
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

8

Manuscript received June 5, 2010
Manuscript revised June 20, 2010

Secured Virtual Group Management in Grid

Poornaselvan KJ†, Suresh Shanmugasundaram†† and DivyaPreya Chidambaram†††,

† & ††Government College of Technology, Coimbatore, Tamilnadu, India
†††Botho College, Gaborone, Botswana

Summary
Grid components are constructed using internet as the
backbone. Grid applications involve communication over
these insecure open networks, thus security becomes an
important requirement. The basic security while the VGs
interact can be established only through secure and
efficient group key management approaches. Centralized
key management methods (key distribution) are apt for
two-party (e.g., client-server or peer-to-peer)
communication as well as for large multicast groups like
the grid. However, many collaborative group settings (e.g.,
conferencing, white-boards, shared instruments, and
command and-control systems and the VGs) require
distributed key management techniques.
Key words:
Group Management, Key agreement, Grid Computing,
Virtual Group Interaction in Grid, Security in Grid.

1. Introduction

1.1 Group Management Issues in Grid Ambience

The majority of protocols now available are mainly
concerned with increasing the security while decreasing
cryptographic computation costs. It has been long held as
an unassailable fact that heavy weight computation such as
large number arithmetic that forms the basis of many
modern cryptographic algorithms which is the greatest
burden imposed by security protocols. However, the
continuing increase in computation power in the grid
which uses modern workstations speeds up the
heavyweight cryptographic operations and also the grid
computations. For example, four years ago, a top-of-the-
line RISC workstation performed a 512 bit modular
exponentiation in around 24 ms. Four years later, an 850
MHz pentium III PC (priced at 1/5-th of the old RISC
workstation) performs the same operation in less than 1
ms. In contrast; communication latency has not
improved appreciably. The communication (especially via
the Internet) has become both accessible and affordable
which resulted in drastic increase in the demand for
network bandwidth. While computation power and
bandwidth are increasing, network delay has the lower

bound dictated by the speed of light. More concretely,
collaborative work groups like the VGs where the
membersare dispersed across continents would expect
considerable communication latency and thus benefit from
protocols that minimize communication rounds. In this
chapter a ground-breaking technique for group key
agreement for the VGs and sub-VGs which is
communication efficient is detailed.

1.2 Key Operations in VGS and Sub-VGS

1.2.1 VG Membership Operations

As the VGs and Sub-VGs constantly interact with the
three primary components of the grid which are the users,
providers and the brokers, in the internet, this calls for an
approach which provides secured means of
communication. Individual nodes and cluster of nodes can
converse in this network. The reliability thus is a question
and has to be resolved. As the previous chapters details the
various operations of a node like joining a VG and leaving
a VG dynamically which is not an unusual scenario in the
grid ambience, a comprehensive approach that handles the
group key agreement subsequent to these VG and Sub-VG
membership changes is required in this underlying group
communication system. The following VG membership
changes are considered:
1. Single member operations which include member join
and leave the VG
2. Multiple member operations which include group merge
and group partition in VG
Join occurs when a prospective member joins a virtual
group. Leave occurs when a member leaves a virtual
group. Partition occurs when a virtual group (VG) is split
into smaller sub virtual groups(sub VGs). A partition in a
VG can take place for several reasons, two of which are
quite common:
1) Network failure which occurs when a network event
causes disconnection within the group. Consequently, a
group is split into fragments some of which are singletons
while others (those that maintain mutual connectivity) are
sub-groups.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

9

2) Explicit (application-driven) partition which occurs
when the application decides to split the group or simply
exclude multiple members at once.
Merge occurs when two or more groups merge to form a
single group (a group merge may be voluntary or
involuntary):
1) Network fault heal occurs when a network event causes
previously disconnected network partitions to reconnect.
2) Explicit (application-driven) merge occurs when the
application decides to merge multiple pre-existing groups
into a single
group.
In practice, however, such events are common owing to
network configuration and router failures.
Undeniable arguments in support of these claims are
available (Moser et al, 1994). Hence, dealing with
partitions and merging in
virtual groups is a vital component of group key
agreement.

1.2.2. Cryptographic Attributes in a VG

The desired properties for a secure virtual group key
agreement protocol for special networking ambience
like the grid (Kim et al, 2000) are as follows.
• Virtual Group Key Secrecy guarantees that it is
computationally infeasible for a passive adversary to
discover any
virtual group key.
• Forward Secrecy guarantees that a passive adversary
who knows a contiguous subset of virtual group keys
cannot
discover subsequent virtual group keys.
• Backward Secrecy guarantees that a passive adversary
who knows a contiguous subset of group keys cannot
discover preceding virtual group keys.
• Key Independence guarantees that a passive adversary
who knows any proper sub-VG keys cannot discover any
other VG key not included in the subset. Backward and
Forward Secrecy attributes assume that the adversary is a
current or a former Virtual Group member. The other
attributes additionally include the cases of unintentionally
leaked or otherwise compromised Virtual Group keys.

2. Protocol Variants for VG Key Agreement

2.1 Skinny Tree Protocol (STRP)

The existing skinny tree (STR) protocol uses Diffie-
Hellman key exchange technique with imbalanced key
tree. The degree of communication efficiency is higher
when compared to Centralized Key Distribution Protocol,
Burmester-Desmedt Protocol, Group Diffie-Hellman

Protocol, Skinny Tree Protocol. The security of the Diffie-
Hellman key exchange lies in the fact that, while it is
relatively easy to calculate exponentials modulo a prime, it
is very difficult to calculate discrete logarithms. For large
primes, the latter computational task is considered
infeasible. The downside is that it is computational
intensive as it involves exponentials. This may not be
feasible to apply in the VG communications as grid
computations are also intensive and becomes more
rigorous when accomplished with the above mentioned
discrete logarithmic computations. Hence an approach for
enabling secured VG communication through an efficient
key agreement is required. This is possible by Elliptic
Curve Crypto Systems(ECCS) which is detailed in the
next sub chapter.

3. Elliptic Curve Cryptosystems

Elliptic Curve Cryptosystems (ECC) were proposed
independently in 1985 by Victor Miller and Neal Koblitz.
At the time, both Miller and Koblitz regarded the concept
of ECC as mathematically elegant; however felt that its
implementation would be impractical. Since 1985, ECC
has received intense scrutiny from cryptographers,
mathematicians, and computer scientists around the world.
These advantages are particularly beneficial in
applications where bandwidth, processing capacity, power
availability or storage is constrained like the Grid projects.

3.1 Enhanced VG Key Agreement Approach

The group key agreement helps for secure group
communication over insecure open networks, by
establishing a unique group key to communicate.
The key setup latency is influenced by communication
rounds and cryptographic rounds. However continuous
advancements in computation power where not matched
with decrease in communication delay. Even though
computation power and bandwidth are increasing, network
delay still has the lower bound dictated by the speed of
light. Hence an efficient protocol that reduces the

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

10

communication rounds could benefit the collaborative
computing society.

3.2. Rudiments and Assumptions of the Approach

The approach which is detailed here uses an imbalanced
tree coupled with Elliptic curve Diffie-Hellman key
exchange (ECDH). Here two-party ECDH is extended for
a Virtual Group. This tree has two types of nodes: leaf and
parent as explained in the previous chapter. Each leaf node
is associated with a specific Virtual Group. An internal
node IN<i> always has two children: another (lower)
internal node IN<i-1> and a leaf node LN<i>. The
exception is IN<i> which is also a leaf node corresponding
to M1. (Note that consequently, r1=k1.)

3.2.1 Basic Key Agreement Protocol

A few assumptions that are made before proceeding are
detailed below. All members know the structure of the key
tree and their initial position within the tree at any instant
of time as the number of VGs are known at any instant
period of time. Furthermore, each node in the VG knows
its session chance and the blinded session chance of all
other VGs or sub-VGs. The two members M1 and M2 can
first compute the Virtual group key corresponding to
IN<2>. Key exchange using elliptic curves in the Virtual
Groups can be done in the following manner:
1. Pick a large integer q, which is either a prime number p
or an integer of the form 2m and elliptic curve parameters
a, b for equation of the form, y2 mod p = (x3+ax+b) mod
p. This defines the elliptic group of points Eq (a, b).
2. Pick a base point G=(x1, y1) in Ep (a, b).) whose order
is very large n.
3. A key exchange between Virtual Groups VG-A and
VG-B can be accomplished as follows:
a. VG-A selects an integer less than n .This is VG-A’s
private key. VG-A then generates a public key PA =n A *
G; the public key is a point in Eq (a,b).
b. VG-B similarly selects a private key n B and computes
a public key PB.
c. Both the VGs exchange their public keys.
d. VG-A generates the secret key K = n A * PB and VG-B
also generates the secret key K = n B * PA.
For elliptic curve cryptography, an operation over elliptic
curves, called addition, is used. Multiplication is defined
by repeated addition. For example, a * k = (a + a +
…………+ a) [k times] where the addition is performed
over an Elliptic curve.
The addition operation is as follows:
If P=(x p , y p) and Q=(x Q , y Q) with P _ –Q , then
R=P+Q=(x R , y R) is determined by the following rules:
x R =(_2 – x p – x Q) mod p. y R =(_ (x p – x Q) – y p)
mod p. where _ = ((y Q-y p)/(x Q -y p)) mod p if P _ Q. _
= ((3x2 p +a)/(2y p)) mod p if P = Q.

Note that the secret key is pair of numbers. If this key is to
be used as a session key for conventional encryption
between the VGs, then a single number must be generated.
x coordinates or some simple function of the x coordinates
could be used. Finally the bkeys for the above secret key
K by using same formula as used in public key calculation
such as bki = (K * G) mod p is calculated. If any member
joins this Virtual Group, then by exchanging their public
keys the new node and the group can calculate the key for
that Virtual Group. The secret key Ki (i>1) is a result of an
ECDH key exchange between the nodes of the VG (K1 is
an exception which is equal to r1) which can be computed
recursively as follows. Ki=(bki-1)*ri mod p = (bri) * Ki-1
mod p if i>1 , bri=(ri*G)3. The root (group) key is never
used directly for the purposes of encryption,
authentication or integrity. Instead, such special-purpose
sub-keys are derived from the root key, e.g., by applying a
cryptographically secure hash function to the root key. All
bkeys are assumed to be public.
The key tree is shown in figure 5. The two members M1
and M2 can first compute the group key corresponding to
IN<2>. M1 computes: k2=(br2)* r1 mod p=(r1*r2*G)
mod p; bk2= (k2*G) mod p
k3 = (br3)*k2 mod p; bk3 = (k3*G) mod p
.
.
kn = (brn)*kn-1 mod p
Next, M1 broadcasts all bkeys bki with 1 < i < N - 1.
Armed with this message, every member then computes
kn as follows. (As mentioned above, members M1 and M2
derive the group key without additional broadcasts.) Any
Mi (with i > 2) knows its session random ri and bki-1 from
the broadcast message. Hence, it can derive ki = (bk i-1)*
ri. It can then compute all remaining keys recursively up to
the group key from the public blinded session random
keys : (bri)* ki-1 mod p i<=n The protocols that make up
the proposed virtual group key management suite: join,
leave, merge and partition share a common framework
with the following features:

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

11

Each Virtual Group member contributes an equal share to
the Virtual Group key; this share is kept secret by each
Virtual Group member. The Virtual Group key is
computed as a function of all current Virtual Group
members’ shares. As the Virtual Group grows, new
members’ shares are factored into the Virtual Group key
while the remaining members’ shares (except for sponsor
who changes its session random to provide key
independence) stay unchanged. As the Virtual Group
shrinks, departing members’ shares are removed from the
Virtual Group key and at least one remaining member
changes its share. In a join or a merge, sponsor is
associated with the topmost leaf node of each key tree. In
a leave or a partition, sponsor is located immediately
below the deepest leaving node.

3.2.2. Join

In a virtual group having n nodes {M1, M2,…, Mn), the
group communication system announces the arrival of a
new member. Both the new member and the prior virtual
group members receive this notification simultaneously.
The new member Mn+1 broadcast a join request message
that contains its own bkey bkn+1 (which is same as its
session random br n+1). Upon receiving this message, the
current virtual group’s sponsor Mn refreshes its session
random, computes brn,kn,bkn, and sends the current tree
BT<n> to M n+1 with all bkeys. Next, each member Mi
increments n and creates a new root key node IN<n> with
two children: the root node IN<n-1> of the prior tree Ti on
the left and the new leaf node LN<n> corresponding to the
new member on the right. Note that every member can
compute the virtual group key since: All existing members
only need the new member’s blinded session random. The
new member needs the blinded virtual group key of the
prior virtual group. In a ‘join’ operation, the sponsor is
always the top most leaf node, i.e., the most recent
member in the current virtual group. Figure 5.6 shows an
example of a new member Ms joining a virtual group. To
provide forward secrecy, the sponsor M4 updates its
session random r4. And as described ‘join’ takes two
communication rounds and five cryptographic operations

to compute the new virtual group key (four by the sponsor
and two by everyone else). In a virtual group of n
members when a member Md (d _ n) leaves the group and
if d>1, the sponsor Ms is the leaf node and directly a
member, i.e., Md-1. Otherwise, the sponsor is M2. Upon
hearing about the leave event from the group
communication system, each remaining member updates
its key tree by deleting the nodes LN<d> corresponding to
Md and its parent node IN<d>. The nodes above the
leaving node are also renumbered. The former sibling
IN<d-1> of Md is promoted to replace (former) Md’s
parent. The sponsor Ms selects a new secret session
random, computes all keys (and bkeys) just below the root
node, and broadcasts BT<s> to the group. This
information allows all members (including the sponsor) to
recomputed the new virtual group key. Figure.3.3
describes the Leave protocol.
Figure 5.7 show that if M4 leaves the virtual group, other
members delete the leaving node along with its parent.
Then, the sponsor M3 refreshes session r3, computes br3’,
k3’, bk3’, and broadcasts the updated tree BT<4>. Upon
receiving the broadcast, all members (including M3)
compute the virtual group key K4. Note that M4 cannot
compute the virtual group key (even though it knows all
bkeys) since its session random is no longer part thereof.
The leave protocol takes one communication round and
involves a single broadcast. The cryptographic cost varies
depending upon two factors:
1) The position of the departed member in a VG
2) The position of the remaining needing to compute the
new key.
The total number of serial cryptographic operations in the
leave protocol can be expressed as:
2(n-d) +1+ (n-d) +1=3n-3d+2 when d>2 3n-7 when d=1, 2
In the worst case, M1, M2 or M3 leaves the virtual group.
The cost for this leave operation is equal to 3n-7. The
expected leave cost is 3(n/2) +2.

Figure 6: Tree updation in Join

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

12

3.2.3 Leave

The Leave protocol provides forward secrecy since a
former member cannot compute the new key owing to the
sponsor’s changing the session random.

3.2.4 Partition

A network fault (or severe congestion) can cause a
partition of the virtual group. To the remaining members,
this actually appears as a concurrent leave of multiple
nodes. With a minor modification, the ‘Leave’ protocol
can handle multiple nodes leaving the VG in a single
round. The only difference is in sponsor selection. In case
of a partition, the sponsor is the leaf node direct below the
lowest-numbered leaving member. (If M1 is the lowest-
leaving member the sponsor is the lowestnumbered
surviving member.) After deleting all leaving nodes, the
sponsor Ms refreshes its session random (key share),
computes keys and bkeys going up the tree as in the plain
leave protocol. It then broadcasts the updated key tree
BT<s> containing only blinded values. Each member
(including Ms) can now compute the group key. Figure
5.8 shows an example where the sponsor deletes all nodes
of leaving members and computes all necessary keys and
bkeys in the first round. In this example, M1
is the sponsor since M2 left the virtual group. After
picking a new session random r1 the sponsor computes K2
and bk2, and broadcasts the whole tree. Upon receiving
this message, every member can compute the new virtual
group key k3. Note that session random and blinded
session random are renumbered as in the leave protocol.
The computation and communication complexity of this
protocol is identical to that of the leave protocol. The same
holds for its security properties.

In Merge protocol, as in the join case, the communication
system simultaneously notifies all virtual group nodes (in
all groups) about the merge event. Moreover, reliable
virtual group communication toolkits typically include a
list of all members that are about to merge in the merge
notification. More specifically, it requires that each

member be able to distinguish the virtual group it was in
from the virtual group that it is merging with. It is natural
to graft the smaller tree atop the larger tree. If any two
trees are of the same height, then unambiguous ordering is
used. When merging two trees, the lowest-numbered leaf
of the smaller tree becomes the right child of a new
intermediate node. The left child of the new intermediate
node becomes the root of the larger tree. Using this
technique recursively, multiple k-ary trees are merged as
shown in Figure 5.9.In the first round of the merge
protocol, all sponsors (members associated with topmost
leaf node in each tree) exchange their respective key trees
containing all blinded session random. The highest-
numbered member of the largest tree becomes the sponsor
of the second round in the merge protocol. After
refreshing the session random, this sponsor computes
every (key, bkey) pair up to the intermediate node just
below the root node using the blinded session random of
the other virtual
group members. The sponsor then broadcasts the key tree
with the bkeys and blinded session random to the other
members. All members now have the complete set of
bkeys, which allows them to compute the new virtual
group key.r1/k1 ,

 3.2.5 Merge

Figure 5.9 shows an example of merging two trees. After
the merge notification, the sponsors M4 and M7 broadcast
their key trees containing all blinded session random.
Upon receiving these broadcast messages, every member
in both virtual groups reconstructs the key tree. The
smaller tree with three members is placed on top of large
tree with four members. Every member generates a new
intermediate node IN<5> and makes it the parent of the
old root node IN<4>of the larger tree and the previous
leftmost leaf node LN<5>. Both intermediate nodes
‘IN<1>’ and ‘IN<2>’ of the previous smaller tree has then
need to be renumbered as IN<6>and IN<7> respectively.
The new intermediate node IN<5> also becomes the child
of the previous lowest intermediate node IN<6>. Using the
previous blinded group key at IN<4> of the larger group
and blinded session random br5 and br6, the sponsor
in the second round, M4, computes all intermediate keys
and bkeys (k4; bk4; k5; bk5; k6; bk6) except the root node.
Finally, it broadcasts BT<4> that contains all bkeys and
blinded session random keys up to IN<6>. Upon receipt of
the broadcast, every member can compute the virtual
group key. In summary, the merge protocol runs in two
communication rounds.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

13

4. Modules

There are four main modules for accomplishing secure
communication for VG’s interaction. The descriptions of
each of the modules are detailed in the following sub-
chapters.

4.1. JOIN

This module is responsible for generating a new virtual
group key whenever a new member joins the virtual group.
Procedure: Step 1: The new member or node broadcasts
request for join Step 2: Every member • Updates key tree
by adding new member node and new root node,
• Removes bkn, The sponsor Mn additionally
• Generates new share rn and computes brn, kn, bkn
• Broadcasts updated tree BT<n>.
Step 3: Every member computes the virtual group key
Kn+1 using BT<n>.

4.2 Leave

This module generates a new virtual group key removing
the leaving member’s node from the VG.
Procedure: Step1: Leaving member sends leave
notification to the virtual group. Step2: Every member

updates key tree by removing the leaving member’s node
and renumbering the nodes above it. The sponsor Mn
additionally, Generates new share rn and computes all
keys and bkeys up to the last member. Broadcasts the
updated key tree BT<s>to all its members.Step 3: Every
member generates new virtual group key using BT<s>.

4.3 MERGE

This module generates new virtual group key whenever
two virtual groups merge in to a single virtual group.
Procedure: Step 1: Each sponsor Msi in Tsi for i _ [1,k]
Broadcasts tree BT<si> Step 2: Every Member
Updates key tree by merging all trees, Removes all keys
and bkeys from the sponsor node, The sponsor Ms
(additionally) , Generates new share rs and computes brs.
• Computes all keys and bkeys from its parent to the node
just below root, Broadcasts updated tree BT<s> .
Step 3: Every member computes the virtual group key
using BT<s> .

4.4 PARTITION

This module generates a new virtual group key by
identifying the subsequent leave of multiple members.
Procedure:
Step 1: In a virtual group of members leaving
subsequently identify the lowest leaving member. The
member below
him is the sponsor if i>1, else it is the least surviving
member.
Step2: Every surviving member updates key tree by
removing the leaving members’ nodes and renumbering
the
nodes.
The sponsor Mn additionally, Generates new share rn and
computes all keys and bkeys up to the last member and
broadcasts the updated key tree BT<s>to all its members.
Step 3: Every member generates new virtual group key
using BT<s>

5. Experimentation and Outcome

This section details the working environment of the
approach that can be applied in the VGs. It also describes
some details about various classes used for this technique.
The programming language used to implement and study
this process is Java. The codes were developed using
JBuilder. The operating system in which this
implementation was carried out is Windows XP. And the
back end used was Oracle 8i. The hardware environment
is the same which is explained in chapter 3.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

14

5.1 Protocol Pseudo code

A simplified version of the code in the pseudo form is
listed below for the experimentation. The key operations
like key generation, join, leave and merge in the VGs are
the primarily focused. This pseudo code is extended to a
java project to further exemplify.
VGs/sub-VGs receive message (message type =
membership event)
Construct new tree
While there are missing bkeys {
If ((Member computes missing keys and member is the
sponsor) || (sponsor computed a key))
While (true) {
Compute missing (key, bkey) pairs
If (Member cannot compute)
Break
End if
If (Members require information)
Broadcast new bkeys
End if
End if
Receive message
If (message type = membership event)
Construct new tree
End if
End while } }
Various classes and methods were declared and defined
for the experimentation and the descriptions are detailed
below.
The different classes used are Join, JoinKeyGen,
GroupChat, LeaveKeyGen, Merge, and EllipticCurve.

5.1.1 Join Class

Join class uses the the following methods;
_ Firstuser()
_ Nextuser()
This class uses the Firstuser() method to check whether
the user joined is first user or not. If the user is the first
user in

initiating the group, the user is allowed to wait for
connection. For other than first user Nextuser() method is
called. The Nextuser() method then gets the new members
random key and computes new set of group keys after the
sponsor refreshes the session random key by invoking the
JoinKeyGen class.

5.1.2 JoinKeyGen Class

JoinKeyGen class as the name states, is used for key
generation in a VG. For implementing this, JoinKeyGen
class uses the methods listed below;
_ keyGen()
_ sendUpdate()
The keyGen() method is used to generate new set of group
keys after every join membership operation in a VG or its
sub-VG. It uses sendUpdate() method to transmit the
updated key to the new and existing users.

5.1.3 GroupChat

GroupChat class is used to exemplify VG interactions and
the methods used are chat(), sponsor(), run() and
partition(). The chat() method is used for sending and
receiving messages among the virtual groups. It also
checks whether the received message is a control message
or a data message. If it is a control message then it invokes
the appropriate method and enables the sponsor for key
refresh. If it is a data message then it displays in the chat
application. The sponsor() method gets the new session
random key from the corresponding user and generates the
new set of keys for the group. It then transmits the updated
key to the existing members. The run() method invokes
the thread which simultaneously handles sending and
receiving of messages. The partition() method listens for
the subsequent leaving of a number of users. It invokes the
LeaveKey class for generating new set of keys similar to
leave operation.

5.1.4 LeaveKey Class

LeaveKey class has the methods which supports the leave
operation. The methods are leave() and leaveKeyGen()
which are invoked appropriately to accomplish leave
operation. The leave() method on getting the leave
notification from the leaving member, identifies the
sponsor and calls the sponsor() method. The
leaveKeyGen() method on getting the leave_reply
message from the sponsor, generates the new set of virtual
group key for it using the updated bkey in the message.

5.1.5 Merge

Merge class takes care of the merging of the virtual groups
and sub-groups. This is achieved by the mergeKeyGen()

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

15

method and the mergeUpdate() method. This class is
invoked when there is a need to merge the user’s virtual
group to another virtual group. This applies to the sub
VGs also. The mergeKeyGen() method is called whenever
a merge_request message hits the socket. Later it invokes
the sponsor() method if this member is the sponsor. The
mergeUpdate() method sends merge_reply message to the
virtual group nodes which contains the sponsor refreshed
key.

5.1.6 EllipticCurve Package

This is a user defined package that is used to generate
blinded group key and blinded random key by getting the
virtual group key and random key respectively.

5.2 Protocol Format

All protocol messages which is used for the VG
interaction include the following attributes: Sender
information: name of the sender. Group information:
unique name of the group. Membership information:
names (and other information) of current group members.
Message type: unique message identifier for each protocol
message.
Key epoch: strictly increasing counter. Whenever there is
a new membership event occur, each member increments
the key epoch. If two virtual groups VG1 and VG2 merge,
the resulting epoch is: epochnew = max (epochG1 ;
epochG2) + 1. Key epoch is the same across all current
virtual group nodes. If a virtual group member receives a
protocol message with a smaller than current epoch, it
terminates the protocol assuming suspected replay.

5.3 Exemplifications of VG Operations

Figure 5.10 shows first member joining the group giving
the group ID user ID his session random key. A message
box is displayed to tell him the user is the one initiated the
connection.

Figure 11 shows Wait for Connection frame that is
enabled until the first user gets connection from any other
node
interested in the virtual group.

Figure 12 shows the Join notification send by new user to
the existing users on joining the virtual group.

Figure 13 shows the Sponsor refreshing the random key
on every membership change operation like Join, Leave,
Merge, and Partition that creates consequent impact on the
VGs and sub-VGs

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

16

Figure 14 shows the new group key established within the
group after the sponsor had refreshed the session
random key.

Figure 15 shows the Virtual Group members chatting after
establishing the new virtual group key.

Figure 5.16 shows the leave notification send to the rest of
the members when the Member 2 in the virtual
group leaves.

Figure 17. shows a partition as two members subsequently
send a leave notification.

Figure 17: Leave Notification Operation form user 1

5. Conclusion and Future Enhancements

Figure 18: Leave Notification Operation form user 2
Figure 19. shows a merge that is users of current group
named Xplore willing to merge with another group named
tacheyons.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

17

6 Conclusions and Future Enhancement

A Secure contributory virtual group key agreement
approach (Modified STR) which is applied in the grid
framework for VG interaction is detailed in this chapter.
Modified STR supports all dynamic peer group operations
which is very common in Grid computations and
interactions. The key operations are Join, Leave, Merge,
and Partition. Furthermore, it easily handles cascaded
(nested) VG membership events and network failures.
It has been an assumption that the computation power of
processors increases and thus reducing the computation
costs incurred in key setup. Eventually communication
costs which a lower bound has dictated by the speed of
light. The proposed protocol is already the most efficient
group key agreement protocol over high-delay wide-area
networks; it will become more advantageous as processor
speeds increase. Effective virtual group key generation is
implemented and detailed in this chapter. Using this key
for the VG, sub keys for sub VGs can be derived e.g., by
applying a cryptographically secure hash function.
This approach has been exemplified by the group chat
application in the VG and sub-VGs. In future this can be
extended to cloud computing as well.

REFERENCES
[1] A.Foster and C. Kesselman (editors), The Grid: Blueprint for

a Future Computing Infrastructure, Morgan Kaufmann
Publishers, USA, 1999.

[2] A.Sulistio and R. Buyya. A time optimization algorithm for
scheduling bag-of-task applications in auction-based
proportional share systems. In Proceedings of the 17th
International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD), Rio de Janeiro,
Brazil, October 2005.

[3] Ahmar Abbas, 'Grid Computide to Technology and Appling:
A Practical Guide to Technology & Applications',Firewall
Media, New Delhi. India, 2009

[4] Anthony Sulistio, Gokul Poduval, Rajkumar Buyya, and
Chen-Khong Tham, ‘Constructing A Grid Simulation with

Differentiated Network Service Using GridSim’, A. Oram
(editor), Peer-to-Peer: Harnessing the Power of Disruptive
Technologies, O’Reilly Press, USA, 2001.

[5] B. Allcock, I. Foster, V. Nefedova, A. Chervenak, E.
Deelman, C. Kesselman, J. Lee, A. Sim, A. Shoshani, B.
Drach and D. Williams, High-Performance Remote Access to
Climate Simulation Data: A Challenge Problem for Data Grid
Technologies, Proceedings of SC2001 Conference, Denver,
USA, November 2001.

[6] B. Knighten, Peer to Peer Computing Working Group, Intel
Developer's Forum, August 24, 2009, ttp://www.peer-
topeerwg.org

[7] B. Krishnamurthy and J. Wang, "Topology Modeling via
Cluster Graphs," Proceedings of the First ACM SIGCOMM
Internet Measurement Workshop: IMW 2001, pp. 19-23,
2001.

[8] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. kephart,
and S. Stornetta, "Spawn: A distributed computational
economy," IEEE Transactions on Software Engineering, vol.
18, pp. 103-177, 1992

[9] C. Dumitrescu and I. Foster. Usage policy-based cpu sharing
in virtual organizations. In Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing
(GRID 2004), Pittsburgh, USA, November 2004

[10] C. L. Dumitrescu and I. Foster. GRUBER: A Grid resource
usage SLA broker. In Proceedings of the 11th International
European Parallel Computing Conference (EuroPar), Lisbon,
Portugal, 2005.

[11] Cantu-Paz E, Designing Efficient and Accurate Parallel
Genetic Algorithms, Technical Report No. 99017, Illinois
Genetic Algorithms Laboratory, UIUC, USA, July 1999.

[12] D. Abramson, J. Giddy, and L. Kotler, High Performance
Parametric Modeling with Nimrod/G: Killer Application for
the Global Grid?, Proceedings of the International Parallel
and Distributed Processing Symposium (IPDPS 2000), May
1-5, 2000, Cancun, Mexico, IEEE Computer Society (CS)
Press, USA, 2000.

[13] D. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini,
Economic Models for Allocating Resources in Computer
Systems, In Market-based Control: A Paradigm for
Distributed Resource Allocation, World Scientific Press,
Singapore, 1996.

[14] D. Kondo, H. Casanova, E. Wing and F. Berman (2002),
“Models and Scheduling guidelines for Global Computing
Applications”, Proceedings of International Parallel and
Distributed Processing Symposium, pp 437 – 443.

[15] D. Morrison, ‘PATRICIA—Practical Algorithm To Retrieve
Information Coded In Alphanumeric (Oct. 1968)’ J.ACM,
vol. 15, no. 4, pp. 514–534.

[16] E. Elmroth and P. Gardfjall. Design and evaluation of a
decentralized system for Grid-wide fairshare scheduling. In
Proceedings of 1st IEEE Conference on e-Science and Grid
Computing, Melbourne, Australia, December 2005.

[17] Emmanuel Bresson, Olivier Chevassut, David Pointcheval,
and Jean-Jacques Quisquater. Provably
authenticatedgroupdiffie-hellman key exchange. In
Pierangela Samarati, editor, 8th ACM Conference on
Computer and Communications Security, Philadelphia, PA,
USA, November 2001. ACM Press.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

18

[18] F. Zhang, S. Liu and K. Kim, ID-Based One Round
Authenticated Tripartite Key Agreement Protocol with
Pairings,"Available at http://eprint.iacr.org, 2002.

[19] G. Cordasco, G. Malewicz, A.L. Rosenberg (2006):
Advances in a dag-scheduling theory for Internet-based
computing. See also, On scheduling expansive and reductive
dags for Internet-based computing. 26th Intl. Conf. on
Distributed Computing Systems, 2006.

[20] G. Malewicz, A.L. Rosenberg, M. Yurkewych (2006):
Toward a theory for scheduling dags in Internet-based
computing. IEEE Trans. Comput. 55, 757–768.

[21] Gennaro Cordasco, Grzegorz Malewicz and Arnold L.
Rosenberg Applying IC-Scheduling Theory to Familiar
Classes of Computations, 2006

[22] Gnutella - http://gnutella.wego.com/
[23] Grid Computing Information Centre:

http://www.gridcomputing.com.
[24] Grid Forum – http://www.gridforum.org
[25] Herbert Shield (2005), “Java: The complete Reference,

J2SE 5 Edition”, Tata McGraw-Hill Edition.
[26] J. In, P. Avery, R. Cavanaugh, and S. Ranka. Policy based

scheduling for simple quality of service in Grid computing.In
Proceedings of the 18th Annual International Parallel and
Distributed Processing Symposium (IPDPS), Santa Fe,USA,
April 2004.

[27] J. Nakai, "Pricing Computing Resources: Reading Between
the Lines and Beyond," Technical Report NAS-01-010,2002.

[28] Joshy Joseph, Craig Fellenstein (2004), “Grid Computing”,
Pearson Education Publications

[29] K. Holtman, CMS Data Grid System Overview and
Requirements, The Compact Muon Solenoid (CMS)
Experiment Note 2001/037, CERN, Switzerland, 2001.

[30] K. Reynolds, The Double Auction, Agorics, Inc.,
1996.http://www.agorics.com/Library/Auctions/auction6.ht

[31] K.J.Poornaselvan, S.Suresh, ‘Incentive-based Scheduling
Framework for Grid Computing’, International Conference
on Software Engineering and Applications (SEA 2007), at
Cambridge, MA, USA during November 19-21, 2007

[32] K.J.Poornaselvan, S.Suresh, ‘Spur Policy for Income
Administration in Grid Computing’, proceedings of the
IASTED Conference , MSAfrica 2008 page no 164-
169 ,hosted by University of Botswana, on 7-10, September,
2008.

[33] K.J.Poornaselvan, S.Suresh, C.G.Gayathri and Ankit Kamal
Mehta, Gridlock Avoidance Scheduling for Tree Structured
Computation, Proceedings of National Conference on
Advanced Computing 2007, pp 71-81, Department of
Computer Science & Engineering, Anna University, MIT
Campus, February 16-17, 2007, Chennai, India.

[34] K.J.Poornaselvan, S.Suresh, P.Birahadish,
A.Saravanan ,‘Enhanced Scheme for Group Key Agreement’,
Proceedings of the International Conference on Digital
Communications & Computer Applications (DCCA 2007),pp
242-253 at Jordan University of Science & Technology,
Jordan during March 19-22, 2007.

[35] K.J.Poornaselvan, S.Suresh, P.Birahadish, A.Saravanan,
‘Modified Skinny Tree Group Agreement
Protocol’,Proceedings of National Conference on Advanced
Computing 2007, pp 160-178, Department of Computer

Science & Engineering, Anna University, MIT Campus,
February 16-17, 2007, Chennai, India.

[36] K.J.Poornaselvan, S.Suresh,‘Gridlock Prevention by Job
Split-up’, International Journal of Computer Science &
Network Security, Korea, Vol 9: No.03 March 2009 edition.

[37] K.J.Poornaselvan, Suresh S, C.DivyaPreya, C.G.Gayathri,
‘Efficient IP Lookup Algorithm’ , Special Topics in
Computing and ICT Research- Strengthening the Role of ICT
in Development, Volume III, ISBN 978-9970-02-730-
9,Makerere University, Fountain Publishers, Kampala,
Uganda, pp. 111-122, 2007.

[38] L. Gong, X. H. Sun, and E. Waston, "Performance modeling
and prediction of non-dedicated network computing,"IEEE
Trans. on Computer, vol. 51, pp. 1041-1055, 2002.

[39] L. Norskog, A Personal Communication on Economics and
Grid Allocation, Enron Broadband Systems, March 14, 2001.
Available at:
http://www.buyya.com/ecogrid/comments/enron.txt

[40] L. W. McKnight and J. Boroumand, Pricing Internet
Services: Approaches and Challenges, IEEE Computer, Vol.
33, No. 2, pp. 128-129, IEEE CS Press, USA, Feb. 2000.

[41] M. A. Ruiz-Sanchez, E.W. Biersack, and W. Dabbous
(Mar.–Apr. 2001) ‘Survey and taxonomy of IP address
lookup algorithms,’ IEEE Network, vol. 15, no. 2, pp. 8–23.

[42] M. Baker (editor), Grid Computing, IEEE DS Online,
http://computer.org/dsonline/gc/

[43] M. Baker, R. Buyya, and D. Laforenza, The Grid:
International Efforts in Global Computing, International
Conference on Advances in Infrastructure for Electronic
Business, Science, and Education on the Internet (SSGRR
2000), l‘Aquila, Rome, Italy, July 31 - August 6. 2000.

[44] M. J. Gonzalez, "Deterministic Processor Scheduling,"
ACM Computing Surveys, vol. 9, pp. 173-204, 1997.

[45] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner (Oct.
1997) ‘Scalable high speed IP routing lookups,’ in Proc.
ACMSIGCOMM, vol. 27, pp. 25–36.

[46] Mark Baker, Rajkumar Buyya and Domenico Laforenza,
The Grid: International Efforts in Global Computing

[47] N.P. Smart, \An identity based authenticated key agreement
protocol based on the weil pairing," Election. Lett., Vol.38,
No.13, pp.630-632, 2002

[48] Napster - http://www.napster.com/
[49] NIST, “Special Publication 800-57: Recommendation for

Key Management. Part 1: General Guideline”, Draft
Jan.2003.

[50] Open Science Grid project. http://www.opensciencegrid.org.
[51] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A.,

Frohner, A. Gianoli, K. Lorentey, and F. Spataro. VOMS, an
authorization system for virtual organizations. In Proceedings
of European Access Grids Conference, pages 33–40, 2003.

[52] R. Buyya (editor), Grid Computing Info Centre,
http://www.GridComputing.com/ accessed on 26-02-2010.

[53] R. Buyya (editor), High Performance Cluster Computing,
Vol. 1 and 2, Prentice Hall - PTR, NJ, USA, 1999.

[54] R. Buyya, D. Abramson, and J. Giddy, A Case for Economy
Grid Architecture for Service-Oriented Grid Computing,
Proceedings of the International Parallel and Distributed
Processing Symposium: 10th IEEE International
Heterogeneous Computing Workshop (HCW 2001), April 23,

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

19

2001, San Francisco, California, USA, IEEE CS Press,USA,
2001.

[55] R. Buyya, D. Abramson, and J. Giddy, An Economy Driven
Resource Management Architecture for Global
Computational Power Grids, Proceedings of the 2000
International Conference on Parallel and Distributed
processingTechniques and Applications (PDPTA 2000), June
26-29, 2000, Las Vegas, USA, CSREA Press, USA, 2000.

[56] R. Buyya, D. Abramson, and J. Giddy, Nimrod-G: An
Architecture for a Resource Management and Scheduling
System in a Global Computational Grid, The 4th
International Conference on High Performance Computing in
Asia- Pacific Region (HPC Asia 2000), May 2000, Beijing,
China, IEEE Computer Society Press, USA.

[57] R. Buyya, S. Chapin, and D. DiNucci, Architectural Models
for Resource Management in the Grid, First IEEE/ACM
International Workshop on Grid Computing (GRID 2000),
Springer Verlag LNCS Series, Germany, Dec. 17, 2000,
Bangalore, India.

[58] R. Buyya, The Virtual Laboratory Project: Molecular
Modeling for Drug Design on Grid, IEEE Distributed
Systems Online, Vol. 2, No. 5, 2001.
http://www.buyya.com/vlab/

[59] R. Das, J. Hanson, J. Kephart, and G. Tesauro, Agent-
Human Interactions in the ContinuousDouble Auction,
Proceedings of the International Joint Conferences on
Artificial Intelligence (IJCAI), August 4-10, 2001,
Seattle,Washington, USA.

[60] R. Metcalfe and D. Boggs, Ethernet: Distributed Packet
Switching for Local Computer Networks, Proceedings of the
ACM National Computer Conference Vol. 19, No. 5, July
1976.

[61] R. Smith and R. Davis, The Contract Net Protocol: High
Level Communication and Control in a Distributed Problem
Solver, IEEE Transactions on Computers, Vol. C-29, No. 12,
pp. 1104-1113, Dec. 1980, IEEE CS Press, USA.

[62] R. Wolski, N. Spring, and J. Hayes, "The network weather
service: A distributed resource performance forecasting
service for metacomputing," Journal of Future Generation
Computing Systems, vol. 15, pp. 757-768, 1999.

[63] Rama sangireddy, Natsuhiko Futamura, Srinivas Aluru and
Arun K.Somani (Aug 2005).’Scalable, Memory Efficient,
High-Speed IP Lookup Algorithms’, IEEE/ACM
Transactions on Networking, Vol 13, NO.4,.

[64] S. A. Vanstone, “Next generation security for wireless:
elliptic curve cryptography”, Computers and Security, Vol 22,
No 5, Aug. 2003.

[65] S. Harris, The Tao of IETF - A Novice’s Guide to the
Internet Engineering Task Force, August 2001,
http://www.ietf.cnri.reston.va.us/rfc/rfc3160.txt

[66] S. Nilsson and G. Karlsson (Jun. 1999) ‘IP address lookup
using LC-Tries,’ IEEE J. Sel. Areas Commun., vol. 17, no. 6,
pp. 1083–1092,.

[67] S. Smallen, W. Cirne, J. Frey, F. Berman, R. Wolski, M. Su,
C. Kesselman, S. Young, and M.Ellisman, Combining
Workstations and Supercomputers to Support Grid
Applications: The Parallel Tomography Experience,
Proceedings of the 9th Heterogeneous Computing Workshop,
May 2000.

[68] S. Xian-He and W. Ming, "GHS: A performance prediction
and task scheduling system for Grid computing," IEEE
International Parallel and Distributed Processing Symposium
(IPDPS 2003), 2003.

[69] S.A. Cook (1974): An observation on time-storage tradeoff.
J. Comp. Syst. Scis. 9,308–316.

[70] SETI@Home – http://setiathome.ssl.berkeley.edu/
[71] Steve Chapin, Mark Clement, and Quinn Snell, A Grid

Resource Management Architecture, Strawman 1, Grid
ForumScheduling Working Group, November 1999.

[72] T. J. Norman, A. Preece, S. Chalmers, N. R. Jennigs, M.
Luck,V. D. Dang, T. D. Nguyen, V. Deora, J. Shao, W.
A.Gray, and N. J. Fiddian. Agent-based formation of virtual
organizations.Knowledge-Based Systems, 17:103–111, 2004.

[73] The Enabling Grids for E-sciencE project.
http://www.euegee.org.

[74] The Standard Performance Evaluation Corporation (SPEC),
http://www.specbench.org/.

[75] United Devices, The History of Distributed Computing,
http://www.ud.com/company/dc/history.htm, October 9, 2001.

[76] V. N. Padmanabhan and L. Subramanian, "An investigation
of geographic mapping techniques for internet hosts,"
Proceedings of ACM SIGCOMM 2001- Applications,
Technologies, Architectures, and Protocols for
ComputersCommunications-, vol. 31, pp. 173-185, 2001.

[77] V. Srinivasan and G. Varghese (Jun. 1998) ‘Fast address
lookups using controlled prefix expansion,’ in Proc.
ACMSIGMETRICS, pp. 1–11.

[78] W. T. Sullivan, III, D. Werthimer, S. Bowyer, J. Cobb, D.
Gedye, and D. Anderson, A new major SETI project based
on Project Serendip data and 100,000 personal computers,
Proceedings of the Fifth International Conference on
Bioastronomy, 1997. http://setiathome.ssl.berkeley.edu/

[79] W. Vickrey, Counter-speculation, auctions, and competitive
sealed tenders, Journal of Finance, Vol. 16, No. 1, pp. 9-37,
March 1961.

[80] Y. Amir, B. Awerbuch., A. Barak A., S. Borgstrom, and A.
Keren, An Opportunity Cost Approach for Job Assignment in
a Scalable Computing Cluster, IEEE Transactions on Parallel
and Distributed Systems, Vol. 11, No. 7, pp. 760-768, IEEE
CS Press, USA, July 2000.

[81] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S.Shenker, "Making Gnutella-like P2P Systems Scalable,"
Proceedings of ACM SIGCOMM 2003: Conference on
Computer Communications, vol. 33, pp. 407-418, 2003.

[82] Y. Chu, S. G. Rao, and H. Zhang, "A case for end system
multicast," Proceedings of ACM SIGMETRICS 2000, vol.28,
pp. 1-12, 2000.

[83] Y. Liu, Z. Zhuang, L. Xiao, and L. M. Ni, "A distributed
approach to solving overlay mismatching problem,"
Proceedings of 24th International Conference on Distributed
Computing Systems, vol. 24, pp. 132-139, 2004.

[84] Z. Xu, C. Tang, and Z. Zhang, "Building topology-aware
overlays using global soft-state," Proceedings of 23rd IEEE
International Conference on Distributed Computing Systems,
pp. 500-508, 2003.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

20

Suresh Shanmugasundaram
is a PhD Research Scholar in
the Department of Computer
Science and Engineering at
Government College of
Technology (Under Anna
University, Chennai),
Coimbatore, India. He is
currently involved in

developing an Algorithm for Gridlock avoidance. Suresh
graduated his Bachelor of Engineering in the discipline of
Computer Science and Engineering at Sri Ramakrishna
Engineering College. Then he graduated his Master of
Science in Computer Networks at Middlesex University,
London. His Master Degree thesis was an approach for
Secured Group Key Agreement. He has a vast experience
in lecturing and tutoring the modules like Object Oriented
Analysis and Design, Programming in C, Computer
Networks, Management Information System, Enterprise
Resource Planning, Software Engineering Methodologies,
Network Security and Distributed Computing both for UG
and PG Engineering students. He has attended academic
award board meetings and tutor briefings held at The
Open University, Milton Keynes, UK. He has been in the
International Technical Committee Member for IASTED,
Canada since 2008. He has chaired various International
Conferences. Countries visited by him include UK,
Zambia, South Africa and Namibia. He is also a reviewer
for the International Journal of Theoretical and Applied
Electronic Commerce Research, University of Talca, Chile
from 2009. His publications include 7 National and 12
International Conference Proceedings, 1 International
Journal and 1 Book Chapter.

