
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010 
 

 
 

63

Manuscript received June 5, 2010 
Manuscript revised June 20, 2010 

Static Heuristic task scheduling in tree based 
Environment 

Mrs.S.Selvarani1, Dr.G.Sudha Sadhasivam2 &  R.Kingsy Grace3, 
                          
                             1Department of Information Technology, Tamilnadu College of Engineering, Coimbatore, India 

       2Department of Computer Science and Engineering, PSG  College of Technology, Coimbatore, India               
                                 3Department of Computer Science and Engineering, Sri Ramakrishna Engineering College, Coimbatore, India 

 
 
 
Abstract: 
 
        The emergence of grid computing has facilitated the linking 
of heterogeneous and widely distributed resources. A suitable 
and efficient scheduling algorithm is needed to schedule users 
jobs to distributed resources. So grid scheduling is an important 
research area. A tree based grid platform is employed because 
most of network models can be simplified into tree-based models 
to resolve and to use parallel processing in grid computing 
environment. 
 
        The objective of this paper is to schedule task groups on a 
tree-based grid computing platform, where resources have 
different speeds of computation and communication. Due to job 
grouping, communication of coarse-grained jobs and resources 
optimizes computation/communication ratio. For this purpose, 
the multi-level tree is reduced to a single level tree. To transform 
a multilevel tree to a single level tree push-pull algorithm is used.  
 
      The proposed approach employs a static distributed heuristic 
task scheduling algorithm for establishing efficient mapping 
between tasks and available resources. This scheduling strategy 
groups the user jobs according to a particular Grid resource’s 
processing capability, and sends the grouped jobs to the resource. 
Job grouping in tree based grid environment enhances the 
computation/communication ratio.  
. 
Key words: Task scheduling; Grid computing, multi-level tree; 
 
1. Introduction 
       
      The popularity of the Internet and the availability of 
powerful computers and high speed networks, facilitate 
the usage of geographically distributed, heterogeneous 
resources to solve large-scale problems in science, 
engineering, and commerce at low-cost. 
      A Grid scheduler acts like a medium that receives 
applications from multiple users and selects feasible 
resources for them according to a certain rules and 
predicted system performance so as to generate 
application-to-resource mappings [1]. 
 
 

     An FCFS scheduler [9] executes processes from the 
queue in their submission order. It is simple and easy to 
implement but it is not preemptive. The SJF scheduler [9] 
is exactly like FCFS except that instead of choosing the 
job at the front of the queue, it will always choose the 
shortest job available. A sorted list is employed to order 
the processes from longest to shortest. It offers better 
performance in comparison to FCFS because the shorter 
jobs are executed immediately but starvation may occur. 

      Min-Min Scheduling [9] evaluates the average 
execution time and data transfer time for the job to the 
resource. It then allocates the job to the resource that 
provides minimum-average value. 

        It is more dynamic and improves CPU utilization by 
reducing the idle time of the resources. The main 
disadvantage is the computation and communication 
overhead. 

        In Optimization-based Priority-Bandwidth Heuristic 
Algorithm for Task Allocation (OPBHATA) [9] the 
unscheduled tasks are allocated by the parent node in 
accordance with the network communication speed. In this 
approach optimal task assignment and distribution of 
programs becomes possible but the overhead time required 
for querying the Grid Information Service and gaining 
information is very high. 

        In Optimization-based Priority-Computation 
Heuristic Algorithm for Task Allocation (OPCHATA) [9] 
the unscheduled tasks are allocated based on the 
computing speed of the computing nodes. In this approach 
efficient optimization based on computation cost and 
distribution of programs becomes possible but the 
communication cost is not taken into account and the 
overhead time for routing the required information is high. 
 
Tree based approaches 
       Sang Cheol Kim and Sunggu Lee proposed a new 
deterministic guided search algorithm termed “Push-Pull” 
that is found to be particularly effective for DAG 
scheduling on heterogeneous cluster systems [14]. The 
algorithm uses “pull” operations that eliminate 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010 
 

 

64

communication requirements between nodes 
interconnected by slow network links. 
 
Job grouping  
        To reduce communication overhead the scheduling 
strategy should group a number of user jobs together 
according to a particular Grid resource’s processing 
capabilities, and send the grouped jobs to that resource.  
        Gerasoulis and Yang [11], in the context of Directed 
Acyclic Graph (DAG) scheduling in parallel computing 
environments, named grouping of jobs to reduce 
communication dependencies among them as clustering. 
         Nithiapidary Muthuvelu et al.[12] presented a 
scheduling strategy that performs dynamic job grouping 
activity at runtime. This dynamic grouping was done 
based on the processing requirements of each application, 
availability of grid resources and their processing 
capability. 
       A job scheduling strategy that encompasses the job 
grouping concept coupled together with bandwidth-aware 
scheduling is proposed and evaluated by   T.F.Ang et al. 
[13]. The proposed scheduling strategy focuses on 
grouping independent jobs with small processing 
requirements into suitable jobs with larger processing 
requirements and schedules them in accordance with 
indeterminist network conditions.  
       Muthuvelu et al. [12] proposed the Dynamic Job 
Grouping strategy which concentrates on maximizing the 
utilization of Grid resource processing capabilities and 
reducing the overhead time and cost taken to execute the 
jobs using a batch mode dynamic scheduling. 
        In this approach to determine the optimal number of 
tasks assigned to each computing node a static distributed 
heuristic task scheduling algorithm is employed. This 
approach pushes a multi-level tree into a similar 
equivalent tree with only one node and then pulls this 
equivalent tree to calculate the optimal number of tasks 
assignment to each new two-level sub tree (called single-
level sub tree). Another merit of the algorithm is to reduce 
the total time taken in transmitting the user jobs to/from 
the resources, and also it reduces the overhead processing 
time of each job at the resources.  

In the existing approaches no job grouping was 
done. So the proposed approach groups a number of user 
tasks together according to a particular Grid resource’s 
processing capabilities, and transfer the coarse-grained 
jobs to the resources for processing. 
        This paper discusses how to schedule independent 
tasks on the tree-based grid computing platforms, where 
resources differ in their computation and communication 
capability. The optimal scheduling scheme that determines 
the optimal number of tasks assigned to each computing 
node is obtained. This is done by pushing a multi-level 
tree up into a similar equivalent tree and then pulling this 

equivalent tree to obtain an optimal task assignment. A 
static distributed heuristic task scheduling algorithm is 
used. This approach reduces the total time taken in 
transmitting the user jobs to/from the resources and the 
overhead processing time of the jobs at the resources.  
 
2.    Proposed Scheduling Model 
 
       Tree-based grid computing platform has a master-
slave architecture where each computing node has zero or 
more slave nodes, but has only one master node [10]. The 
proposed approach uses tree-based heterogeneous grid 
computing platform and considers migration costs and 
computation costs at each node. 
       Figure 1 shows a general single level tree-based grid 
computing platform, consisting of k computing nodes n0, 
n1,….. nk-1. Let w0,w1,…..wk-1 be the computing capability 
of the slaves. Let c0,c1,....ck-1 be the communication time 
needed to transfer the unit tasks from master to slave 
nodes 
 

                            n0 
                                               

 

       c1     c2                      ck-1 

                                                                  
n1                 n2                                 nk-1 

                                     
                                         ............................                                      
                             
       Figure 1. Single-level Grid Computing platform 
 
  A single task attempter in tree-model Grid 
computing environment [2] neglects its communication 
time from master to slave. So, the task assignment solution 
obtained using linear planning, is only the upper bound of 
the optimal solution.  
            An optimal task assignment for ‘M’ independent 
tasks in a single level grid computing platform should 
consider the number of tasks to be assigned to the master 
as well as slave nodes in order to minimize the execution 
time of the tasks.  
Some of the constraints in a tree-based environment are: 

• Consider the number of tasks running on node nj is xj, 
 M equals total number of tasks running on all nodes  

then  ∑
−

=

=
1

0

k

i
i Mx  

w1 w2        
wk-1 

w0 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010 
 

 

65

• Number of tasks run on any one node is smaller than the 
total number of tasks 

      100 −≤≤≤≤ kiforMxi  
 
• Execution time of a node is less than the total 

execution time.  Then wi .xi ≤ T 
 
3. Proposed push-pull methodology with job 
grouping 
 
      The proposed tree based scheduling algorithm has two 
basic operations namely push and pull. 
 
3.1 Push operation  
 
   For a multi-level tree T, starting from leaf nodes 
with the same master node, a single-level tree consisting 
of a master node and its child nodes can be substituted by 
an equivalent node, that finally become a child node of the 
new tree node has computation capacity approximately 
equal to the original tree. Equivalent Tree Transformation 
algorithm (ETT) is used for push process is given below 
(1) Starting from leaf nodes with the same father node, a 
single-level tree consisting of a father node and its leaf 
nodes is substituted by an equivalent node [4]. That is, 
first delete the leaf nodes of the single level tree in the 
original tree, then use an equivalent node to substitute the 
root node of the single level tree, which has the same 
computation and communication capacity, finally a new 
tree is created, and the equivalent node become a leaf node 
of  the tree. 
(2) Record the sequence S of Push process and the link 
between equivalent node and its corresponding single 
level tree. 
(3) Repeatedly use step (1) and step (2) on the newly 
created tree in step (1), until a tree with only one node is 
left.  

An example for push operation is shown below in 
Figure 2, Figure 3 and Figure 4 
            A multilevel tree with 6 nodes n0 to n6 is shown in 
Figure 2. The computation capacity of nodes n0 to n6 is w0 
to w6 respectively and the communication time needed to 
transfer the unit tasks from n0 to n1 is c0 and from n0 to n2 
is c1 and so on. 
 

 
                            Figure 2 Multi-level tree 
 
             First push operation is shown in Figure 3 below. 
The single level tree consisting of n4, n5 and n6 is 
converted into equivalent node n4’.  Computation capacity 
of n4’ is the computation capacity of the single level tree 
with nodes n5 and n6 namely  w4+w5+w6. The 
communication ability is approximately equivalent to the 
total communicating ability of the single level tree 
between n4’ and n1 namely c4. 

 
              Figure 3 First push operation 
 
           Second push operation is shown in Figure 4 below. 
The single level tree consisting of n4’, n3 and n1 is 
converted into equivalent node n1’. Computation ability of 
n1’ is equivalent to the computation capacity of n4’ and 
node n3  namely w3+w4+w5+w6 . 

n0 

n2 n1 

n4’ 

n5 n6 

n3 

n0 

n2     n1 

n4’ 

    n5 n6 

    n3 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010 
 

 

66

 
   Figure 4 Second push operation 

3.2 Pull Operation  

    Pull is the inverse process of Push operation.  
• Take the equivalent node from recorded 

sequences. 
• Perform optimal task assignment by comparing 

the characteristics of the incoming tasks and 
available resources. 
 

  The proposed tree based algorithm with job 
grouping, removes the defects of FCFS, SJF, Min-Min, 
OPCHAT and OPBHAT algorithms [2]. This algorithm 
deals with single level tree. Multi-level tree can be 
converted to single level tree to use this algorithm.  
 
 
Initialization 
           The user must specify the number of Gridlets(jobs), 
average Gridlet length (MI), MI deviation percentage, 
granularity time, Gridlet overhead processing time, and the 
resource file to the system through the GUI. The user can 
choose to perform the simulation with or without using the 
Gridlet grouping method. This facilitates the user to 
compare the output between a simulation without gridlet 
grouping and simulation with Gridlet grouping method. 
 
Grid Resource Creation 
 Grid resources are created from a resource file. 
The resource file contains a list of available resources on 
the Grid. Each resource has their characteristics specified 
in the file namely, resource name, architecture, operating 
system, number of machines, number of PEs, MIPS of 
each PE, time zone, processing cost, communication speed, 
random seed, and resource load during peak hour, off-
peak hour, and holiday.  
 
 
 
Gridlet Creation 

         User specifies three parameters that affect the Gridlet 
creation task, namely, the number of Gridlets, the average 
MI of each Gridlet, and the MI deviation percentage. The 
MI deviation percentage refers to the deviation percentage 
of average MI of each Gridlet. Each resulting Gridlet will 
be assigned to a Grid user, and then added into a Gridlet 
list. 
        They will be assigned with attributes like Gridlet 
ID,MI, File size and Output size 
 
Push Operation 

Push operation for a multi-level tree as explained 
above  

 
Pull Operation with job grouping 
             The proposed job grouping algorithm is done in 
pull operation is described as follows ( Figure 5) 

 The Gridlet_List (n jobs) is submitted to the 
scheduler. The scheduler receives the Resources_List 
which is the inverse sequence of the resource list recorded 
in step 2 of push operation. It multiplies the selected 
resource’s MIPS with the granularity size which  indicates 
the total MI the resource can process within a specified 
granularity size. The scheduler groups the Gridlets by 
accumulating the MI of each gridlet while comparing the 
resulting Gridlet  total MI with the resource total MI. If the 
total MI of the Gridlets is more than the resource MI, the 
very last MI added to the Gridlet total MI will be removed 
from the Gridlet total MI. Eventually, a new Gridlet 
(grouped Gridlet) of accumulated total MI will be created 
with a unique ID and scheduled to be executed in the 
selected resource. This process continues until all the user 
jobs are grouped into few groups and assigned to the Grid 
resources. After all the Grouped_Gridlets are processed by 
the Grid resources, and sent back to the I/O queue of the 
scheduler/system, collect the grouped gridlets from the I/O 
queue. Set the resource ID, and job execution cost of each 
Grouped gridlets. Get the total simulation time. Display 
the details of the processed Gouped_Gridlets to the user 
through GUI. 

 
The terms used in the proposed algorithm are 

   
           n :  Total number of gridlets 
           m : Total number of Resources available 
           Gi : List of Gridlets submitted by the user 
           Rj : List of Resources available 
          MI : Million instructions or processing requirements 
of a user job 
          MIPS : Million instructions per second or 
processing capabilities of a resource 
       Tot-Jleng : Total processing requirements (MI) of a 
Gridlet group (in MI) 

n0 

n2 n1’ 

n4’ 

n5 n6 

n3 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010 
 

 

67

       Tot-MIj : Total processing capabilities (MI) of jth 
resource 
       Rj-MIP : MIPS of jth Grid resource 
       Gi-MI : MI of ith Gridlet 
       Granularity_Size : Granularity size (time in seconds) 
for  job grouping  
       GJk : List of Grouped Gridlets 
       TargetRk : List of target resources of each grouped job 
 
       Figure 5 Proposed algorithm with job grouping 
 
Get Gridlet-size n 
    Get Resource-list size m  
       for i=0 to n-1 do 
         get Gridlet Gi 
       endfor 
      for j=0 to m-1 do 
   get Resource Rj from the resource list recorded in push 
operation 
      endfor 
      k=0 
      for i=0 to n do 
      for j=0 to m do 
          Tot-Jleng = 0 
          Tot-MIj = Rj-MIP * granularity-size 
          while((Tot-Jleng <= Tot-MIj) and (i <=n-1)) do 
               Tot-Jleng = Tot-Jleng + Gi-MI 
                i++ 
          endwhile 
          i-- 
          if Tot-Jleng > Tot_MIj then 
               Tot-Jleng = Tot-Jleng – Gi-MI 
                i-- 
          endif 
         create a new Gridlet with Tot-MI equals to Tot-Jleng 
          assign a unique ID to the newly created Gridlet 
          insert the Gridlet into Grouped Gridlet GJk 
          insert Rj in TargetRk 
          k++ 
      endfor 
      endfor 
      for i = 0 to Grouped Gridlet-1 do 
           send GJi to TargetRi 
      endfor 
      for i = 0 to Grouped Gridlet-1 do 
          receive computed GJi from TargetRi 
      endfor 
 
 
 
 
 
 

4. Experiment results 
 
4.1 Performance evaluation 
 
               The job execution time, Ti,exec involves both 
computational time, Ti,comp and communication time, 
Ti,comm. 

Ti,exec = Ti,comp + Ti,comm (1
)

Where: 
Ti,exec = Execution time of a grouped job 
Ti,comp = Computation time of a grouped job 
Ti,comm. = Communication time of a grouped job 

The total processing time for a single job is calculated as 
follows : 

Tproc = Tsubmit+Ti.exec/n+Treceive 
(2

)
Where: 
Tproc = Total processing time 
Tsubmit = Time taken to submit a job 
Treceive = Time taken to receive a processed job 
n = Number of jobs in a group  

       However, for ri grouped jobs Ji,1, Ji,2, …, Ji,ri, the job 
processing time is the maximum time taken to execute all 
the grouped jobs from the time of the first job sent by the 
user to the final job received by the user after all the jobs 
are executed at the resources. 

To summarize: 

Teffect = Ti end – Ti start 
(3

) 
Where: 
Teffect

t  
=      Effective execution time 

Ti end =    Time when the last job received 
T istart =    Time when the first job sent 

       The total processing time is calculated based on the 
time taken to group the jobs, to submit all the grouped 
jobs, to receive all the processed jobs and the effective 
execution time. 

Tproc = Tgrouping+Tsubmit+Toh+Teffect+Treceive, 
(4

)
Where:   
Tproc = Total processing time 
Tgrouping = Time taken to group jobs 
Tsubmit = Time taken to submit all the grouped jobs 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010 
 

 

68

Toh 
Teffect 

= 
= 

Overhead time 
Job processing time 

Treceive = Time taken to receive all the processed jobs 

             The grouping of jobs depends on a specific 
granularity size. Granularity size is the time within which 
a job is processed at the resources. As stated by 
Muthuvelu et al[12], this value is used to measure the total 
amount of jobs that can be completed within a specified 
time in a certain resource. It is one of the main factor in 
job grouping strategy that influences the way job grouping 
is performed to achieve the minimum job execution time 
and maximum utilization of the Grid resources. 

4.2 Results and Discussions 

             GridSim has been used to create the simulation 
environment. The inputs to the simulations are total 
number of gridlets, average MI of Gridlets, MI deviation 
percentage, granularity size and Gridlet overhead time. 
The MIPS of each resource is also specified (Table 1) 

Resource MIPS

R1 20

R2 44

R3 69

R4 296

R5 126

R6 210

R7 204

         Table 1 : MIPS of Grid Resources 

       The performance of tree based algorithm has been 
compared with FCFS, with and without job grouping [5], 
[6].  

This paper adopts GridSim4.2 [8] to simulate the 
algorithm of task scheduling given above. GridSim 
provides a series of core function for the establishment 
and simulation of heterogeneous distributed computing 
environment, particularly suitable for simulation and 
research of task scheduling on grid. We simulated a tree-
based grid computing platform with seven nodes, five 
seconds of granularity time, five seconds of overhead time 
and 10% deviation. Then the platform used FCFS and 
tree-based scheduling algorithm with and without job 
grouping to schedule independent tasks of number of 50, 
100, 150, 200 and 250 of the same scale. Table 2 below 
shows the results of the simulation.  
 
 
 

 
 Number of 

Gridlets 
With Grouping Without 

Groupin
g 

 Number 
of 

Groups 

Process 
Time 

Process 
Time 

50 2 70 655 
100 4 115 1308 
150 4 123     1958 
200 4 135 2612 
250 5 146 3257 

   
            Table 2 Simulation with and without grouping 
 

When scheduling 50 Gridlets, simulation with job 
grouping method groups the Gridlets into two groups (R1 
and R2). The total overhead time is 10 (5 x 2) seconds and 
the total process time is 70 seconds. Therefore 60 seconds 
was spent for grouping, scheduling and sending back the 
scheduled Gridlets. This result can be compared with the 
simulation without job grouping, where all Gridlets are 
sent to individual resources and the total overhead time is 
250 seconds (50 x 5) and total process time is 655 seconds. 
Here the total Gridlet computation time is 250 seconds and 
the communication time is 405 seconds. The 
communication time is very high when compared with the 
communication time of the simulation with grouping. 

We can compare the results for various number of 
Gridlets.   

a) Figure 6 compares Tree based scheduling 
algorithm with and without grouping on the basis 
of time taken for completion of the tasks 

 

 
 
 
Figure 6 Comparison of  Tree-Based Scheduling with and 
without job grouping 
       From the above Figure it can be seen that for Tree-
Based Scheduling the time taken to complete tasks after 
grouping the tasks is very less when compared with time 
taken to complete the tasks without grouping the tasks. 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010 
 

 

69

b) Figure 7 compares FCFS scheduling algorithm 
with and without job grouping on the basis of 
time taken for completion of the tasks 

 

 
 

           Figure 7 Comparison of FCFS Scheduling with job 
grouping and without job grouping 
 
       From the above Figure it can be seen that for FCFS 
scheduling the time taken to complete tasks after grouping 
the tasks is very less when compared with time taken to 
complete the tasks without grouping the tasks. 

c) Figure 8 compares FCFS scheduling algorithm 
with and without job grouping on the basis of 
time taken for completion of the tasks 

 

  
 

           Figure 8 Comparison of FCFS and Tree-based 
Scheduling with job grouping 
           From the above graph which shows the comparison 
of completion time taken for FCFS scheduling and Tree-
based scheduling with task-grouping, we can conclude 
that the Tree-based scheduling algorithm is better than 
FCFS scheduling algorithm. 
          
 
 

6.  Conclusion and Future works 
 
This paper discusses job scheduling in heterogeneous 

tree-based grid computing environment. By doing research 
and analysis of this problem, that aims at task scheduling  
with minimum total tasks completion time on a multi-level 
tree grid computing platform, a new measure, called Push-
Pull is used to build a single level tree, and develop  a 
linear planning model for it. Through Push-Pull, the 
problems of optimal number of tasks assignment and task 
scheduling on a multi-level tree is iteratively converted to 
those of a groups of single level tree, which can be 
implemented in parallel on a tree grid platform. GridSim is 
employed to carry out and simulate the tasks assignment 
algorithm, and distributed task scheduling .The results are 
compared with FCFS. The conclusion is that the 
scheduling algorithm employed is better than FCFS. 
      This Static Heuristic Scheduling algorithm only takes 
the initial research on task scheduling in tree based 
platform. However many issues remain open. Further 
improvement should be done to handle more complicated 
scenario involving dynamic factors such as dynamically 
changing grid environment and other QoS attributes. The 
improvement of this algorithm should concentrate on 
discussing simultaneous instead of independent task 
scheduling in heterogeneous tree-based grid computing 
environment 
 
Acknowledgment  
The authors convey their heartfelt thanks to 
Dr.C.Kalaiarasan, Principal, Tamilnadu College of 
Engineering, Coimbatore and Mr.K.V.Chidambaran, 
Director Cloud Computing Group, Yahoo Software 
Development (India) Pvt Ltd, Bangalore for providing 
them the required facilities to complete the project 
successfully. This project is carried out as a consequence 
of the PSG-Yahoo Research programme on Grid and 
Cloud computing 
 
 References  
 

        [1] Abraham A, Buyya R,Nath B. Nature's heuristics for  
      scheduling jobs on Computational grids. In: Proc. of     
      the  8th Int'l Conf on Advanced Computing and      
      Communications (ADCOM 2000). New Delhi:Tata  
      McGraw-Hill Publishing, 2000.  45-52.  
 [2] Linweiwei,qidele,liyongjun,wangzhenyu,zhangzhili.  
      Single task attempter in tree-model Grid Computing  
      environment. Software transaction.2006, 16(06),  
      pp.1000-9825  
 [3] Independent Tasks Scheduling on Tree-Based Grid  
      Computing Platforms LIN Wei-       Wei

+
, QI De-Yu,  

      LI Yong-Jun, WANG Zhen-Yu, ZHANG Zhi-Li  



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010 
 

 

70

      (School of Computer       Science and Engineering,  
      South China University of Technology, Guangzhou  
      510640, China)  
[4] An implementation of Karmarkar’s algorithm for linear    
     Programming Ilan Adler, Narendra Karmarkar,   
     Mauricio g.c. Resende, and Geraldo Veiga 
 
[5] Fangpeng Dong and Selim G. Akl, "Scheduling  
     Algorithms for Grid Computing:   
     State of the Art and Open Problems", Technical  
     Report,2006-504, School of   
     Computing, Queen' s University, Canada, January.2006 
 [6] J. Krallmann, U. Schwiegelshohn, and R. Yahyapour,  
     "On the Design and Evaluation of Job Scheduling  
     Systems", D. G. Feitelson and L. Rudolph, editors,  
     IPPS/SPDP'99 Workshop: Job Scheduling Strategies  
     for Parallel Processing. Springer, Berlin, Lecture  
     Notes in Computer Science, LNCS 1659, 1999 
 [7] I. Foster, C. Kesselman. The Grid, "Blueprint for a  
      Future Computing Infrastructure  
      [M]", USA, Morgan Kaufmann Publishers, 1999 
 [8] R. Buyya, Manzur Murshed, “GridSim: A Toolkit for  
      the Modeling and Simulation of Distributed Resource  
      Management and Scheduling for Grid Computing” 
     Concurrency Computation: Practice and Experience,  
     Vol. 14, No. 13-15, 2002, pp. 1507-1542 
 [9] Abraham. A., Buyya. R., and Nath. B.: “Nature’s   
      heuristics for scheduling jobs on  computational grids”,  
     Proc. 8th IEEE Int. Conf. on Advanced computing and    
     communications, Cochin, India, 2000. 
[10] Practical scheduling algorithms of independent tasks            
       on tree-based grid computing   platform zhen-yu wang,         
       can-cheng yang, Proceedings of the Sixth nternational    

   Conference on Machine Learning and Cybernetics,  
       Hong Kong, 19-22 August 2007 
 [11] Gerasoulis, A. and Yang, T.  A comparison of  
      clustering heuristics for scheduling directed graphs on  
      multiprocessors. Journal of Parallel and Distributed 
      Computing, 16(4):276-291. 
[12] Nithiapidary Muthuvelu, Junyang Liu, Nay Lin Soe,  
       Srikumar Venugopal, Anthony Sulistio and Rajkumar  
       Buyya, A Dynamic Job Grouping-Based Scheduling  
       for Deploying Applications with Fine-Grained Tasks  
       on Global Grids Australasian Workshop on Grid  
       Computing and e-Research (AusGrid2005),  
       Newcastle, Australia. Conferences in Research and  
       Practice in InformationTechnology, Vol. 44. 

       [13] T.F.Ang,W.K.Ng,T.C.Ling,L.Y.Por and C.S. Liew : 
 “A Bandwidth-Aware Job Grouping-Based 
Scheduling on Grid Environment” in the proceedings 
of  Information Technology Journal, 2009,Vol:8,  

              Issue 3,Page No. : 372-377  
[14] Sang Cheol Kim, Sunggu Lee, “Push-Pull:  
        Deterministic Search-Based DAG Scheduling for  

        Heterogeneous Cluster Systems”  Proceedings of   
        Parallel and distributed systems, vol. 18, no. 11,  
        November 2007 
 
Authors Profile : 
 
S.Selvarani received the B.E. degree in Computer Science 
and Engineering from Bharathiar University in 1991, and 
M.E. degree in Computer Science and Engineering from 
Manonmaniam Sundaranar University in 2004. She is 
currently working toward the PhD degree in Computer 
Science and Engineering under Anna University, 
Coimbatore, India. Her research work is in Grid and Cloud 
Computing with techniques for resource management and 
task scheduling 
 
Dr G Sudha Sadasivam is working as a Professor in 
Department of Computer Science and Engineering in PSG 
College of Technology, India. her areas of interest include, 
Distributed Systems, Distributed Object Technology, Grid 
and Cloud Computing. She has published 20 papers in 
referred journals and 32 papers in National and 
International Conferences. She has coordinated two 
AICTE-RPS projects in Distributed and Grid Computing 
areas. She is also the coordinator for PSG-Yahoo Research 
on Grid and Cloud computing.   
 

 
     

 


