
IJCSNS International Journal of Computer Science and Network Security, Volume 10, No 6, June 2010

25

Manuscript received June 5, 2010
Manuscript revised June 20, 2010

Improved Anti-Virus Defense via Efficient Clustering Techniques
Subrata Acharya and Gayatri Joshi

Towson University, Towson, MD, USA

Summary
With the exponential growth in the Internet and its
applications, threats and vulnerabilities have increased in
similar proportions. The most common way of defense
used by organizations for system security is an anti-virus
tool. Unfortunately, these tools have not been effective
enough in providing the required defense to the volume
and sophisticated nature of today’s cyber attacks. This
paper proposes a proactive distributed and co-operative
method to improve the defense provided by such anti-virus
tools. Evaluation results show the strength of the proposed
approach both on random and real-world data sets.

Key words: Internet attacks, Anti-Virus, Worms, Malware,
Reputation, Collaborative, Clustering.

1. Introduction

In 1969 Advanced Research Projects Agency (ARPA) of
DoD, later known as DARPA created ARPANET using
packet switching, unlike circuit switching in phone lines to
improve communications [1]. With the Internet in
operation, the first notable computer virus, the Morris
worm [2] was reported in 1988, creating significant
damage to the distributed communication medium.
Subsequently, the number of cyber attacks has increased
exponentially from 2003 till date. The Computer
Emergency Response Team Coordination Center
(CERT/CC) was started in December 1988 by DARPA, to
monitor Internet threat incidents; Figure 1 illustrates the
number of incidents reported by CERT from 1988 till date.

Current governmental agencies, defense institutions, health
organizations, online trading sites and telecommunications
companies are increasingly targeted by overlapping surges
of Internet attacks [4]. Figure 2 shows the major areas
being affected by cyber attacks. In recent times, computer
viruses are being used in identity theft to steal personal
information such as passwords and credit card information
[5]. Much of today’s malware is fueled by financially-
motivated cyber criminals trying to gain access to valuable
corporate, consumer and/or personal data [6]. Internet
attacks have increased in volume and sophistication such
that organizations find it extremely difficult to detect and
mitigate the rate and scale of such vulnerabilities [4].
During the last few years, the number of vulnerabilities
discovered in applications has far exceeded the number of

vulnerabilities in the Operating Systems layer. Figure 3
shows the number of vulnerabilities from the network
layer to the applications layer.

Fig. 1. CERT threat trends (1988 – present)

Fig. 2. Major targets for Internet Attacks

Fig. 3. Number of vulnerabilities in the OSI Layers

To address the volume, scale and diversity of such Internet
attacks, present day computer systems need to have an up-
to-date anti-virus tool running. This antivirus tool should

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

26

be capable in determining the type of files (either
malicious or good) in real time environments. To this
effect such systems need some kind of predictive
mechanism to be proactive in their detection and defense.
In very recent research, “Reputation based systems” [7],
play a pivotal role in providing a predictive mechanism in
order to establish the nature (good or malicious) of the
system files. In this paper we propose a “Distributed Co-
operative Detection Framework”, that the implements
reputation model based and incorporate adaptive clustering
approach to improve the classification of unknown files in
the system.

The rest of the paper is structured as follows: Section 2
discusses the motivation and background of the problem.
The current research trends are discussed in Section 3.
Section 4 introduces the problem statement and presents
the proposed “Distributed Co-operative Detection
Framework”. The evaluation details on both the emulated
and random data-set are discussed in Section 5. Section 6
presents the conclusion and future research directions.

2. Motivation and Background

In this section we provide a brief overview of different
types of malware to improve our understanding and aid us
in designing countermeasures against such attacks.
According to statistics twenty five million new strains of
malware have been discovered in the year 2009, at a rate
of one new strain per 0.79 seconds [8]. It is noteworthy to
mention that United States Senate Security Operations
Centre gets around 13.9 million cyber attacks each day [8].

Malware encompasses Viruses, Worms, Trojans and Root-
kits. A virus is a piece of code that can copy itself and
infect a computer. It is usually capable of causing
irreparable damage to system files. It typically spreads by
attaching itself to files (either data files or executable
code). Virus spread requires the transmission of the
infected file from one system to another. A worm does the
same task of causing harm to files but without human
assistance. Worms are capable of autonomous migration
between systems through the network without the
assistance of external software. Worms aggressively scan
the network and attack hosts. Firstly the Worm scans the
network for hosts with vulnerabilities and selects the target
called Reconnaissance. They implement various scanning
techniques such as hit list scanning or random scanning.
When the target is identified the attack component
launches the attack. The attacking node and the attacked
node communicate using the communications component.
The compromised nodes of the attack system can be issued
commands using the command component. The worm
scans for the vulnerabilities in the target system, exploits
them and delivers its payload to the victim node so that it

can now scan and propagate henceforth. The payload
propagation can occur in numerous ways. The payload can
be directly injected to the victim or it is passed from parent
to child or there may be a central source to pass it every
node. The worm payload might be compiled or interpreted.
In addition to all these, it has an intelligence component
that keeps track of the locations of all the nodes and their
characteristics. This component provides information
required to contact other worm nodes.

Worms usually select a target platform for better coverage.
Microsoft Windows make up 90% of the client
workstations surfing websites and 45% or more of the web
servers on the Internet making them a popular choice of
worms [2]. The more devastating worms have attacked
Internet Information Server (IIS) web-servers. IIS has been
a subject to scrutiny by the security community. As flaws
have been found, exploits have been developed against
them, some of these being incorporated into worms. Due
to these attacks the number of incidents reported on CERT
for Windows platform is much higher than those reported
on Linux or UNIX platforms [9].UNIX based worms have
a complicated design because of the variety of Unix
platforms. The Apache worm was effective only against
the FreeBSD systems even though many web servers run
Apache on Linux and Sun Solaris systems [2]. The Slapper
worm on the other hand was able to fingerprint several
popular Linux distributions and launch a specified attack
against them [2]. Worms saturate the network on which
they reside.

A Trojan horse gains access to unauthorized services of a
computer. It is embedded in some other form of code or
software and it is non-replicating. Trojan code attempts to
camouflage its presence to avoid detection. Once a Trojan
horse has been installed, the attacker can remotely perform
various operations. Rootkits gain administrative control
over systems. They usually hide the utility systems for root
access at a later date. These entry points are called
trapdoors. All these malware attack the systems over the
web to exploit the businesses and bring down services.
When vulnerabilities in applications or services are
discovered and the patches for those vulnerabilities are not
yet out, there may be attacks that exploit these
vulnerabilities. These attacks are known as zero-day
attacks.

To protect the organizational network from these attacks,
defense in depth mechanism is followed. Firewalls are
used as choke points to drop unauthorized packet flow into
the network. Intrusion Detection Systems (IDS) are used
with Access Control Lists (ACL) to determine unusual
activity. When an IDS identifies such an activity an alarm
buzzes. Access controls have to be in place. Unnecessary
services are disabled and unused ports plugged in. The

IJCSNS International Journal of Computer Science and Network Security, Volume 10, No 6, June 2010

27

operating system software is updated with security patches.
Separation of duties or need to know factors play an
important role in deciding whether a person should be
granted access to a particular file. Every system in the
network has an antivirus with updated signatures installed.
All activities are logged for investigation in case of an
incident, preferably on a once writable-append only
remote location [11]. In spite of all these measures updated
antivirus software is essential on every host. Otherwise
that system can be compromised and used against the rest
of the network. It can create a hole. If an employee who
works from home or any other location uses an office
laptop and that system is compromised, the security of the
entire organizational network is at stake [11].

3. Current Technologies

In this section we describe in detail the common
expectations from the tool, the steps taken by a typical
antivirus tool to eradicate malware, all the technologies
currently implemented by an anti virus tool and the
drawbacks of the current technologies. Any sound design
of an Anti-Virus tool should Complement application
white listing technology for an effective defense-in-depth
approach; combines traditional signature-based protection
with unique behavioral analysis. It should Prevent known
and unknown malicious threats (zero-day exploits) from
gaining unauthorized access to systems and data, Ensure
comprehensive clean-up, including rootkit removal and
Provide fully automated operation, including new endpoint
detection, signature updates, and easy-to-use web-based
management console.

3.1. Anti-virus tool operation

Any anti-virus tool follows a set of steps to fulfill the
above expectations. We enumerate these steps in the
following. The understanding of these steps is important in
accessing and improving the operation of the anti-virus
software. Assess: This is the first step. This step uses
signature-based scanning to identify viruses, worms,
Trojans, key loggers, hijackers, root kits and other
malicious software. Use behavioral analysis tools
(including DNA Matching, Sandbox, and Exploit
Detection) to assess suspicious code / applications [6].
Remediate: Prevent known malware and suspicious code
from executing, and remove it from all network assets [6].
Monitor: Use customized triggers to generate alerts
(delivered via e-mail, SNMP, SMS, Syslog and/or the
operating system’s event log) based on network-wide
events (such as a spreading infection). Use Risk Level
Indicator on web-based management console to
understand overall network “health” and current
event/client status of all endpoints [6]. Report: Use
comprehensive, customizable reporting facility to cover

entire network status and any incidents [6]. Figure 4 below
depicts these steps.

3.2. Signature-Based scanning

Signature-Based scanning works on pattern matching. A
dictionary of known fingerprints is used and run across a
set of input. This dictionary typically contains a list of
known bad signatures, such as malicious payloads or the
file contents of a worm executable. This database of
signatures is the key to the strength of the detection system.

Fig. 4 Steps of Anti-virus operation

There are three main types of signature analysis for worm
detection. The first is the use of network payload
signatures as used in network intrusion detection systems
(NIDS). The detection methods used by NIDS engines
perform an evaluation of packet contents received from the
network, typically using passive capture techniques. This
can include matching signatures based on application
protocol analysis, or network characteristics.

Snort is a popular open-source NIDS package with some
commercial support and a large user base. In case of the
Code Red worm, a distinctive request is made to the target
server that contained the exploit as well as the malicious
executable. By examining the packets observed passively
on the network, a detection system can identify Code Red
worm activity. This signature looks for TCP packets to a
list of Web servers on port 80. The payload of the packet is
compared against the field. Upon matching, an alert is
generated. This request is unique to the Code Red worm.
The largest problem with this signature for Code Red
worm is its size. Its signature is more than 100 bytes in
length and must be fully matched against to successfully
detect the worm’s traffic. If this payload is fragmented due
to network transmission sizes, the larger signature will not
match the smaller payload in the fragments. A more
reasonable approach would have been to focus on minimal
unique identifier for the worm’s traffic or a dozen or so

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

28

bytes. For a signature that is too small, multiple false
alarms will be raised.

The second type of signature matching is based on log file
analysis. Application and system logs can contain
information that can be used to fingerprint the behavior of
a network worm. This can include attack contents, such as
in Web server logs, or simple application errors issued
when a worm probes a machine. This is a relatively simple
approach but, when joined with other detection methods,
provides a sophisticated detection framework. A small log
file parsing script was developed during the spread of the
Nimda worm. This script counted the number of requests
that matched a basic signature for Nimda from each host.
It looked for a pattern .exe in the Apache log file, which
was a generic signature as the Nimda worm looked for the
file root.exe on the target server. The script looked through
the log files twice, the first time to generate a list of hosts
that made requests that met these criteria, and the second
time to count the number of requests made by the host and
to record the last time the request was made. The
underlying assumption was that these hosts were unlikely
to make legitimate requests to the server, and that all
requests were Nimda related.

The third type of signature detection is the most popular
method, file signatures. File payloads of worms and their
executables are typically monitored using host-level
antivirus products. Examination of the contents of a file
system is used to reveal the presence of a worm. Because
most of the worms are binary executables and reside on
the system’s disk, looking for the worms signature on the
file system makes sense. This method does not work for
worms that are memory resident (like Code Red) or delete
themselves after launching (like Morris worm). To
examine the presence of these types of worms a virus
detection tool that would scan systems memory would be
required. Chkrootkit is a Linux and UNIX based file
scanning tool. It is actually a suite of programs such as
check_wtmpx, chklastlog, chkproc, chkwtmp and
ifpromise and strings. It is possible to write such a tool for
Windows but very difficult to maintain an updated list of
malicious code and hence commercial malware detection
tools are preferred.

Commercial antivirus products are the most popular
methods used to detect worms. This is due to the
popularity of their tools on Windows systems, making
them numerous and widespread. The virus definition of an
antivirus product contains a list of hexadecimal strings that
is compared against the payload of files scanned on the
system or in files being transferred, such as through
electronic mail or via file server. The payloads of the files
are compared against the virus definitions and the matches
are noted with an alert. Some definition files are longer

than others, with the length being dictated by the balance
between a small enough file to scan efficiently and long
enough to be a definitive match.

The biggest strength to signature-based scanning is the
ease with which they can be developed and deployed.
Once a worm (or any piece of malware) is captured or
studied or even simply observed, only a brief analysis is
needed to develop a signature. This analysis is performed
to identify the characteristics that make the malicious
software or traffic uniquely identifiable when compared
against a backdrop of normal data. The features that are
used in the monitor can be in the log file entries, the
payload of files either on disk or in transit, or in the
network traffic generated by the worm. The relative speed
of signature-based detection systems is also another
benefit of using them. Large number of optimized engines
have been developed that can perform pattern matching
efficiently, a requirement as communication volumes and
the bandwidth of a typical network increase. These
detection engines must keep up with this pace and react
quickly. An additional benefit for signature-based
detection methods is the ease of removal of the malicious
content. For a mail or file server that is being used to
distribute the worm, content screening immediately
identifies the malicious payload and can quarantine the
data. For a network-based intrusion detection system,
reactive systems can be triggered to close a malicious
connection or install a network filter on a router or firewall
to block the compromised machine from continuing the
worm’s spread. Server level firewalls can also be
configured dynamically by analysis engines once a
malicious client has been identified from log file entries.

3.3. Anomaly-Based scanning

Anomaly-based antivirus tools determine normal behavior.
Thus, any variation from the normal profile would be
considered suspicious (anomalous). For example, normally
a program, when executed, does not create any files. Then,
all of a sudden, the program moves a file into one of the
operating system’s folders. That action would immediately
be flagged by this type of antivirus software. Anomaly-
based scanning typically works on predictive analysis. The
tool learns normal traffic and predicts the future normal
traffic. Figure 3 denotes a typical anomaly detection
system. The tool has to learn the normal flow and develop
a profile. It compares this traffic with the incoming
packets. There are three main types of anomaly-based
scanning approaches. The first type is called as Trend
analyzers. Each entity (user or system) has its trend in
communicating or generating network traffic. Email server
generates a lot of email traffic or user network generates a
lot of HTTP traffic and by identifying such trends it is
possible to observe a trend in general network traffic

IJCSNS International Journal of Computer Science and Network Security, Volume 10, No 6, June 2010

29

coming through one point in the network. The second type
is known as Packet-analyzers. Many packet analyzers try
to verify if network traffic complies with RFC standards or
generally accepted implementations. By detecting packets
not complying with protocol standard or communication
trend they raise the alert. One good example is
“arpwatch”, which monitors ARP traffic and when
detecting a change in MAC <-> IP relation it alerts the
administrator. General communication standard of ARP
traffic is that IP address doesn’t change the MAC address
in a static network (although there are some exceptions).
Another good example is state-ful packet inspection,
where state of communication is being monitored and in
case of any deviation from this state alert would be raised
(or the packet dropped). Based on the response period for
monitoring and mitigation packet analyzers can be further
divided into: Long Term and Short Term. Long Term or
Passive detection uses scanning to detect derivations from
the program’s normal profile. Short Term or Active
detection Involves executing a questionable program
within a controlled environment such as a sandbox or
virtual machine and then observing the behavior of the
program. If the program meets certain negative criteria, it
will be flagged as suspicious.

Fig. 5. A Typical Anomaly detection system

The third type is called statistical analyzer. Each network
has its key identifications either qualitative or quantitative.
By monitoring these identifications an IDS is able to detect
anomalous traffic and report it. For example it is very
suspicious to see increase of ICMP traffic from 1KB/s to
10MB/s or one IP address sending SYN packets to every
port. Threatfire Zero-Day Malware Protection is an
example of anomaly-based malware detection software.

3.4. Behavioral monitoring

Behavioral monitoring works on suspicion and heuristics.
In the suspicious behavioral monitoring, the antivirus tool
does not try to identify known viruses but monitors the
behavior of all programs. If a program tries to write data
on an executable file it flags the user. This approach, as
against the signature based approach was designed to take
care of new brand viruses whose signatures do not exist in
dictionaries. However, with the advent of many non-

malicious programs writing on executable files the false
positive ratio increased. The heuristic approach is
implemented either by file analysis or file emulation.
 File analysis is the process by which antivirus software
will analyze the instructions of a program. Based on the
instructions, the software can determine whether or not the
program is malicious. For example, if the file contains
instructions to delete important system files, the file might
be flagged as a virus. While this method is useful for
identifying new viruses and variants, it can trigger many
false alarms. In File Emulation, the target file is run in a
virtual system environment, separate from the real system
environment. The antivirus software would then log what
actions the file takes in the virtual environment. If the
actions are found to be damaging, the file will be marked a
virus. But again, this method can trigger false alarms [12].

3.5. Hybrid scanning

Some tools implement Hybrid techniques to detect
malware. Anomaly-based and heuristics or signature-based
and behavior are some combinations used in Hybrid
technology.

3.6. White and Black listing approach

Antivirus software uses file scanning, behavioral
monitoring and hybrid methods for malware detection.
They usually rely on the signature database. The signatures
are either pushed into the client software or pulled by the
client form the server. These updated signatures are based
on the black and white listing of files. All valid files are
stored in a hierarchy of distributed co-operating servers for
example, applications such as Internet Explorer, Firefox,
MS office and Adobe.. This is called a white list. Similarly,
all known bad files are stored in another similar hierarchy
and is called as a black list. When a file user is trying to
execute exists in the black list it is blocked. If it is in the
white list the antivirus allows the execution. There are a
large number of unknown files [13]. Figure 3 depicts the
white listing and black listing approach. The good files or
valid applications are stored as hashes for faster processing.
Prevalence is a measure to determine the existence and
usage of the file over the Internet. This value is usually
high for good files and low for bad files. This might
however, need to be checked in case some files which
were good earlier got infected. For our implementation we
assume that good files are used at a very high rate as
compared to the bad or infected files.

3.7. Drawbacks of current technologies

The biggest drawback to signature-based detection
methods is that they are reactionary; they rarely can be
used to detect a new worm. Only after an attack is known

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

30

can it be fingerprinted and made into a signature for use by
sensor. Only if the attack used by the worm is recycled
from a known attack can it be used to proactively detect a
worm. Some meta-signature detection methods, such as
protocol analyzers and related tools that understand
protocol parameters, can be used to detect a worm early on.
However, there are uncommon in large, coordinated NIDS
deployments at this time.

Fig. 6. Black and white listing

The second drawback to signature-based detection
methods is that they don’t scale well to large operations.
These include networks such as an enterprise or campus
networks with thousand users. Desktop-based remedies are
difficult to maintain actively, though many centralized
management tools have been developed to overcome this
obstacle. However, the volume and distributed nature of
the problem makes the issue of scale a difficult challenge
to adequately address.

The next major difficulty in a successful deployment of
signature-based methods is that it is hard to keep up with
variants of worms and viruses. Variations inevitably
appear that can evade signature-based detection methods
on all levels. Furthermore, when polymorphic techniques
are introduced in the worms, the challenge raises
significantly, making the reliable detection of worms much
more difficult. Signature-based detection methods are only
reactionary and always lag behind the introduction of the
worm. Network-based signature detection suffers from a
number of weaknesses, including payload fragmentation
and forgery. Behavioral monitoring and heuristics have
resulted in high false positives. Worms and Trojans
implement all techniques to remain stealth. Sometimes
attack the antivirus tool or block it. Polymorphic worms
modify the encoding of the packet data. Black listing and
white listing have a long tail of unknown files.

As good as this sounds, anomaly-based malware detection
has shortcomings. False positives are more common with
this type of detection, simply because of the complexity of

modern-day programs. A small window will result in false
positives while a large window will result in irrelevant
data as well as increase the chance of false negatives.
Techniques used by antivirus tools currently are static,
non-scalable and has a very large number of unknown files.
We need something else more efficient to find malicious
activity well before the damage is caused. We can achieve
that if we know about every file on the Internet. If we do
not know about these files but know others opinions about
them, we can still have some insight about them. We
intend to use the knowledge of anybody in the world who
might know about that particular file. If it is going to do
something bad to our system, that can be avoided.

4. Framework and Methodology

We have seen the current technologies and their
drawbacks and we realize that knowing about the files will
help in decision making for the antivirus tool. Hence, we
will focus on the white and black listing approach. The
more information we have about a particular file the more
proactive our anti-virus tool gets. First, we have to know
about as much files over the internet as we can. We need a
multi-level detection approach similar to the defense in
depth implementation.

 Our goal is to design a framework to classify
unclassified files using a distributed co-operative
detection method and strengthen the white and black
listing approach to improve the anti-virus tool
operation.

4.1. Distributed Co-operative Detection
Framework

We address the problem of unknowns using the wisdom of
crowds. The hierarchical framework of distributed co-
operative systems is used to maintain the data and provide
intelligence to the antivirus software. This framework is
depicted in Figure 4. An Autonomous System (AS) is the
system that has agreed to contribute to the reputation based
approach. These play a vital role in constructing the model
over time.

This architecture collects data from the AS, processes it,
generates reputation for files and stores it. This reputation
is then distributed to the network in the form of updates for
the antivirus tool. Also, if the client application does not
know about any particular file it refers to the hierarchy for
decision. It is distributed and co-operative. This helps the
processing of data and better utilization of the resources.
We follow a cluster based approach in the framework. The
workload is distributed amongst several machines over the
network. The processing is done by every system and
knowledge is shared. The distributed framework provides

IJCSNS International Journal of Computer Science and Network Security, Volume 10, No 6, June 2010

31

high availability. Since the framework is co-operative it is
reliable to respond and there is no single point of failure.

Cluster based approach is useful in real time processing
and faster response time for the AS from the co-operative
detection framework. Real-time scanning scans files each
time you or your computer access them. When virus
protection detects an infected file, it tries to clean or
remove the infection. If a file cannot be cleaned or
removed, an alert prompts you to take further action. It is
also important for scalability of the algorithm. A vast user
pool plays an important role. We depict the system
architecture in Fig.5.

Fig. 4. Co-operative detection framework

It consists of contributing users, submission server and
reputations server. There are several other servers that
store white list and blacklist data but we will focus on this
framework. One must note that all these servers form the
detective framework. This architecture is an integral part
of the co-operative framework. A limitation of this
framework is the scenario of a massive targeted attack on
an Autonomous System by Zombies, they might be able to
manipulate its domain value.

Data collection:
Users of Autonomous systems (AS) opt in to contribute
data. Co-operative framework starts collecting data. This
includes several details about the file such as when was
this file first seen on the Internet, its last access time and
on how many machines it currently exists. This data has
ranking for each file by every user. This rank is assigned
automatically user does not have to “rank” them as such.
This data is stored in the submission server and it is
anonymous. Every AS is associated with a domain. This
domain value depends on the trust factor about that system.

Aggregation:

Now the collected data has several ranks for any particular
type of file. So we aggregate all these rank to generate one

single value per file. Domain = /m where Xi it the
value allotted to the file by ith AS and m is the number of
machines ranking that file. For example in Fig. 4 AS 1
would be domain 1, AS 2 would be domain 2 and so on.
This step gives us the number of copies of that file over
the web. We now have the domain and the number of
copies. The collected data also has age and last access time.

Fig. 5 System architecture

Prevalence calculation:
Prevalence value is calculated for each file. Prevalence for

a particular file is defined as follows: Prevalence = , Ni
= α. Domain + β. Age + γ. Number of copies of that file
over the Internet + δ. last access time. Where α, β, γ and δ
are weights for that attribute. These weights are calculated
experimentally. If some AS is sending false data to skew
the prediction process, its domain value will decrease over
time and the adverse effects on the reputation score will be
nullified, meaning we no longer trust that AS. This
calculation includes factors such as “the rating of an AS
for a particular file as against its average rating for all the
files” and “rating of an AS for a particular file in
comparison with the ratings of other AS’s for that
particular file”.

Clustering:
We run the adaptive clustering algorithm on the
prevalence values. We will see this algorithm in detail in
the next section. This results in two different clusters.
These two clusters help to predict if a file is good or bad.

Analysis and Inference:
Since we already have known good and bad files, we use
their placement in clusters as reference points and infer the
nature of an unknown file existing in the same cluster. We

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

32

check for the accuracy of this algorithm and determine the
number of false positives in the outcome.

4.2. Adaptive Clustering Approach

Our focus will be on step 2 of Figure 5, where we try to
convert the collected data into knowledge. We add the
filtering algorithm [14, 15, 16, 17, 18, 19, 20, and 21]
based on k-means clustering to this step. Basically, to
come to a single prevalence value the system has to scan
through numerous ratings (one per user). This can be a
very tedious process leading to a slow response. The
adaptive algorithm gives fast and efficient output to avoid
this situation. It can handle very large datasets and gives
same results as scanning the entire dataset.

Compute the Kd tree for the given data points.
U= node, C=cell

Calculate weighted centroid. The weight is a vector sum of
all associated points.

Select initial set of k centers

For each of the k centers,

 Compute the centroid of the set of data points
for which the center is closest.
 A candidate set candidate set z* in Z, z* closest
to the midpoint of C is chosen from the center
points. These points might serve as the nearest
neighbor for some point lying within as
associated cell.

Prune data points not closer to the centroid

If the candidate is closer

Replace centroid by the candidate

TABLE 1: ADAPTIVE CLUSTERING PSEUDO CODE

The adaptive clustering algorithm takes the prevalence
values (one per file) as its input and gives two clusters as
its output. These two clusters are dense enough to be
recognized as good and bad clusters. The known good files
and known bad signatures are used here to locate and
identify the files in clusters. This algorithm randomly
selects initial k centers, called centroids. For each of these
k centers, there is a set of candidate points maintained.
Each candidate has a set of associated points. The distance
of these associated points is checked with the candidates.
If it is closer to some other candidate, it changes its
association. These associated points add weights to the
candidates. Then the distance if the associated point is
checked against the centroid or the kth center. If the
associated points are still closer to the candidate, the
candidate becomes the new centroid. Table I gives the
pseudo code for the algorithm. This way we just have to

compare the randomly chosen candidates and not the
entire stream of points and we still get the same results.

5. Evaluation

In this section we evaluate this algorithm on two different
datasets for accuracy and false positives and state the test
results. The evaluation was done on two datasets, an
emulated dataset and a random dataset. The random
dataset of 2000 files was used for evaluation. A random
number generator was used to generate the prevalence
values for these 2000 files. Testing on random dataset is
important to know the accuracy of the algorithm. Also,
because the random dataset comprises of only relevant
fields and would give more relevant results. This would
also work as a baseline for the data collection process to
determine if some of the fields need to be dropped from
the data collection phase. The emulated and random
datasets were tested for multiple iterations.

Both the datasets were tested for classification accuracy
and the number of false positives. Classification accuracy
is determined by the improvement in the number of
classified files. False positives are the good files wrongly
classified as bad files. We also check if there are any false
negatives i.e. bad files misclassified as good files.

Fig. 6 Emulated dataset

The emulated dataset of unclassified files was tested on the
algorithm without clustering. At the end it still had 69.5%
unclassified files. The same dataset was tested on the
algorithm with clustering. This time the unclassified files
were 57.5%. This is a 12% classification improvement
(Fig. 6). The Y-axis in the Figure 6 shows the total number
of files.

A similar test on random dataset showed a 14% increase in
the classified files. The result is depicted in Figure 7. The
Y-axis on this graph shows the total number of files, in our
case 2000. The test for accuracy was conducted on a

IJCSNS International Journal of Computer Science and Network Security, Volume 10, No 6, June 2010

33

random dataset of 2000 files. The test was conducted
without incorporating the clustering algorithm and the
after including the adaptive clustering module. The
clustering algorithm increased the known good files by
13%, known bad files by 5% and the total increase in
classification was 18% (Fig. 8). The Y-axis of this graph
in Figure 8 is percentage.

A dataset of 300 files of which 225 were known good and
75 known bad was tested. All bad files were clustered
together giving no false negatives. However, 7 known
good files were clustered as bad giving a false positive rate
of 3.1% (Fig. 9). The Y-axis if Figure 9 is number of files.

Fig. 7 Random dataset

Fig. 8 Accuracy – random dataset

Based on the results above, we infer that the algorithm
improves the classification rate by 12% on the emulated
dataset and by14% on a random dataset with a few false
positives and no false negatives. The addition of clustering
helps in identifying more files as good or bad. In the end
there are still a lot of files that do not fit in any of these
clusters. We still do not know about these outliers. Hence,

we could just minimize the gap to some extent and not to
the totality.

A limitation of this framework is that it builds the
reputation over time and any event may take some time to
“sink in” to the system or propagate to the Autonomous
System (AS). For example when an AS is compromised
the weight reduction (α) would take some time. Also, since
it is a self learning system no AS would remain black
listed forever. This propagation time may raise the risk
level of the AS. However, this can be mitigated by using it
in collaboration with other technologies. It works the best
when used to add another layer of protection to the tool.
Building a reputation without enough data would be a
challenge.

Fig. 9 False positives – random dataset

5. Conclusions and Future Research

Directions

In this paper we discussed the different types of malware
and their affects on businesses. We described the current
technologies in use by antivirus tools and the white and
black listing approach. We explained the framework
architecture used for implementing the reputation based
systems and the methodology to generate reputation for
files. We then described the adaptive clustering algorithm
based on modified k-means clustering. We evaluated it
against the random and emulated dataset and stated the
results.

 Our results show increase in the known good and bad files,
a total increase of 18% in the classification and a false
positive rate of 3.1%. This raise in classification rate
would enhance the decision making of the detective
framework and give a better support to the users of AS.
Hence our algorithm is an improvement to the current
scenario. When used in collaboration with other
technologies such as behavioral matching and heuristics it

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

34

is bound to prove more effective by adding another
protective layer.

Future research includes integration of the algorithm in
antivirus tools for use in real world. Once integrated, the
response time would need to be addressed with respect to
the co-operative detection framework. It is obvious that the
clustering algorithm would reduce the processing time as it
just scans the representative instead of the whole stream.
However, it is important to test the required time and the
time required for the framework to respond to the AS in
real time. Other than that, the scalability of the framework
is also a subject to research. Another aspect of future
research would be to test it on other real world datasets, i.e.
virus data and defense datasets and analyze its behavior
and test its performance. Our framework currently does
not address the problem of Zombies. If a bot-net has
compromised victims and these victims or zombies are
trying to manipulate the reputation of any AS, the co-
operative detective framework currently would not be able
to address this issue. It assumes all coming from an AS
data is good data.

References
[1]http://courses.ischool.berkeley.edu/i103/f07/slides/HofI

12- 10Internet.pdf
[2] Defense and detection strategies against Internet

worms, Jose Nazario
[3] http://www.webopedia.com/TERM/C/CERTCC.html
[4] http://www.sans.org/top-cyber-security-risks/
[5]http://security.comcast.net/get-smart/security-

trends/spotlight-virus-scan.aspx
[6]http://www.patchmanage.com/Lumension-Antivirus.asp
[7] http://www.symantec.com/security_response/index.jsp
[8] http://capec.mitre.org/data/graphs/1000.html
[9]http://kb.bitdefender.com/files/KnowledgeBase/file/sec

urity_report_windows_vs_linux.pdf
[10]http://www.defensesystems.com/Articles/2010/04/26/

Digital-Conflict-Cyber-Defense.aspx
[11]http://www.easynetlive.info/behavior-monitoring.html
[12] www.us-cert.org
[13] www.Autonlab.org
[14] An efficient k-means clustering algorithm: analysis

and implementation; Kanungo, Netanayahu et.al.
[15] Efficient clustering of High-Dimesional Datasets with

Application to reference matching, Andrew mcCallum,
Kamal Nigam, Lyle H. Ungar.

[16] An efficient clustering algorithm for Market Basket
Data based on small large ratios, Ching-Huang Yun,
Kun-Ta Chuang and Ming-Syan Chen.

[17] CURE: An efficient clustering algorithm for large
databases, Sudipto Guha, Rajeev Rastogi and Kyuseok
ShimAn experimental study of diversity with off-the-
shelf Antivirus engines.

[18] An experimental study of diversity with off-the-shelf
Antivirus engines, I. Gashi, V. Stankovic, C.Leita, O.
Thonnard, Centre for Software Reliability, City Univ.
London, London, UK Network Computing and
Applications, 2009. NCA 2009. Eighth IEEE
International Symposium, July 2009.

[19] Eigen trust algorithm for reputation management in
P2P networks, Sepandar Kamvar, Mario Schlosser,
Hector Garcia-Molina.

[20] A computational model of trust and reputation, Lik
Mui, Mojdeh Mohtashemi, Ari Halberstadt.

[21] http://cisecurity.org/en-us
[22] http://www.bsa.org/country.aspx?sc_lang=en
[23] http://cee.mitre.org/
[24] http://www.windowsecurity.com/whitepapers/
[25] http://capec.mitre.org/data/graphs/1000.html
[26] http://www.owasp.org
[27] http://www.first.org
[28]http://www.security-

gurus.de/papers/anomaly_rules_def.pdf

Dr. Subrata Acharya is an Assistant Professor is the
Department of Computer and Information Sciences at Towson
University, Towson, MD. Her research interests are in Computer
and Network Security, Distributed Systems and Real-Time
Embedded Systems. Dr. Acharya received her Ph.D. from
University of Pittsburgh and her M.S. from Texas A&M
University.

Gayatri Joshi is a graduate student at Towson University
pursuing a security track. She did her Bachelor’s and Master’s in
Computer Science from Mumbai University in 2004 and 2006
respectively.

