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Summary 
Grid components are constructed using internet as the 
backbone. Grid applications involve communication over 
these insecure open networks, thus security becomes an 
important requirement. The basic security while the VGs 
interact can be established only through secure and 
efficient group key management approaches. Centralized 
key management methods (key distribution) are apt for 
two-party (e.g., client-server or peer-to-peer) 
communication as well as for large multicast groups like 
the grid. However, many collaborative group settings (e.g., 
conferencing, white-boards, shared instruments, and 
command and-control systems and the VGs) require 
distributed key management techniques. 
Key words: 
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1. Introduction 

1.1 Group Management Issues in Grid Ambience 

The majority of protocols now available are mainly 
concerned with increasing the security while decreasing 
cryptographic computation costs. It has been long held as 
an unassailable fact that heavy weight computation such as 
large number arithmetic that forms the basis of many 
modern cryptographic algorithms which is the greatest 
burden imposed by security protocols. However, the 
continuing increase in computation power in the grid 
which uses modern workstations speeds up the 
heavyweight cryptographic operations and also the grid 
computations. For example, four years ago, a top-of-the-
line RISC workstation performed a 512 bit modular 
exponentiation in around 24 ms. Four years later, an 850 
MHz pentium III PC (priced at 1/5-th of the old RISC 
workstation) performs the same operation in less than 1 
ms. In contrast; communication latency has not 
improved appreciably. The communication (especially via 
the Internet) has become both accessible and affordable 
which resulted in drastic increase in the demand for 
network bandwidth. While computation power and 
bandwidth are increasing, network delay has the lower 

bound dictated by the speed of light. More concretely, 
collaborative work groups like the VGs where the 
membersare dispersed across continents would expect 
considerable communication latency and thus benefit from 
protocols that minimize communication rounds. In this 
chapter a ground-breaking technique for group key 
agreement for the VGs and sub-VGs which is 
communication efficient is detailed. 

1.2 Key Operations in VGS and Sub-VGS 

1.2.1 VG Membership Operations 

As the VGs and Sub-VGs constantly interact with the 
three primary components of the grid which are the users, 
providers and the brokers, in the internet, this calls for an 
approach which provides secured means of 
communication. Individual nodes and cluster of nodes can 
converse in this network. The reliability thus is a question 
and has to be resolved. As the previous chapters details the 
various operations of a node like joining a VG and leaving 
a VG dynamically which is not an unusual scenario in the 
grid ambience, a comprehensive approach that handles the 
group key agreement subsequent to these VG and Sub-VG 
membership changes is required in this underlying group 
communication system. The following VG membership 
changes are considered: 
1. Single member operations which include member join 
and leave the VG 
2. Multiple member operations which include group merge 
and group partition in VG 
Join occurs when a prospective member joins a virtual 
group. Leave occurs when a member leaves a virtual 
group. Partition occurs when a virtual group (VG) is split 
into smaller sub virtual groups(sub VGs). A partition in a 
VG can take place for several reasons, two of which are 
quite common: 
1) Network failure which occurs when a network event 
causes disconnection within the group. Consequently, a 
group is split into fragments some of which are singletons 
while others (those that maintain mutual connectivity) are 
sub-groups. 
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2) Explicit (application-driven) partition which occurs 
when the application decides to split the group or simply 
exclude multiple members at once. 
Merge occurs when two or more groups merge to form a 
single group (a group merge may be voluntary or 
involuntary): 
1) Network fault heal occurs when a network event causes 
previously disconnected network partitions to reconnect. 
2) Explicit (application-driven) merge occurs when the 
application decides to merge multiple pre-existing groups 
into a single 
group. 
In practice, however, such events are common owing to 
network configuration and router failures. 
Undeniable arguments in support of these claims are 
available (Moser et al, 1994). Hence, dealing with 
partitions and merging in 
virtual groups is a vital component of group key 
agreement. 

1.2.2. Cryptographic Attributes in a VG 

The desired properties for a secure virtual group key 
agreement protocol for special networking ambience 
like the grid (Kim et al, 2000) are as follows. 
• Virtual Group Key Secrecy guarantees that it is 
computationally infeasible for a passive adversary to 
discover any 
virtual group key. 
• Forward Secrecy guarantees that a passive adversary 
who knows a contiguous subset of virtual group keys 
cannot 
discover subsequent virtual group keys. 
• Backward Secrecy guarantees that a passive adversary 
who knows a contiguous subset of group keys cannot 
discover preceding virtual group keys. 
• Key Independence guarantees that a passive adversary 
who knows any proper sub-VG keys cannot discover any 
other VG key not included in the subset. Backward and 
Forward Secrecy attributes assume that the adversary is a 
current or a former Virtual Group member. The other 
attributes additionally include the cases of unintentionally 
leaked or otherwise compromised Virtual Group keys. 

2. Protocol Variants for VG Key Agreement 

2.1 Skinny Tree Protocol (STRP) 

The existing skinny tree (STR) protocol uses Diffie-
Hellman key exchange technique with imbalanced key 
tree. The degree of communication efficiency is higher 
when compared to Centralized Key Distribution Protocol, 
Burmester-Desmedt Protocol, Group Diffie-Hellman 

Protocol, Skinny Tree Protocol. The security of the Diffie-
Hellman key exchange lies in the fact that, while it is 
relatively easy to calculate exponentials modulo a prime, it 
is very difficult to calculate discrete logarithms. For large 
primes, the latter computational task is considered 
infeasible. The downside is that it is computational 
intensive as it involves exponentials. This may not be 
feasible to apply in the VG communications as grid 
computations are also intensive and becomes more 
rigorous when accomplished with the above mentioned 
discrete logarithmic computations. Hence an approach for 
enabling secured VG communication through an efficient 
key agreement is required. This is possible by Elliptic 
Curve Crypto Systems(ECCS) which is detailed in the 
next sub chapter. 

 

3. Elliptic Curve Cryptosystems 

Elliptic Curve Cryptosystems (ECC) were proposed 
independently in 1985 by Victor Miller and Neal Koblitz. 
At the time, both Miller and Koblitz regarded the concept 
of ECC as mathematically elegant; however felt that its 
implementation would be impractical. Since 1985, ECC 
has received intense scrutiny from cryptographers, 
mathematicians, and computer scientists around the world. 
These advantages are particularly beneficial in 
applications where bandwidth, processing capacity, power 
availability or storage is constrained like the Grid projects. 

3.1 Enhanced VG Key Agreement Approach 

The group key agreement helps for secure group 
communication over insecure open networks, by 
establishing a unique group key to communicate. 
The key setup latency is influenced by communication 
rounds and cryptographic rounds. However continuous 
advancements in computation power where not matched 
with decrease in communication delay. Even though 
computation power and bandwidth are increasing, network 
delay still has the lower bound dictated by the speed of 
light. Hence an efficient protocol that reduces the 
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communication rounds could benefit the collaborative 
computing society. 

3.2. Rudiments and Assumptions of the Approach 

The approach which is detailed here uses an imbalanced 
tree coupled with Elliptic curve Diffie-Hellman key 
exchange (ECDH). Here two-party ECDH is extended for 
a Virtual Group. This tree has two types of nodes: leaf and 
parent as explained in the previous chapter. Each leaf node 
is associated with a specific Virtual Group. An internal 
node IN<i> always has two children: another (lower) 
internal node IN<i-1> and a leaf node LN<i>. The 
exception is IN<i> which is also a leaf node corresponding 
to M1. (Note that consequently, r1=k1.)  

3.2.1 Basic Key Agreement Protocol 

A few assumptions that are made before proceeding are 
detailed below. All members know the structure of the key 
tree and their initial position within the tree at any instant 
of time as the number of VGs are known at any instant 
period of time. Furthermore, each node in the VG knows 
its session chance and the blinded session chance of all 
other VGs or sub-VGs. The two members M1 and M2 can 
first compute the Virtual group key corresponding to 
IN<2>. Key exchange using elliptic curves in the Virtual 
Groups can be done in the following manner: 
1. Pick a large integer q, which is either a prime number p 
or an integer of the form 2m and elliptic curve parameters 
a, b for equation of the form, y2 mod p = (x3+ax+b) mod 
p. This defines the elliptic group of points Eq (a, b). 
2. Pick a base point G=(x1, y1) in Ep (a, b).) whose order 
is very large n. 
3. A key exchange between Virtual Groups VG-A and 
VG-B can be accomplished as follows: 
a. VG-A selects an integer less than n .This is VG-A’s 
private key. VG-A then generates a public key PA =n A * 
G; the public key is a point in Eq (a,b). 
b. VG-B similarly selects a private key n B and computes 
a public key PB. 
c. Both the VGs exchange their public keys. 
d. VG-A generates the secret key K = n A * PB and VG-B 
also generates the secret key K = n B * PA. 
For elliptic curve cryptography, an operation over elliptic 
curves, called addition, is used. Multiplication is defined 
by repeated addition. For example, a * k = ( a + a + 
…………+ a) [ k times] where the addition is performed 
over an Elliptic curve. 
The addition operation is as follows: 
If P=(x p , y p) and Q=(x Q , y Q) with P _ –Q , then 
R=P+Q=(x R , y R) is determined by the following rules: 
x R =(_2 – x p – x Q) mod p. y R =(_ (x p – x Q) – y p) 
mod p. where _ = ((y Q-y p)/(x Q -y p)) mod p if P _ Q. _ 
= ((3x2 p +a)/(2y p)) mod p if P = Q. 

Note that the secret key is pair of numbers. If this key is to 
be used as a session key for conventional encryption 
between the VGs, then a single number must be generated. 
x coordinates or some simple function of the x coordinates 
could be used. Finally the bkeys for the above secret key 
K by using same formula as used in public key calculation 
such as bki = (K * G ) mod p is calculated. If any member 
joins this Virtual Group, then by exchanging their public 
keys the new node and the group can calculate the key for 
that Virtual Group. The secret key Ki (i>1) is a result of an 
ECDH key exchange between the nodes of the VG (K1 is 
an exception which is equal to r1) which can be computed 
recursively as follows. Ki=(bki-1)*ri mod p = (bri) * Ki-1 
mod p if i>1 , bri=(ri*G)3. The root (group) key is never 
used directly for the purposes of encryption, 
authentication or integrity. Instead, such special-purpose 
sub-keys are derived from the root key, e.g., by applying a 
cryptographically secure hash function to the root key. All 
bkeys are assumed to be public. 
The key tree is shown in figure 5. The two members M1 
and M2 can first compute the group key corresponding to 
IN<2>. M1 computes: k2=(br2)* r1 mod p=(r1*r2*G) 
mod p; bk2= (k2*G) mod p 
k3 = (br3)*k2 mod p; bk3 = (k3*G) mod p 
. 
. 
kn = (brn)*kn-1 mod p 
Next, M1 broadcasts all bkeys bki with 1 < i < N - 1. 
Armed with this message, every member then computes 
kn as follows. (As mentioned above, members M1 and M2 
derive the group key without additional broadcasts.) Any 
Mi (with i > 2) knows its session random ri and bki-1 from 
the broadcast message. Hence, it can derive ki = (bk i-1)* 
ri. It can then compute all remaining keys recursively up to 
the group key from the public blinded session random 
keys : (bri )* ki-1 mod p i<=n The protocols that make up 
the proposed virtual group key management suite: join, 
leave, merge and partition share a common framework 
with the following features: 
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Each Virtual Group member contributes an equal share to 
the Virtual Group key; this share is kept secret by each 
Virtual Group member. The Virtual Group key is 
computed as a function of all current Virtual Group 
members’ shares.  As the Virtual Group grows, new 
members’ shares are factored into the Virtual Group key 
while the remaining members’ shares (except for sponsor 
who changes its session random to provide key 
independence) stay unchanged. As the Virtual Group 
shrinks, departing members’ shares are removed from the 
Virtual Group key and at least one remaining member 
changes its share. In a join or a merge, sponsor is 
associated with the topmost leaf node of each key tree.  In 
a leave or a partition, sponsor is located immediately 
below the deepest leaving node. 

3.2.2. Join 

In a virtual group having n nodes {M1, M2,…, Mn), the 
group communication system announces the arrival of a 
new member. Both the new member and the prior virtual 
group members receive this notification simultaneously. 
The new member Mn+1 broadcast a join request message 
that contains its own bkey bkn+1 (which is same as its 
session random br n+1). Upon receiving this message, the 
current virtual group’s sponsor Mn refreshes its session 
random, computes brn,kn,bkn, and sends the current tree 
BT<n> to M n+1 with all bkeys. Next, each member Mi 
increments n and creates a new root key node IN<n> with 
two children: the root node IN<n-1> of the prior tree Ti on 
the left and the new leaf node LN<n> corresponding to the 
new member on the right. Note that every member can 
compute the virtual group key since: All existing members 
only need the new member’s blinded session random. The 
new member needs the blinded virtual group key of the 
prior virtual group. In a ‘join’ operation, the sponsor is 
always the top most leaf node, i.e., the most recent 
member in the current virtual group. Figure 5.6 shows an 
example of a new member Ms joining a virtual group. To 
provide forward secrecy, the sponsor M4 updates its 
session random r4. And as described ‘join’ takes two 
communication rounds and five cryptographic operations 

to compute the new virtual group key (four by the sponsor 
and two by everyone else). In a virtual group of n 
members when a member Md (d _ n) leaves the group and 
if d>1, the sponsor Ms is the leaf node and directly a 
member, i.e., Md-1. Otherwise, the sponsor is M2. Upon 
hearing about the leave event from the group 
communication system, each remaining member updates 
its key tree by deleting the nodes LN<d> corresponding to 
Md and its parent node IN<d>. The nodes above the 
leaving node are also renumbered. The former sibling 
IN<d-1> of Md is promoted to replace (former) Md’s 
parent. The sponsor Ms selects a new secret session 
random, computes all keys (and bkeys) just below the root 
node, and broadcasts BT<s> to the group. This 
information allows all members (including the sponsor) to 
recomputed the new virtual group key. Figure.3.3 
describes the Leave protocol. 
Figure 5.7 show that if M4 leaves the virtual group, other 
members delete the leaving node along with its parent. 
Then, the sponsor M3 refreshes session r3, computes br3’, 
k3’, bk3’, and broadcasts the updated tree BT<4>. Upon 
receiving the broadcast, all members (including M3) 
compute the virtual group key K4. Note that M4 cannot 
compute the virtual group key (even though it knows all 
bkeys) since its session random is no longer part thereof. 
The leave protocol takes one communication round and 
involves a single broadcast. The cryptographic cost varies 
depending upon two factors: 
1) The position of the departed member in a VG 
2) The position of the remaining needing to compute the 
new key. 
The total number of serial cryptographic operations in the 
leave protocol can be expressed as: 
2(n-d) +1+ (n-d) +1=3n-3d+2 when d>2 3n-7 when d=1, 2 
In the worst case, M1, M2 or M3 leaves the virtual group. 
The cost for this leave operation is equal to 3n-7. The 
expected leave cost is 3(n/2) +2. 

 
Figure 6: Tree updation in Join 
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3.2.3 Leave 

The Leave protocol provides forward secrecy since a 
former member cannot compute the new key owing to the 
sponsor’s changing the session random. 

3.2.4 Partition 

A network fault (or severe congestion) can cause a 
partition of the virtual group. To the remaining members, 
this actually appears as a concurrent leave of multiple 
nodes. With a minor modification, the ‘Leave’ protocol 
can handle multiple nodes leaving the VG in a single 
round. The only difference is in sponsor selection. In case 
of a partition, the sponsor is the leaf node direct below the 
lowest-numbered leaving member. (If M1 is the lowest-
leaving member the sponsor is the lowestnumbered 
surviving member.) After deleting all leaving nodes, the 
sponsor Ms refreshes its session random (key share), 
computes keys and bkeys going up the tree as in the plain 
leave protocol. It then broadcasts the updated key tree 
BT<s> containing only blinded values. Each member 
(including Ms) can now compute the group key. Figure 
5.8 shows an example where the sponsor deletes all nodes 
of leaving members and computes all necessary keys and 
bkeys in the first round. In this example, M1 
is the sponsor since M2 left the virtual group. After 
picking a new session random r1 the sponsor computes K2 
and bk2, and broadcasts the whole tree. Upon receiving 
this message, every member can compute the new virtual 
group key k3. Note that session random and blinded 
session random are renumbered as in the leave protocol. 
The computation and communication complexity of this 
protocol is identical to that of the leave protocol. The same 
holds for its security properties. 

In Merge protocol, as in the join case, the communication 
system simultaneously notifies all virtual group nodes (in 
all groups) about the merge event. Moreover, reliable 
virtual group communication toolkits typically include a 
list of all members that are about to merge in the merge 
notification. More specifically, it requires that each 

member be able to distinguish the virtual group it was in 
from the virtual group that it is merging with. It is natural 
to graft the smaller tree atop the larger tree. If any two 
trees are of the same height, then unambiguous ordering is 
used. When merging two trees, the lowest-numbered leaf 
of the smaller tree becomes the right child of a new 
intermediate node. The left child of the new intermediate 
node becomes the root of the larger tree. Using this 
technique recursively, multiple k-ary trees are merged as 
shown in Figure 5.9.In the first round of the merge 
protocol, all sponsors (members associated with topmost 
leaf node in each tree) exchange their respective key trees 
containing all blinded session random. The highest-
numbered member of the largest tree becomes the sponsor 
of the second round in the merge protocol. After 
refreshing the session random, this sponsor computes 
every (key, bkey) pair up to the intermediate node just 
below the root node using the blinded session random of 
the other virtual 
group members. The sponsor then broadcasts the key tree 
with the bkeys and blinded session random to the other 
members. All members now have the complete set of 
bkeys, which allows them to compute the new virtual 
group key.r1/k1   , 

 3.2.5 Merge 

Figure 5.9 shows an example of merging two trees. After 
the merge notification, the sponsors M4 and M7 broadcast 
their key trees containing all blinded session random. 
Upon receiving these broadcast messages, every member 
in both virtual groups reconstructs the key tree. The 
smaller tree with three members is placed on top of large 
tree with four members. Every member generates a new 
intermediate node IN<5> and makes it the parent of the 
old root node IN<4>of the larger tree and the previous 
leftmost leaf node LN<5>. Both intermediate nodes 
‘IN<1>’ and ‘IN<2>’ of the previous smaller tree has then 
need to be renumbered as IN<6>and IN<7> respectively. 
The new intermediate node IN<5> also becomes the child 
of the previous lowest intermediate node IN<6>. Using the 
previous blinded group key at IN<4> of the larger group 
and blinded session random br5 and br6, the sponsor 
in the second round, M4, computes all intermediate keys 
and bkeys (k4; bk4; k5; bk5; k6; bk6) except the root node. 
Finally, it broadcasts BT<4> that contains all bkeys and 
blinded session random keys up to IN<6>. Upon receipt of 
the broadcast, every member can compute the virtual 
group key. In summary, the merge protocol runs in two 
communication rounds. 
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4. Modules 

There are four main modules for accomplishing secure 
communication for VG’s interaction. The descriptions of 
each of the modules are detailed in the following sub-
chapters. 

4.1. JOIN 

This module is responsible for generating a new virtual 
group key whenever a new member joins the virtual group. 
Procedure: Step 1: The new member or node broadcasts 
request for join Step 2: Every member • Updates key tree 
by adding new member node and new root node,  
• Removes bkn, The sponsor Mn additionally 
• Generates new share rn and computes brn, kn, bkn 
• Broadcasts updated tree BT<n>. 
Step 3: Every member computes the virtual group key 
Kn+1 using BT<n>. 

 
 

4.2 Leave 

This module generates a new virtual group key removing 
the leaving member’s node from the VG. 
Procedure: Step1: Leaving member sends leave 
notification to the virtual group. Step2: Every member 

updates key tree by removing the leaving member’s node 
and renumbering the nodes above it. The sponsor Mn 
additionally,  Generates new share rn and computes all 
keys and bkeys up to the last member.  Broadcasts the 
updated key tree BT<s>to all its members.Step 3: Every 
member generates new virtual group key using BT<s>. 

4.3 MERGE 

This module generates new virtual group key whenever 
two virtual groups merge in to a single virtual group. 
Procedure: Step 1: Each sponsor Msi in Tsi for i _ [1,k] 
Broadcasts tree BT<si> Step 2: Every Member 
Updates key tree by merging all trees, Removes all keys 
and bkeys from the sponsor node, The sponsor Ms 
(additionally) , Generates new share rs and computes brs. 
• Computes all keys and bkeys from its parent to the node 
just below root, Broadcasts updated tree BT<s> . 
Step 3: Every member computes the virtual group key 
using BT<s> . 
 

4.4 PARTITION 

This module generates a new virtual group key by 
identifying the subsequent leave of multiple members. 
Procedure: 
Step 1: In a virtual group of members leaving 
subsequently identify the lowest leaving member. The 
member below 
him is the sponsor if i>1, else it is the least surviving 
member. 
Step2: Every surviving member updates key tree by 
removing the leaving members’ nodes and renumbering 
the 
nodes. 
The sponsor Mn additionally, Generates new share rn and 
computes all keys and bkeys up to the last member and 
broadcasts the updated key tree BT<s>to all its members. 
Step 3: Every member generates new virtual group key 
using BT<s> 

5. Experimentation and Outcome 

This section details the working environment of the 
approach that can be applied in the VGs. It also describes 
some details about various classes used for this technique. 
The programming language used to implement and study 
this process is Java. The codes were developed using 
JBuilder. The operating system in which this 
implementation was carried out is Windows XP. And the 
back end used was Oracle 8i. The hardware environment 
is the same which is explained in chapter 3. 
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5.1 Protocol Pseudo code 

A simplified version of the code in the pseudo form is 
listed below for the experimentation. The key operations 
like key generation, join, leave and merge in the VGs are 
the primarily focused. This pseudo code is extended to a 
java project to further exemplify. 
VGs/sub-VGs receive message (message type = 
membership event) 
Construct new tree 
While there are missing bkeys { 
If ((Member computes missing keys and member is the 
sponsor) || (sponsor computed a key)) 
While (true) { 
Compute missing (key, bkey) pairs 
If (Member cannot compute) 
Break 
End if 
If (Members require information) 
Broadcast new bkeys 
End if 
End if 
Receive message 
If (message type = membership event) 
Construct new tree 
End if 
End while } } 
Various classes and methods were declared and defined 
for the experimentation and the descriptions are detailed 
below. 
The different classes used are Join, JoinKeyGen, 
GroupChat, LeaveKeyGen, Merge, and EllipticCurve. 

5.1.1 Join Class 

Join class uses the the following methods; 
_ Firstuser() 
_ Nextuser() 
This class uses the Firstuser() method to check whether 
the user joined is first user or not. If the user is the first 
user in 

initiating the group, the user is allowed to wait for 
connection. For other than first user Nextuser() method is 
called. The Nextuser() method then gets the new members 
random key and computes new set of group keys after the 
sponsor refreshes the session random key by invoking the 
JoinKeyGen class. 

5.1.2 JoinKeyGen Class 

JoinKeyGen class as the name states, is used for key 
generation in a VG. For implementing this, JoinKeyGen 
class uses the methods listed below; 
_ keyGen() 
_ sendUpdate() 
The keyGen() method is used to generate new set of group 
keys after every join membership operation in a VG or its 
sub-VG. It uses sendUpdate() method to transmit the 
updated key to the new and existing users. 

5.1.3 GroupChat 

GroupChat class is used to exemplify VG interactions and 
the methods used are chat(), sponsor(), run() and 
partition(). The chat() method is used for sending and 
receiving messages among the virtual groups. It also 
checks whether the received message is a control message 
or a data message. If it is a control message then it invokes 
the appropriate method and enables the sponsor for key 
refresh. If it is a data message then it displays in the chat 
application. The sponsor() method gets the new session 
random key from the corresponding user and generates the 
new set of keys for the group. It then transmits the updated 
key to the existing members. The run() method invokes 
the thread which simultaneously handles sending and 
receiving of messages. The partition() method listens for 
the subsequent leaving of a number of users. It invokes the 
LeaveKey class for generating new set of keys similar to 
leave operation. 

5.1.4 LeaveKey Class 

LeaveKey class has the methods which supports the leave 
operation. The methods are leave() and leaveKeyGen() 
which are invoked appropriately to accomplish leave 
operation. The leave() method on getting the leave 
notification from the leaving member, identifies the 
sponsor and calls the sponsor() method. The 
leaveKeyGen() method on getting the leave_reply 
message from the sponsor, generates the new set of virtual 
group key for it using the updated bkey in the message. 

5.1.5 Merge 

Merge class takes care of the merging of the virtual groups 
and sub-groups. This is achieved by the mergeKeyGen() 
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method and the mergeUpdate() method. This class is 
invoked when there is a need to merge the user’s virtual 
group to another virtual group. This applies to the sub 
VGs also. The mergeKeyGen() method is called whenever 
a merge_request message hits the socket. Later it invokes 
the sponsor() method if this member is the sponsor. The 
mergeUpdate() method sends merge_reply message to the 
virtual group nodes which contains the sponsor refreshed 
key. 

5.1.6 EllipticCurve Package 

This is a user defined package that is used to generate 
blinded group key and blinded random key by getting the 
virtual group key and random key respectively. 

5.2 Protocol Format 

All protocol messages which is used for the VG 
interaction include the following attributes: Sender 
information: name of the sender. Group information: 
unique name of the group. Membership information: 
names (and other information) of current group members. 
Message type: unique message identifier for each protocol 
message. 
Key epoch: strictly increasing counter. Whenever there is 
a new membership event occur, each member increments 
the key epoch. If two virtual groups VG1 and VG2 merge, 
the resulting epoch is: epochnew = max (epochG1 ; 
epochG2) + 1. Key epoch is the same across all current 
virtual group nodes. If a virtual group member receives a 
protocol message with a smaller than current epoch, it 
terminates the protocol assuming suspected replay. 

5.3 Exemplifications of VG Operations 

Figure 5.10 shows first member joining the group giving 
the group ID user ID his session random key. A message 
box is displayed to tell him the user is the one initiated the 
connection. 

 
 

Figure 11 shows Wait for Connection frame that is 
enabled until the first user gets connection from any other 
node 
interested in the virtual group. 

 
 
Figure 12 shows the Join notification send by new user to 
the existing users on joining the virtual group. 

 
 
Figure 13 shows the Sponsor refreshing the random key 
on every membership change operation like Join, Leave, 
Merge, and Partition that creates consequent impact on the 
VGs and sub-VGs 
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Figure 14 shows the new group key established within the 
group after the sponsor had refreshed the session 
random key. 

 
 
Figure 15 shows the Virtual Group members chatting after 
establishing the new virtual group key. 

 
 
Figure 5.16 shows the leave notification send to the rest of 
the members when the Member 2 in the virtual 
group leaves. 

 
 
Figure 17. shows a partition as two members subsequently 
send a leave notification. 

 
Figure 17: Leave Notification Operation form user 1 
 

5. Conclusion and Future Enhancements 

 
Figure 18: Leave Notification Operation form user 2 
Figure 19. shows a merge that is users of current group 
named Xplore willing to merge with another group named 
tacheyons. 
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6 Conclusions and Future Enhancement 

A Secure contributory virtual group key agreement 
approach (Modified STR) which is applied in the grid 
framework for VG interaction is detailed in this chapter. 
Modified STR supports all dynamic peer group operations 
which is very common in Grid computations and 
interactions. The key operations are Join, Leave, Merge, 
and Partition. Furthermore, it easily handles cascaded 
(nested) VG membership events and network failures. 
It has been an assumption that the computation power of 
processors increases and thus reducing the computation 
costs incurred in key setup. Eventually communication 
costs which a lower bound has dictated by the speed of 
light. The proposed protocol is already the most efficient 
group key agreement protocol over high-delay wide-area 
networks; it will become more advantageous as processor 
speeds increase. Effective virtual group key generation is 
implemented and detailed in this chapter. Using this key 
for the VG, sub keys for sub VGs can be derived e.g., by 
applying a cryptographically secure hash function. 
This approach has been exemplified by the group chat 
application in the VG and sub-VGs. In future this can be 
extended to cloud computing as well. 
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