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Summary 
With the exponential growth in the Internet and its 
applications, threats and vulnerabilities have increased in 
similar proportions. The most common way of defense 
used by organizations for system security is an anti-virus 
tool. Unfortunately, these tools have not been effective 
enough in providing the required defense to the volume 
and sophisticated nature of today’s cyber attacks. This 
paper proposes a proactive distributed and co-operative 
method to improve the defense provided by such anti-virus 
tools. Evaluation results show the strength of the proposed 
approach both on random and real-world data sets.  
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1. Introduction 
 
In 1969 Advanced Research Projects Agency (ARPA) of 
DoD, later known as DARPA created ARPANET using 
packet switching, unlike circuit switching in phone lines to 
improve communications [1]. With the Internet in 
operation, the first notable computer virus, the Morris 
worm [2] was reported in 1988, creating significant 
damage to the distributed communication medium. 
Subsequently, the number of cyber attacks has increased 
exponentially from 2003 till date. The Computer 
Emergency Response Team Coordination Center 
(CERT/CC) was started in December 1988 by DARPA, to 
monitor Internet threat incidents; Figure 1 illustrates the 
number of incidents reported by CERT from 1988 till date. 
 
Current governmental agencies, defense institutions, health 
organizations, online trading sites and telecommunications 
companies are increasingly targeted by overlapping surges 
of Internet attacks [4]. Figure 2 shows the major areas 
being affected by cyber attacks. In recent times, computer 
viruses are being used in identity theft to steal personal 
information such as passwords and credit card information 
[5].  Much of today’s malware is fueled by financially-
motivated cyber criminals trying to gain access to valuable 
corporate, consumer and/or personal data [6]. Internet 
attacks have increased in volume and sophistication such 
that organizations find it extremely difficult to detect and 
mitigate the rate and scale of such vulnerabilities [4]. 
During the last few years, the number of vulnerabilities 
discovered in applications has far exceeded the number of 

vulnerabilities in the Operating Systems layer. Figure 3 
shows the number of vulnerabilities from the network 
layer to the applications layer. 
 

 
 

Fig. 1. CERT threat trends (1988 – present) 
 

 
 

Fig. 2. Major targets for Internet Attacks 
 

 
 

Fig. 3. Number of vulnerabilities in the OSI Layers 
 

To address the volume, scale and diversity of such Internet 
attacks, present day computer systems need to have an up-
to-date anti-virus tool running. This antivirus tool should 
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be capable in determining the type of files (either 
malicious or good) in real time environments. To this 
effect such systems need some kind of predictive 
mechanism to be proactive in their detection and defense. 
In very recent research, “Reputation based systems” [7], 
play a pivotal role in providing a predictive mechanism in 
order to establish the nature (good or malicious) of the 
system files. In this paper we propose a “Distributed Co-
operative Detection Framework”, that the implements 
reputation model based and incorporate adaptive clustering 
approach to improve the classification of unknown files in 
the system.  
 
The rest of the paper is structured as follows: Section 2 
discusses the motivation and background of the problem. 
The current research trends are discussed in Section 3. 
Section 4 introduces the problem statement and presents 
the proposed “Distributed Co-operative Detection 
Framework”.  The evaluation details on both the emulated 
and random data-set are discussed in Section 5.  Section 6 
presents the conclusion and future research directions. 
 
2. Motivation and Background 
 
In this section we provide a brief overview of different 
types of malware to improve our understanding and aid us 
in designing countermeasures against such attacks. 
According to statistics twenty five million new strains of 
malware have been discovered in the year 2009, at a rate 
of one new strain per 0.79 seconds [8]. It is noteworthy to 
mention that United States Senate Security Operations 
Centre gets around 13.9 million cyber attacks each day [8].    
 
Malware encompasses Viruses, Worms, Trojans and Root-
kits. A virus is a piece of code that can copy itself and 
infect a computer. It is usually capable of causing 
irreparable damage to system files. It typically spreads by 
attaching itself to files (either data files or executable 
code). Virus spread requires the transmission of the 
infected file from one system to another. A worm does the 
same task of causing harm to files but without human 
assistance. Worms are capable of autonomous migration 
between systems through the network without the 
assistance of external software. Worms aggressively scan 
the network and attack hosts. Firstly the Worm scans the 
network for hosts with vulnerabilities and selects the target 
called Reconnaissance. They implement various scanning 
techniques such as hit list scanning or random scanning. 
When the target is identified the attack component 
launches the attack. The attacking node and the attacked 
node communicate using the communications component. 
The compromised nodes of the attack system can be issued 
commands using the command component. The worm 
scans for the vulnerabilities in the target system, exploits 
them and delivers its payload to the victim node so that it 

can now scan and propagate henceforth. The payload 
propagation can occur in numerous ways. The payload can 
be directly injected to the victim or it is passed from parent 
to child or there may be a central source to pass it every 
node. The worm payload might be compiled or interpreted. 
In addition to all these, it has an intelligence component 
that keeps track of the locations of all the nodes and their 
characteristics. This component provides information 
required to contact other worm nodes.  
 
Worms usually select a target platform for better coverage. 
Microsoft Windows make up 90% of the client 
workstations surfing websites and 45% or more of the web 
servers on the Internet making them a popular choice of 
worms [2]. The more devastating worms have attacked 
Internet Information Server (IIS) web-servers. IIS has been 
a subject to scrutiny by the security community. As flaws 
have been found, exploits have been developed against 
them, some of these being incorporated into worms. Due 
to these attacks the number of incidents reported on CERT 
for Windows platform is much higher than those reported 
on Linux or UNIX platforms [9].UNIX based worms have 
a complicated design because of the variety of Unix 
platforms. The Apache worm was effective only against 
the FreeBSD systems even though many web servers run 
Apache on Linux and Sun Solaris systems [2]. The Slapper 
worm on the other hand was able to fingerprint several 
popular Linux distributions and launch a specified attack 
against them [2]. Worms saturate the network on which 
they reside. 
  
A Trojan horse gains access to unauthorized services of a 
computer. It is embedded in some other form of code or 
software and it is non-replicating. Trojan code attempts to 
camouflage its presence to avoid detection. Once a Trojan 
horse has been installed, the attacker can remotely perform 
various operations. Rootkits gain administrative control 
over systems. They usually hide the utility systems for root 
access at a later date. These entry points are called 
trapdoors. All these malware attack the systems over the 
web to exploit the businesses and bring down services. 
When vulnerabilities in applications or services are 
discovered and the patches for those vulnerabilities are not 
yet out, there may be attacks that exploit these 
vulnerabilities. These attacks are known as zero-day 
attacks.  
 
To protect the organizational network from these attacks, 
defense in depth mechanism is followed. Firewalls are 
used as choke points to drop unauthorized packet flow into 
the network. Intrusion Detection Systems (IDS) are used 
with Access Control Lists (ACL) to determine unusual 
activity. When an IDS identifies such an activity an alarm 
buzzes. Access controls have to be in place. Unnecessary 
services are disabled and unused ports plugged in. The 
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operating system software is updated with security patches. 
Separation of duties or need to know factors play an 
important role in deciding whether a person should be 
granted access to a particular file. Every system in the 
network has an antivirus with updated signatures installed. 
All activities are logged for investigation in case of an 
incident, preferably on a once writable-append only 
remote location [11]. In spite of all these measures updated 
antivirus software is essential on every host. Otherwise 
that system can be compromised and used against the rest 
of the network. It can create a hole. If an employee who 
works from home or any other location uses an office 
laptop and that system is compromised, the security of the 
entire organizational network is at stake [11]. 
 
3. Current Technologies 
 
In this section we describe in detail the common 
expectations from the tool, the steps taken by a typical 
antivirus tool to eradicate malware, all the technologies 
currently implemented by an anti virus tool and the 
drawbacks of the current technologies. Any sound design 
of an Anti-Virus tool should Complement application 
white listing technology for an effective defense-in-depth 
approach; combines traditional signature-based protection 
with unique behavioral analysis. It should Prevent known 
and unknown malicious threats (zero-day exploits) from 
gaining unauthorized access to systems and data, Ensure 
comprehensive clean-up, including rootkit removal and 
Provide fully automated operation, including new endpoint 
detection, signature updates, and easy-to-use web-based 
management console. 
 
3.1. Anti-virus tool operation 
 
Any anti-virus tool follows a set of steps to fulfill the 
above expectations. We enumerate these steps in the 
following. The understanding of these steps is important in 
accessing and improving the operation of the anti-virus 
software. Assess: This is the first step. This step uses 
signature-based scanning to identify viruses, worms, 
Trojans, key loggers, hijackers, root kits and other 
malicious software. Use behavioral analysis tools 
(including DNA Matching, Sandbox, and Exploit 
Detection) to assess suspicious code / applications [6]. 
Remediate: Prevent known malware and suspicious code 
from executing, and remove it from all network assets [6]. 
Monitor: Use customized triggers to generate alerts 
(delivered via e-mail, SNMP, SMS, Syslog and/or the 
operating system’s event log) based on network-wide 
events (such as a spreading infection). Use Risk Level 
Indicator on web-based management console to 
understand overall network “health” and current 
event/client status of all endpoints [6]. Report: Use 
comprehensive, customizable reporting facility to cover 

entire network status and any incidents [6]. Figure 4 below 
depicts these steps. 
 
3.2. Signature-Based scanning 
 
Signature-Based scanning works on pattern matching. A 
dictionary of known fingerprints is used and run across a 
set of input. This dictionary typically contains a list of 
known bad signatures, such as malicious payloads or the 
file contents of a worm executable. This database of 
signatures is the key to the strength of the detection system. 

 
Fig. 4 Steps of Anti-virus operation 

 
There are three main types of signature analysis for worm 
detection. The first is the use of network payload 
signatures as used in network intrusion detection systems 
(NIDS). The detection methods used by NIDS engines 
perform an evaluation of packet contents received from the 
network, typically using passive capture techniques. This 
can include matching signatures based on application 
protocol analysis, or network characteristics.  
 
Snort is a popular open-source NIDS package with some 
commercial support and a large user base.  In case of the 
Code Red worm, a distinctive request is made to the target 
server that contained the exploit as well as the malicious 
executable. By examining the packets observed passively 
on the network, a detection system can identify Code Red 
worm activity. This signature looks for TCP packets to a 
list of Web servers on port 80. The payload of the packet is 
compared against the field. Upon matching, an alert is 
generated. This request is unique to the Code Red worm. 
The largest problem with this signature for Code Red 
worm is its size. Its signature is more than 100 bytes in 
length and must be fully matched against to successfully 
detect the worm’s traffic. If this payload is fragmented due 
to network transmission sizes, the larger signature will not 
match the smaller payload in the fragments. A more 
reasonable approach would have been to focus on minimal 
unique identifier for the worm’s traffic or a dozen or so 
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bytes. For a signature that is too small, multiple false 
alarms will be raised. 
 
The second type of signature matching is based on log file 
analysis. Application and system logs can contain 
information that can be used to fingerprint the behavior of 
a network worm. This can include attack contents, such as 
in Web server logs, or simple application errors issued 
when a worm probes a machine. This is a relatively simple 
approach but, when joined with other detection methods, 
provides a sophisticated detection framework. A small log 
file parsing script was developed during the spread of the 
Nimda worm. This script counted the number of requests 
that matched a basic signature for Nimda from each host. 
It looked for a pattern .exe in the Apache log file, which 
was a generic signature as the Nimda worm looked for the 
file root.exe on the target server. The script looked through 
the log files twice, the first time to generate a list of hosts 
that made requests that met these criteria, and the second 
time to count the number of requests made by the host and 
to record the last time the request was made. The 
underlying assumption was that these hosts were unlikely 
to make legitimate requests to the server, and that all 
requests were Nimda related. 
   
The third type of signature detection is the most popular 
method, file signatures. File payloads of worms and their 
executables are typically monitored using host-level 
antivirus products. Examination of the contents of a file 
system is used to reveal the presence of a worm. Because 
most of the worms are binary executables and reside on 
the system’s disk, looking for the worms signature on the 
file system makes sense. This method does not work for 
worms that are memory resident (like Code Red) or delete 
themselves after launching (like Morris worm). To 
examine the presence of these types of worms a virus 
detection tool that would scan systems memory would be 
required. Chkrootkit is a Linux and UNIX based file 
scanning tool. It is actually a suite of programs such as 
check_wtmpx, chklastlog, chkproc, chkwtmp and 
ifpromise and strings. It is possible to write such a tool for 
Windows but very difficult to maintain an updated list of 
malicious code and hence commercial malware detection 
tools are preferred.  
 
Commercial antivirus products are the most popular 
methods used to detect worms. This is due to the 
popularity of their tools on Windows systems, making 
them numerous and widespread. The virus definition of an 
antivirus product contains a list of hexadecimal strings that 
is compared against the payload of files scanned on the 
system or in files being transferred, such as through 
electronic mail or via file server. The payloads of the files 
are compared against the virus definitions and the matches 
are noted with an alert. Some definition files are longer 

than others, with the length being dictated by the balance 
between a small enough file to scan efficiently and long 
enough to be a definitive match. 
 
The biggest strength to signature-based scanning is the 
ease with which they can be developed and deployed. 
Once a worm (or any piece of malware) is captured or 
studied or even simply observed, only a brief analysis is 
needed to develop a signature. This analysis is performed 
to identify the characteristics that make the malicious 
software or traffic uniquely identifiable when compared 
against a backdrop of normal data. The features that are 
used in the monitor can be in the log file entries, the 
payload of files either on disk or in transit, or in the 
network traffic generated by the worm. The relative speed 
of signature-based detection systems is also another 
benefit of using them. Large number of optimized engines 
have been developed that can perform pattern matching 
efficiently, a requirement as communication volumes and 
the bandwidth of a typical network increase. These 
detection engines must keep up with this pace and react 
quickly. An additional benefit for signature-based 
detection methods is the ease of removal of the malicious 
content. For a mail or file server that is being used to 
distribute the worm, content screening immediately 
identifies the malicious payload and can quarantine the 
data. For a network-based intrusion detection system, 
reactive systems can be triggered to close a malicious 
connection or install a network filter on a router or firewall 
to block the compromised machine from continuing the 
worm’s spread. Server level firewalls can also be 
configured dynamically by analysis engines once a 
malicious client has been identified from log file entries. 
 
3.3. Anomaly-Based scanning 
 
Anomaly-based antivirus tools determine normal behavior. 
Thus, any variation from the normal profile would be 
considered suspicious (anomalous). For example, normally 
a program, when executed, does not create any files. Then, 
all of a sudden, the program moves a file into one of the 
operating system’s folders. That action would immediately 
be flagged by this type of antivirus software. Anomaly-
based scanning typically works on predictive analysis. The 
tool learns normal traffic and predicts the future normal 
traffic. Figure 3 denotes a typical anomaly detection 
system. The tool has to learn the normal flow and develop 
a profile. It compares this traffic with the incoming 
packets. There are three main types of anomaly-based 
scanning approaches. The first type is called as Trend 
analyzers. Each entity (user or system) has its trend in 
communicating or generating network traffic. Email server 
generates a lot of email traffic or user network generates a 
lot of HTTP traffic and by identifying such trends it is 
possible to observe a trend in general network traffic 
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coming through one point in the network. The second type 
is known as Packet-analyzers. Many packet analyzers try 
to verify if network traffic complies with RFC standards or 
generally accepted implementations. By detecting packets 
not complying with protocol standard or communication 
trend they raise the alert. One good example is 
“arpwatch”, which monitors ARP traffic and when 
detecting a change in MAC <-> IP relation it alerts the 
administrator. General communication standard of ARP 
traffic is that IP address doesn’t change the MAC address 
in a static network (although there are some exceptions). 
Another good example is state-ful packet inspection, 
where state of communication is being monitored and in 
case of any deviation from this state alert would be raised 
(or the packet dropped). Based on the response period for 
monitoring and mitigation packet analyzers can be further 
divided into: Long Term and Short Term. Long Term or 
Passive detection uses scanning to detect derivations from 
the program’s normal profile. Short Term or Active 
detection Involves executing a questionable program 
within a controlled environment such as a sandbox or 
virtual machine and then observing the behavior of the 
program. If the program meets certain negative criteria, it 
will be flagged as suspicious. 
 

 

Fig. 5. A Typical Anomaly detection system 

The third type is called statistical analyzer. Each network 
has its key identifications either qualitative or quantitative. 
By monitoring these identifications an IDS is able to detect 
anomalous traffic and report it. For example it is very 
suspicious to see increase of ICMP traffic from 1KB/s to 
10MB/s or one IP address sending SYN packets to every 
port. Threatfire Zero-Day Malware Protection is an 
example of anomaly-based malware detection software. 
 
3.4. Behavioral monitoring 
 
Behavioral monitoring works on suspicion and heuristics. 
In the suspicious behavioral monitoring, the antivirus tool 
does not try to identify known viruses but monitors the 
behavior of all programs. If a program tries to write data 
on an executable file it flags the user. This approach, as 
against the signature based approach was designed to take 
care of new brand viruses whose signatures do not exist in 
dictionaries. However, with the advent of many non-

malicious programs writing on executable files the false 
positive ratio increased. The heuristic approach is 
implemented either by file analysis or file emulation. 
 File analysis is the process by which antivirus software 
will analyze the instructions of a program. Based on the 
instructions, the software can determine whether or not the 
program is malicious. For example, if the file contains 
instructions to delete important system files, the file might 
be flagged as a virus. While this method is useful for 
identifying new viruses and variants, it can trigger many 
false alarms. In File Emulation, the target file is run in a 
virtual system environment, separate from the real system 
environment. The antivirus software would then log what 
actions the file takes in the virtual environment. If the 
actions are found to be damaging, the file will be marked a 
virus. But again, this method can trigger false alarms [12]. 
 
3.5. Hybrid scanning 
 
Some tools implement Hybrid techniques to detect 
malware. Anomaly-based and heuristics or signature-based 
and behavior are some combinations used in Hybrid 
technology. 
 
3.6. White and Black listing approach 
 
Antivirus software uses file scanning, behavioral 
monitoring and hybrid methods for malware detection. 
They usually rely on the signature database. The signatures 
are either pushed into the client software or pulled by the 
client form the server. These updated signatures are based 
on the black and white listing of files. All valid files are 
stored in a hierarchy of distributed co-operating servers for 
example, applications such as Internet Explorer, Firefox, 
MS office and Adobe.. This is called a white list. Similarly, 
all known bad files are stored in another similar hierarchy 
and is called as a black list. When a file user is trying to 
execute exists in the black list it is blocked. If it is in the 
white list the antivirus allows the execution. There are a 
large number of unknown files [13]. Figure 3 depicts the 
white listing and black listing approach. The good files or 
valid applications are stored as hashes for faster processing. 
Prevalence is a measure to determine the existence and 
usage of the file over the Internet. This value is usually 
high for good files and low for bad files. This might 
however, need to be checked in case some files which 
were good earlier got infected. For our implementation we 
assume that good files are used at a very high rate as 
compared to the bad or infected files. 
 
3.7. Drawbacks of current technologies  
 
The biggest drawback to signature-based detection 
methods is that they are reactionary; they rarely can be 
used to detect a new worm. Only after an attack is known 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010 
 

 

30

 

can it be fingerprinted and made into a signature for use by 
sensor. Only if the attack used by the worm is recycled 
from a known attack can it be used to proactively detect a 
worm. Some meta-signature detection methods, such as 
protocol analyzers and related tools that understand 
protocol parameters, can be used to detect a worm early on. 
However, there are uncommon in large, coordinated NIDS 
deployments at this time. 
 

 
Fig. 6. Black and white listing 

 
The second drawback to signature-based detection 
methods is that they don’t scale well to large operations. 
These include networks such as an enterprise or campus 
networks with thousand users. Desktop-based remedies are 
difficult to maintain actively, though many centralized 
management tools have been developed to overcome this 
obstacle. However, the volume and distributed nature of 
the problem makes the issue of scale a difficult challenge 
to adequately address.  
 
The next major difficulty in a successful deployment of 
signature-based methods is that it is hard to keep up with 
variants of worms and viruses. Variations inevitably 
appear that can evade signature-based detection methods 
on all levels. Furthermore, when polymorphic techniques 
are introduced in the worms, the challenge raises 
significantly, making the reliable detection of worms much 
more difficult. Signature-based detection methods are only 
reactionary and always lag behind the introduction of the 
worm. Network-based signature detection suffers from a 
number of weaknesses, including payload fragmentation 
and forgery. Behavioral monitoring and heuristics have 
resulted in high false positives. Worms and Trojans 
implement all techniques to remain stealth. Sometimes 
attack the antivirus tool or block it. Polymorphic worms 
modify the encoding of the packet data. Black listing and 
white listing have a long tail of unknown files. 
 
As good as this sounds, anomaly-based malware detection 
has shortcomings. False positives are more common with 
this type of detection, simply because of the complexity of 

modern-day programs. A small window will result in false 
positives while a large window will result in irrelevant 
data as well as increase the chance of false negatives.  
Techniques used by antivirus tools currently are static, 
non-scalable and has a very large number of unknown files. 
We need something else more efficient to find malicious 
activity well before the damage is caused. We can achieve 
that if we know about every file on the Internet. If we do 
not know about these files but know others opinions about 
them, we can still have some insight about them. We 
intend to use the knowledge of anybody in the world who 
might know about that particular file. If it is going to do 
something bad to our system, that can be avoided.  
 
4. Framework and Methodology 
 
We have seen the current technologies and their 
drawbacks and we realize that knowing about the files will 
help in decision making for the antivirus tool. Hence, we 
will focus on the white and black listing approach. The 
more information we have about a particular file the more 
proactive our anti-virus tool gets. First, we have to know 
about as much files over the internet as we can. We need a 
multi-level detection approach similar to the defense in 
depth implementation.  
 
 Our goal is to design a framework to classify 
unclassified files using a distributed co-operative 
detection method and strengthen the white and black 
listing approach to improve the anti-virus tool 
operation. 
 
4.1. Distributed Co-operative Detection 
Framework 
 
We address the problem of unknowns using the wisdom of 
crowds. The hierarchical framework of distributed co-
operative systems is used to maintain the data and provide 
intelligence to the antivirus software. This framework is 
depicted in Figure 4. An Autonomous System (AS) is the 
system that has agreed to contribute to the reputation based 
approach. These play a vital role in constructing the model 
over time.  
 
This architecture collects data from the AS, processes it, 
generates reputation for files and stores it. This reputation 
is then distributed to the network in the form of updates for 
the antivirus tool. Also, if the client application does not 
know about any particular file it refers to the hierarchy for 
decision. It is distributed and co-operative. This helps the 
processing of data and better utilization of the resources. 
We follow a cluster based approach in the framework. The 
workload is distributed amongst several machines over the 
network. The processing is done by every system and 
knowledge is shared. The distributed framework provides 
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high availability. Since the framework is co-operative it is 
reliable to respond and there is no single point of failure.    
 
Cluster based approach is useful in real time processing 
and faster response time for the AS from the co-operative 
detection framework. Real-time scanning scans files each 
time you or your computer access them. When virus 
protection detects an infected file, it tries to clean or 
remove the infection. If a file cannot be cleaned or 
removed, an alert prompts you to take further action.  It is 
also important for scalability of the algorithm. A vast user 
pool plays an important role. We depict the system 
architecture in Fig.5. 

 
 

Fig. 4. Co-operative detection framework 
 
It consists of contributing users, submission server and 
reputations server. There are several other servers that 
store white list and blacklist data but we will focus on this 
framework. One must note that all these servers form the 
detective framework. This architecture is an integral part 
of the co-operative framework. A limitation of this 
framework is the scenario of a massive targeted attack on 
an Autonomous System by Zombies, they might be able to 
manipulate its domain value. 
 
Data collection:  
Users of Autonomous systems (AS) opt in to contribute 
data. Co-operative framework starts collecting data. This 
includes several details about the file such as when was 
this file first seen on the Internet, its last access time and 
on how many machines it currently exists. This data has 
ranking for each file by every user. This rank is assigned 
automatically user does not have to “rank” them as such. 
This data is stored in the submission server and it is 
anonymous.  Every AS is associated with a domain. This 
domain value depends on the trust factor about that system.  
 
Aggregation:  

Now the collected data has several ranks for any particular 
type of file. So we aggregate all these rank to generate one 

single value per file. Domain = /m where Xi it the 
value allotted to the file by ith AS and m is the number of 
machines ranking that file. For example in Fig. 4 AS 1 
would be domain 1, AS 2 would be domain 2 and so on. 
This step gives us the number of copies of that file over 
the web. We now have the domain and the number of 
copies. The collected data also has age and last access time. 

 
 

Fig. 5 System architecture   
 

Prevalence calculation:  
Prevalence value is calculated for each file. Prevalence for 

a particular file is defined as follows: Prevalence = , Ni 
= α. Domain + β. Age + γ. Number of copies of that file 
over the Internet + δ. last access time. Where α, β, γ and δ 
are weights for that attribute. These weights are calculated 
experimentally. If some AS is sending false data to skew 
the prediction process, its domain value will decrease over 
time and the adverse effects on the reputation score will be 
nullified, meaning we no longer trust that AS. This 
calculation includes factors such as “the rating of an AS 
for a particular file as against its average rating for all the 
files” and “rating of an AS for a particular file in 
comparison with the ratings of other AS’s for that 
particular file”.  
 
Clustering:  
We run the adaptive clustering algorithm on the 
prevalence values. We will see this algorithm in detail in 
the next section. This results in two different clusters. 
These two clusters help to predict if a file is good or bad. 
 
Analysis and Inference:  
Since we already have known good and bad files, we use 
their placement in clusters as reference points and infer the 
nature of an unknown file existing in the same cluster.  We 
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check for the accuracy of this algorithm and determine the 
number of false positives in the outcome. 
 
4.2. Adaptive Clustering Approach 
 
Our focus will be on step 2 of Figure 5, where we try to 
convert the collected data into knowledge. We add the 
filtering algorithm [14, 15, 16, 17, 18, 19, 20, and 21] 
based on k-means clustering to this step. Basically, to 
come to a single prevalence value the system has to scan 
through numerous ratings (one per user). This can be a 
very tedious process leading to a slow response. The 
adaptive algorithm gives fast and efficient output to avoid 
this situation. It can handle very large datasets and gives 
same results as scanning the entire dataset. 
 
 

Compute the Kd tree for the given data points.  
U= node, C=cell 
 
Calculate weighted centroid. The weight  is a vector  sum of 
all associated points. 
 
Select initial set of k centers 
 
For each of the k centers, 

 
 Compute  the  centroid  of  the  set  of  data  points 
for which the center is closest. 
 A candidate set candidate set z*  in Z, z* closest 
to  the midpoint  of  C  is  chosen  from  the  center 
points.  These  points might  serve  as  the  nearest 
neighbor  for  some  point  lying  within  as 
associated cell. 
 

Prune data points not closer to the centroid  
 
If the candidate is closer 

Replace centroid by the candidate 
 

TABLE 1: ADAPTIVE CLUSTERING PSEUDO CODE 
 
The adaptive clustering algorithm takes the prevalence 
values (one per file) as its input and gives two clusters as 
its output. These two clusters are dense enough to be 
recognized as good and bad clusters. The known good files 
and known bad signatures are used here to locate and 
identify the files in clusters. This algorithm randomly 
selects initial k centers, called centroids. For each of these 
k centers, there is a set of candidate points maintained. 
Each candidate has a set of associated points. The distance 
of these associated points is checked with the candidates. 
If it is closer to some other candidate, it changes its 
association. These associated points add weights to the 
candidates. Then the distance if the associated point is 
checked against the centroid or the kth center. If the 
associated points are still closer to the candidate, the 
candidate becomes the new centroid. Table I gives the 
pseudo code for the algorithm. This way we just have to 

compare the randomly chosen candidates and not the 
entire stream of points and we still get the same results. 
 
5. Evaluation 
 
In this section we evaluate this algorithm on two different 
datasets for accuracy and false positives and state the test 
results. The evaluation was done on two datasets, an 
emulated dataset and a random dataset. The random 
dataset of 2000 files was used for evaluation. A random 
number generator was used to generate the prevalence 
values for these 2000 files. Testing on random dataset is 
important to know the accuracy of the algorithm. Also, 
because the random dataset comprises of only relevant 
fields and would give more relevant results. This would 
also work as a baseline for the data collection process to 
determine if some of the fields need to be dropped from 
the data collection phase. The emulated and random 
datasets were tested for multiple iterations. 
 
Both the datasets were tested for classification accuracy 
and the number of false positives. Classification accuracy 
is determined by the improvement in the number of 
classified files. False positives are the good files wrongly 
classified as bad files. We also check if there are any false 
negatives i.e. bad files misclassified as good files. 

 

 
 

Fig. 6   Emulated dataset 
 
The emulated dataset of unclassified files was tested on the 
algorithm without clustering. At the end it still had 69.5% 
unclassified files. The same dataset was tested on the 
algorithm with clustering. This time the unclassified files 
were 57.5%. This is a 12% classification improvement 
(Fig. 6). The Y-axis in the Figure 6 shows the total number 
of files.  
 
A similar test on random dataset showed a 14% increase in 
the classified files. The result is depicted in Figure 7. The 
Y-axis on this graph shows the total number of files, in our 
case 2000. The test for accuracy was conducted on a 
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random dataset of 2000 files. The test was conducted 
without incorporating the clustering algorithm and the 
after including the adaptive clustering module. The 
clustering algorithm increased the known good files by 
13%, known bad files by 5% and the total increase in 
classification was 18% (Fig. 8). The Y-axis of this graph 
in Figure 8 is percentage.  
 
A dataset of 300 files of which 225 were known good and 
75 known bad was tested.  All bad files were clustered 
together giving no false negatives. However, 7 known 
good files were clustered as bad giving a false positive rate 
of 3.1% (Fig. 9). The Y-axis if Figure 9 is number of files. 
 

 
 

Fig. 7 Random dataset 
 
 

 
 

Fig. 8 Accuracy – random dataset 
 
Based on the results above, we infer that the algorithm 
improves the classification rate by 12% on the emulated 
dataset and by14% on a random dataset with a few false 
positives and no false negatives. The addition of clustering 
helps in identifying more files as good or bad. In the end 
there are still a lot of files that do not fit in any of these 
clusters. We still do not know about these outliers. Hence, 

we could just minimize the gap to some extent and not to 
the totality. 
 
A limitation of this framework is that it builds the 
reputation over time and any event may take some time to 
“sink in” to the system or propagate to the Autonomous 
System (AS). For example when an AS is compromised 
the weight reduction (α) would take some time. Also, since 
it is a self learning system no AS would remain black 
listed forever. This propagation time may raise the risk 
level of the AS. However, this can be mitigated by using it 
in collaboration with other technologies. It works the best 
when used to add another layer of protection to the tool.  
Building a reputation without enough data would be a 
challenge. 
 

 
 

Fig. 9 False positives – random dataset 
 
5. Conclusions and Future Research 

Directions 
 
In this paper we discussed the different types of malware 
and their affects on businesses. We described the current 
technologies in use by antivirus tools and the white and 
black listing approach. We explained the framework 
architecture used for implementing the reputation based 
systems and the methodology to generate reputation for 
files. We then described the adaptive clustering algorithm 
based on modified k-means clustering. We evaluated it 
against the random and emulated dataset and stated the 
results. 
 
 Our results show increase in the known good and bad files, 
a total increase of 18% in the classification and a false 
positive rate of 3.1%. This raise in classification rate 
would enhance the decision making of the detective 
framework and give a better support to the users of AS. 
Hence our algorithm is an improvement to the current 
scenario. When used in collaboration with other 
technologies such as behavioral matching and heuristics it 
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is bound to prove more effective by adding another 
protective layer.  
 
Future research includes integration of the algorithm in 
antivirus tools for use in real world. Once integrated, the 
response time would need to be addressed with respect to 
the co-operative detection framework. It is obvious that the 
clustering algorithm would reduce the processing time as it 
just scans the representative instead of the whole stream. 
However, it is important to test the required time and the 
time required for the framework to respond to the AS in 
real time. Other than that, the scalability of the framework 
is also a subject to research.  Another aspect of future 
research would be to test it on other real world datasets, i.e. 
virus data and defense datasets and analyze its behavior 
and test its performance. Our framework currently does 
not address the problem of Zombies. If a bot-net has 
compromised victims and these victims or zombies are 
trying to manipulate the reputation of any AS, the co-
operative detective framework currently would not be able 
to address this issue. It assumes all coming from an AS 
data is good data. 
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