availability is crucial, the database should always be able
to provide the data required by authorized users. It is very
essential that organizations implement international
security standard like ISO 27001, ISO 27002, OWASP,
PCI/DSS, NIST to minimize the security failures. The
increasing complexity of information intensive process has
led to the development of security standards addressing the
organizational aspect of IT security. These standards
which codify industry best practice are used to drive the
design and implementation of process. The compliance to
a variety of information security standards is mandated by

Mark
the vulnerability

Divide the
application

Eliminate the
threat

Rank the threat

Identify the
threats

Analyze the
security objectives

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

309

regulations and corporations need to act and implement a
proactive information security enforcement strategy.

The interest of a security standard is to prevent the security
failure and to mitigate their consequences. It has been
widely recognized that information system security
concerns the safeguarding of information system processes
and data in any form. The technical control and measures,
implements to achieve information security should be
managerially monitored, reviewed and enhanced on a
regular basis. With existing and emerging regulations in
place, there are increasing uses of security standard by the
industry to ensure that IT process and controls are
adhering to the industrial best practices. Organizations
have started the transition from being a network security
centric organizations to a more application security centric
organizations..

Step 2 - Divide the application
Divide the application by using an analysis method like
data flow diagrams, business asset, data form, process
and trust boundaries such as from the Internet to the web
tier or from the business logic to the database server, need
to be carefully analyzed. For example when investigating
the authentication module, it is necessary to understand
how data enters the module, how the module validates and
processes the data, where the data flows and how the data
is stored. It is necessary to identify the attack entry point
of the system being analyzed. The entry point identified
for the SQL injection attack is the normal web interface of
the client in order to insert some malicious code or
perform unauthorized or dangerous operation. It is very
difficult to control this point because it is not possible to
make any assumption about the client identity.

Step 3 - Mark the vulnerabilities
The next step is to mark the vulnerabilities. The
vulnerabilities are like chinks in the armor which are
exploited by the attackers. Categorizing these
vulnerabilities is the most imperative step towards
effective mitigation. To identify the Vulnerabilities the
Microsoft Threat Model STRIDE which stands for
Spoofing Identity, Tampering with data, Repudiation,
Information disclosure, Denial of service and Elevation of
privileges has been used. STRIDE is useful to reduce
attack surface area, improve design and eliminate
vulnerabilities before they are released[21][22]. The
acronym used to classify the different vulnerabilities by
taking into account their effects on the security of the
application. This model is helpful to developers and
designers to identify and resolve security issues in the
application code.

1. Spoofing :- Spoofing Identity is when other
illegal users access a computer and use the

identity authentication such as the username and
password.

Start with a single quote trick. Input something like:
hi' or 1=1
Into login, or password, or even in the URL.
Example:
 - Login: hi' or 1=1
 - Pass: hi' or 1=1

2. Tampering :- Tampering is changing without
authorization both the stored data and the data
that is transmitted through open network.

Although tampering with SELECT ... WHERE
statements can be very rewarding in many
applications, attackers often want to be able to
perform a UNION SELECT injection. Unlike WHERE
clauses manipulation, successfully performing a
UNION SELECT injection gives the attacker access
to all tables in the system, which may not be
otherwise accessible

3. Repudiation:- Repudiation is refusing some
operation. When the system has no function of
tracking illegal operation, some users would run
illegal operations, resulting in having no proof to
illustrate that an act was performed.

Attackers can have access to registry, can create a
new administrator account remotely or change them
through botnet without a track.

To change password for a specific login name
Eg EXEC sp_password ‘oldpass’,
‘newpass’,’username’

To show all the tables in the current database
Eg. EXEC sp_tables

4. Information Disclosure:- Information revealing

includes information exposed to individuals who
are authorized. For example, users can read the
documents without granting access or intruder
can read between the transmitting data in both
computers.

SQL injection is exploiting the lack of input
validation in an application (e.g. web site) to
compromise the database/server behind it. Most
programmers use the input provided by the user to
build their SQL queries. If you accept input as valid
and run it against a database system, it will be
executed as it is. Example: user gives this input in a
search field:

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

310

SQL = "SELECT * FROM Products WHERE
Name=''; drop table Orders--'"

5. Denial of Service:- The denial of services occurs
when an entity could not work well or its action
prevents others from operating legal operations.
The denial of services would lose the service to
effective users.

The application is prone to an SQL-injection
vulnerability because it fails to sufficiently sanitize
input before using it in an SQL-query. The
application is also prone to an unspecified denial-of-
service vulnerability

An Attacker can remotely launch CMD_SHELL and
can execute commands and even shutdown the
whole server resulting in Denial of
Service (DoS) attack

6. Elevation of Privilege:- In privilege escalation,

the users without the privileges get privileges.

Use a low-privileged user that can only execute
(certain) stored procedures, otherwise attacks could
be possible through query like "SELECT * FROM
sys.objects" to your server-side code, or launch
extended procedures like xp_cmdshell, or drop
object. The application user should not be sa or
db_owner. Always lock down your applications, and
only give the user the rights which are necessary.

The table 1 below shows the mapping between the
STRIDE categories and SQL Injection attacks

Table 1: Mapping STRIDE and SQL Injection

 STRIDE

SQL
Injection
Attacks

Spoofing Identity Possible
Tampering with

data
Possible

Repudiation Possible
Information
disclosure

Possible

Denial of service Possible
Elevation of
privileges

Possible

Step 4 - Identify the threats
The next step is to identify the threats in correlation to
their targets. Deploy one or more threat tree for each threat
target. In order to identify threats Microsoft suggests two
approaches for writing up threats. One is the threat graph
and the other is a structured list. Security threats are
modeled by attack trees, which describe the decision-

making process attackers would go through to compromise
the system. It is also vital to understand the level of
attackers one is defending against.

The Figure 2 shows a threat tree to identify the SQL
injection attack. A motivated attacker scrutinizes the web
applications which have database connections and hence
can be susceptible to SQL Injection attack (L0 of Figure 2).
A SQL command with malicious intend is injected through
the login page (L1 of Figure 2). The various threat entry
points for SQL Injection attacks are scrutinized (L2 of
Figure 2). The L3 of Figure 2 depicts the security
requirements and their objectives emanating from L2.

Figure 2: Threat tree for SQL Injection Attack

Step 5 - Rank the threat
Use a threat ranking method to determine the security risk
for each threat tree. Once values are assigned to the
different threats, order them for highest to lowest risk so as
to enable to deal with them in a prioritized way. The
threats must be rated on the basis of the risk exposure they
present to the application architecture. A very popular
rating system used for threat analysis is Microsoft’s
DREAD methodology. The acronym is formed from
Damage Potential, Reproducibility, Exploitability,
Affected Users and Discoverability. DREAD can be used
by reviewers to rank and enumerate threats in a structured
way and produce similar risk ranking regardless of
reviewers [23]. The DREAD algorithm shown below is
used to compute the total risk value, which is an average
of the risk ranking from the five categories.

Attacker may be able to access data from the database

Software system susceptible to SQL injection attack

Data
validation
may fail

Error
message
revealing
vital data

uses of
over
privileged
account to
connect to
the
database

database
server runs
operating
system
commands

Saniti
ze
data

Imple
ment
data
valid
ation

Use
generic
error
messag
es

Give low
privileged
account to
client

System
commands like
xp_cmdshell
should not be
allowed

L
1

L
2

L
3

L
0

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

311

Rank_DREAD = (Ranking from Damage + Ranking from
Reproducibility + Ranking from Exploitability + Ranking
from Affected Users + Ranking from Discoverability
Damage) / 5.
The calculation always produces a number between 0 and
10, the higher the number, the more serious the risk. Table
2 shows how SQL injection quantifies in the DREAD
categories.

Table 2: SQL Injection attack quantified by DREAD

D
R

E
A

D

C
at

eg
or

ie
s

D
es

cr
ip

tio
n

Ran
k

Consequence of
SQL Injection
attack

SQL
Injection
Quantify

D
am

ag
e

Po
te

nt
ia

l

If
 a

 th
re

at
 e

xp
lo

it
oc

cu
r,

ho
w

m

uc
h

da
m

ag
e

w
ill

 b
e

ca
us

ed
?

0
Nothing

 5
 or
 10

5

Individual user
data is
compromised or
affected

9
 --

10 Complete system
or data destruction

R
ep

ro
du

ci
bi

lit
y

H
ow

 e
as

y
is

 it
 to

 re
pr

od
uc

e
th

e
th

re
at

ex

pl
oi

t?

0

Very hard or
impossible, even
for administrators
of the application

 10

5

One or two steps
required, may
need to be an
authorized user

9 --

10

Just a web browser
and the address
bar is sufficient,
without
authentication

E
xp

lo
ita

bi
lit

y

W
ha

t i
s n

ee
de

d
to

 e
xp

lo
it

th
is

 th
re

at
 ?

0

Advance
programming and
networking
knowledge with
custom or advance
attack tools

 10

5

Botnets on the
internet or an
exploit performed
using available
attack tools

9 --
10 Just a web browser

A
ff

ec
te

d
U

se
r

H
ow

 m
an

y
us

er
s

w
ill

 b
e

af
fe

ct
ed

 ?
 0 None

 5
 or
 10

5 Some user but not
all

9

10

All user

D
is

co
ve

ra
bi

li
ty

H
ow

 e
as

y
is

 it

to
 d

is
co

ve
r

th
is

 th
re

at
?

0

Very hard, requires
source code,
administrative
rights

 9 Can figure it out

5 by guessing or
monitoring
network traces

9

Details of fault
like this already in
the public domain
and can be easily
discovered using
search engine

10

The information is
visible in the web

Rigorous analysis of security requirements should be
considered to detect security design flaws and corrective
measures should be taken prior to costly development and
deployment of flawed system. From Table 3 it is apparent
that the risk derived from SQL Injection is ranked from
high to very high. The business can prioritize actions on
the basis of the assigned risk rating.

Table 3: Risk calculated using DREAD

D

R

E

A

D

Risk
Avg

Remark

Max.
SQL
Injection
Risk
quantify

10

10

10

10

9

(10+10
+
10+
10+
 9) / 5
= 9.8

Very
High
Ranking

Min.
SQL
Injection
Risk
quantify

5

10

10

5

9

(5+
10+
10+
5+
9) / 5 =
 7.8

High
Ranking

The obvious benefit is the identification of previously
unrecognized threats. But, even for previously considered
threats, the mitigation action plans often do not correspond
to the threat’s risk level. The advantage of using the threat
model is to apply or not to apply the appropriate mitigation
corresponding to the risk level.

Step 6 - Eliminate the threat
After quantifying the risk, the team develops the risk
response to the specific threat. Threats with low associated
risk can be accepted. Moderate to high risk threats can be
reduced through mitigation actions. Very high risk threats
can be reduced through mitigation actions or avoided or
options to transfer those risks might be sought. In order to
eliminate risk it is necessary to ensure that the organization
follows secured coding practices. It is also important that
in order to mitigate SQL injection attack all preventive
measures as stated in sub categories of L3 of figure2
should be taken in to consideration. Hence the Defense in
Depth Approach should be incorporated to ensure the web
application is impregnable to SQL injection attacks. It is

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

312

further essential to repeat the sequential steps from step 3
of ADMIRE model in order to ensure that no further
vulnerability exists.
Threat modeling is a continuous process. The threat
scenario is dynamic. Continuous feedback to the threat
modeling mechanisms from the systems of their
interaction with the outside environment, latest technology
updates and process reengineering are crucial for the
successful implementation of a threat modeling system.
Threat model ADMIRE will give the developers a better
understanding of the application and help to discover bugs.
It is a proactive security based analysis of an application
and a crucial part of the design process.

4. Conclusion

Unless a web application has strong, centralized
mechanism for validating all input from HTTP requests,
vulnerabilities based on malicious inputs are very likely to
exist. Securing computer systems should be a very
important part of system design, development and
deployment. The difficult part of building software is the
specification, design and testing of this conceptual
construct, not the implementation and testing of the
implementation. Syntax errors will be made, but they are
fuzz compared to the conceptual errors in most systems.
Software flaws are caused because complexity makes
software entities hard to design and to manage their
development, and increasing complexity makes errors
more probable. New software functions result in side
effects that are difficult to predict, increasing the
complexity rapidly as the software size grows. Software
cannot be simplified by redesign because it has to conform
with old programs which add to complexity. Software is
subject to pressures for change all the time. Constant
introduction of new features augment the pool of
vulnerabilities.
A single unprotected query statement can result in
compromising the security of the application, data or
database server. Developers must be disciplined enough to
apply the security methods to every web accessible
procedure and function. Every dynamic query must be
protected. It is apparent that safeguarding of security is
becoming more difficult because the possible attack
technologies are becoming increasingly sophisticated.
Software rooted vulnerabilities like SQL Injections can be
prevented, if the developers seriously incorporate the rule
of validation while developing web applications. In spite
the fact that the concept of validation is deep rooted and
widely covered in almost all the International standards
guidelines yet attacks are at a rise due to SQL Injection
vulnerabilities. There is an urgent need to make the
developers and users aware about the security standards
and to encourage them to implement the standards

meticulously, so as to minimize such attacks. It is also
imperative to make these standards easily available, so that,
their usage percolates down even to smaller organizations.

References
[1] Barrantes E, Ackley D, Forrest S, Palmer T, Stefanovic D

and Zovi D, Randomized instruction set emulation to
disrupt binary code injection attacks in CCS 2003”,
Proceedings of the 10th ACM Conference on Computer and
Communication Security, pp281-289

[2] Xuxian Jiang; Wang, H.J.; Dongyan Xu; Yi-Min Wang;
RandSys: Thwarting Code Injection Attacks with System
Service Interface Randomization; Reliable Distributed
Systems, 2007. SRDS 2007. 26th IEEE International
Symposium on 10-12 Oct. 2007 Page(s):209 – 218

[3] Anley C, Advance SQL Injection in SQL Server
Applications, Next Generation Security Software Ltd.

[4] Merlo, E.; Letarte, D.; Antoniol, G; Insider and Ousider
Threat-Sensitive SQL Injection Vulnerability Analysis in
PHP, IEEE WCRE 2006 13th Working Conference on Oct.
2006 Page(s):147 – 156

[5] Merlo, Ettore; Letarte, Dominic; Antoniol, Giuliano;
Automated Protection of PHP Applications Against SQL-
injection Attacks, IEEE CSMR 07 ; 11th European
Conference on 21-23 March 2007 Page(s):191 – 202

[6] Expert Oracle Database Architecture: 9i and 10g
Programming Techniques and Solutions (Apress, 2005)

[7] www.7safe.com/breach_report/Breach_report_2010.pdf
[8] www.owasp.org/index.asp
[9] http://www.acunetix.com/news/security-audit-results.htm
[10] CSI - www.gocsi.com/forms/csi_survey.html
[11] Frank Swiderski, Window Snyder,” Threat Modeling

(Microsoft Professional)”, Microsoft Press 2004
[12] Howard and LeBlanc,” Writing secure Code”, Second

edition
[13] Hoglund G and McGraw G , “Exploiting software: How to

break code”, Addison-Wesley Professional
[14] Zhimin Yang, Zenggung Zhang, “The Study on Resolution

of STRIDE Threat Model”, IEEE Conference
[15] Micheal Howard, James A.Whittaker, “Demystifying the

Threat Modeling Process”, IEEE Computer Society
[16] Xiaohong Li, Ke He, “A Unified Threat Model For

Assessing Threat in Web Applications, 2008 International
Conference on Security and Assurance, IEEE

[17] Linzhang Wang, Eric Wong,” The Threat Model Driven
Approach for Security Testing”,Third Internation Workshop
on Software Engineering for Secure System
(SESS’07”),IEEE

[18] Jesper M.Johansson, “Network Threat Modeling”, Twelfth
IEEE International Workshops on Enabling Technologies
(WETICE ’03)

[19] Nazir A. Malik , Muhammad Younus Javad, Umar Mahmud,
“Threat Modeling in Pervasive Computing Paradigm”,ESR
Groups France, IEEE

[20] Bruni Romero, Marianella Villegas, Marina Meze, “Simon’s
Intelligence Phase for Security Risk Assessment in Web
Application”, Fifth International Conference on Information
Technology:New Generation, IEEE

[21] Visveswaran Chidambaram, “Threat Modeling in Enterprise
Architecture Integration”, EA & BC Vil 2 No 4, December
04

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.5, May 2010

313

[22] Threat Modeling, Pattern and Practices, MSDN Microsoft
Corporation

[23] Threats and Counter measures, Web Security Threats and
Countermeasures, Patterns and Practices MSDN, Microsoft
Corporation.

