
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

118

Manuscript received June 5, 2010
Manuscript revised June 20, 2010

Indexing and Querying Semistructured Data Views of
Relational Database

B.M. Monjurul Alom, Frans Henskens and Michael Hannaford

School of Electrical Engineering. & Computer Science, University of Newcastle, AUSTRALIA

Summary
The most promising and dominant data format for data
processing and representing on the Internet is the Semistructured
data form termed XML. XML data has no fixed schema; it
evolved and is self describing which results in management
difficulties compared to, for example relational data. XML
queries differ from relational queries in that the former are
expressed as path expressions. The efficient handling of
structural relationships has become a key factor in XML query
processing. It is therefore a major challenge for the database
community to design query processing techniques and storage
methods that can manage semistructured data efficiently. The
main contribution of this paper is querying semistructured data
using bitmap to represent path-value relationship and compress
the bitmap to save space. The presented bitmap indexing and
querying scheme termed BIQS data that stores the element path,
token of the word, attribute and document number in a
dynamically created matrix structure. We use word, attribute and
path dictionaries for the construction of a Bitmap structure. This
paper describes an algorithm to query semistructured data in a
more time efficient way than is provided by other relational and
semistructured query processing techniques. The presented BIQS
structure provides storage and query performance improvement
due to the compression of semistructured data.

Key words:
 Structural Join, XQuery, XPath, Bitmap, TwigStack, MySQL.

1. Introduction

Query processing is an essential part of any type of
databases as well as Semistructured (XML) databases [1].
Semistructured data does have some structure, but this
structure is not as rigid, regular, or complete as the
structure required by traditional database management
systems [20]. The use of XML as a semistructured data
format is becoming more prevalent, specially when
performing tasks such as the simple integration of data
from multiple sources [21]. The growth of XML
repositories on the Web has led to much research on
storing and indexing for efficient querying of XML data.

One option for managing semistructured, as well
as XML, data is to build a specialized data manager

that contains a XML data repository at its core [22]. It is
difficult to achieve high query performance using XML
data repositories, since queries are answered by traversing
many individual element-to-element links requiring
multiple index lookups [23] . In the case of XML data,
queries are even more complex because they may contain
regular path expressions [24]. Thus additional flexibility is
needed in order to traverse data whose structure is
irregular or partially unknown to the user. Another option
for managing semistructured data is to store and query it
with a relational database [22]. In the database community
many researchers argue that the relational (and object-
relational) model, due to its maturity and widespread
usage, is still the best option [25].

XML query processing is much more
complicated than traditional query processing methods
because of the structure of XML [1]. A path expression
specifies patterns of selection predicates on multiple
elements related by a tree structure named Query Tree
Pattern (QTP). Consequently, In order to process an XML
query, all occurrences of its related QTP should be
distinguished in the XML document. This is an expensive
task when huge XML documents are attended.

The well known query processing method termed
as Structural Join is described in [2]. In Structural Join,
query is decomposed into some binary join operations.
Thus, a huge volume of intermediate results are produced
in this method. The Holistic twig join approach [3] do not
decompose the query into its binary Parent-Child (P-C) or
Ancestor-Descendant (A-D) relationships but they need to
process all of the query nodes in the document. The query
processing method termed TJFast [12] which only process
elements which belong to the leaves of QTP instead of
processing all the nodes in the XML document. But this
method use a structure named Finite State Transducer
(FST) for decoding the code of nodes into the same name
of the path traversed from the root for each node, so FST
waste a lot of time.

The contribution of this paper is querying
semistructured data using bitmap to represent path-value
relationship and compress the bitmap to save space. The
presented BIQS supports the Structural Join query, Path
query, and Tree structure query which are processed by
joining path results. The BIQS technique also supports the

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

119

type of query where only a portion of the path name is
mentioned in the query. The paper presents the
comparison of query execution time of BIQS to the other
XML query processing time (Structural Join and
TwigStack) and relational query (Oracle, MySQL)
processing time.

Experimental results show that the proposed
technique queries the semistructured data in a time
efficient way than is provided by some of the other
existing XML and relational query processing techniques.
The paper presents the “time and space” complexity of the
proposed BIQS algorithm. The paper also addresses the
issue of relational (Semistructured data) querying using
compressed bitmap structure, the word, path, and attribute
dictionaries.

The bitmap structure provides the facility to store
huge information of words and paths into each cell of a
single block to compress the data. This compression leads
the data retrieval can be performed efficiently with low
latency. To understand the functionality of the proposed
technique, the algorithm shows the storing of sixteen
words and paths information into each memory cell of a
single block by a decimal value for the data compression.
But the compression is possible for the presented
structure upto the information of thirty two words and
paths into each memory cell of a single block. No lose of
any XML information is always maintained for the
proposed techniques.

The remainder of this paper is organized as
follows: Related work in section 2, a framework of the
proposed method is described in section 3. The algorithm
for Bitmap Structure is presented in section 4. Searching
and querying documents is described in 5. Section 6
experimental results. The paper concludes with a
discussion and final remarks in section 7.

2. Related Work

Many query processing techniques such as
Holistic Twig Join methods have been proposed in [6, 8,
13, 18] to process a twig query efficiently; however, they
still suffer from large number of redundant function calls.
A new approach termed TwigStack+ is proposed in [19]
to solve this problem, which based on holistic twig join
algorithm that greatly improve query processing
performance. The TwigStack+ technique is used to reduce
the query processing cost, simply because it can check
whether other elements can be processed together with
current one. The proposed technique also used to check
the usefulness of an element from both forward and
backward directions. Different XML query processing
techniques are also elaborated in [4, 7, 9, 11, 15].

TSGeneric+[6] made improvements on
TwigStack by using XR-Tree to skip some useless

elements which have Solution Extensions but cannot
participate in any path solution. TwigStackList [8] handles
the sub-optimal problem by attaching an element list to
each query node to cache some elements, TJFast [12]
improved the query processing performance by scanning
elements of leaf nodes in the query to reduce the I/O cost.
Although the existing methods [6] can guarantee the
optimality of CPU time and I/O when only AD edges
involved in the twig pattern, they all suffer from large
number of redundant function (getNext(root) calls.

A query processing and update processing
method termed EXEL (Efficient XML Encoding and
labeling) is presented in [10].

SIGOPT (schema information graph) to optimize
XML query processing is described in [17]. The
presented technique explores the opportunities for schema
information to affect the query evaluation performance.
Multi-level operator combination in XML query
processing is described in [16] which elaborates the
importance to consider the operations at each level.
Specifically, the technique considers the influence of
projections and set operations on pattern-based selections
and containment joins.

Database management systems support indexing
to provide better query performance. Indexing provides a
flexible, uniform and efficient mechanism to access data
[22]. There are some path indexes like Strong
DataGuide[26], Fabric Index, ToXin[27], APEX[28],
Index1[24] , A(k) Index, and Fix[29] which are indexing
the path of document’s nodes to facilitate access to nodes
required in XML query processing methods. These path
indexes are other kinds of query processing methods
which are against the Structural Join[2], Twig Join[3] and
TJFast[12] methods.

Most of the indexing schemes can only be
applied to some limited query processing stages or limited
class of queries. To overcome these limitations an
indexing scheme called ToXin [27] has been developed.
ToXin fully exploits the overall path structure of the
database in all query processing stages, consisting of Path
index and value index. A three dimensional bitmap
indexing scheme named Bitcube [30] considers a more
complex frequency table that represents a set of
documents together with both a set of element paths and a
set of words for each path. A new system for indexing and
storing XML data based on a numbering scheme for
elements is proposed in [11].

Query capabilities are provided through
Structural Join and Twig queries, which are the core
components of standard XML query language, e.g.
XPath[31] and XQuery[32]. Techniques also exist for
querying XML data such as Lorel[21], XML-QL[33] ,
XQL[34], UnQL[35], XML-GL[34], XSL[34], Quilt[25];
however these query languages are complicated to use and

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

120

have some limitations. A comprehensive effort has been
done on storing and querying XML data using relational
databases are described in [4, 7, 9, 15, 36-40] [23, 36-48]
also a comprehensive effort has been done on XML data
compression are presented in [22].

 3. Framework of the Proposed Technique

3.1 Overall Architecture of the System

To understand the functionality of the proposed technique
the overall architecture is presented in Fig. 1. Data
processing engine is used to generate a word dictionary, a
path dictionary, and an attribute dictionary, which together
become the basis of a bitmap matrix to store XML
document information. The path elements are calculated
from root to nested sub element among all the XML
documents. The attribute dictionary records all the
attributes (not distinct attributes) including the content of
each attribute and the corresponding document number.
The word dictionary records a token number for each
distinct word. The path dictionary stores all the distinct
path elements including their path number.

Multi block compressed structure stores all the
raw information in compressed form. Token and Path (TP)
structure are used to represent the token and path number.
Secondary indexing is used for searching the token and
path number from the Token and Path structure to reduce
the search time. The compressed structure with dictionary
and TP (Token Path structure) are maintained on main
memory. Input query through query manager is applied to
the compressed structure to obtain the output query.

The developed structure is not always same, if the
set of documents are considered but in different order.
Different order of the documents provides the
differentiation of the structure that does not mean the
structure loses some XML information. The structure
always maintains the exact information of the original
XML database whether the set of documents are
considered in different order or same order. For any order
of the documents, the data are stored in a multi block
compressed structure, which leads the searching efficiency.
Also for the use of dynamic matrix structure the efficiency
of the updating is not degraded.

3.2 Construction of Bitmap Structure

BIQS dynamically creates a two dimensional matrix
structure which represents the existence of all the words
and element paths in the corresponding documents. The
first row of the matrix structure records all the token
numbers for the corresponding words and the associated

path numbers for the words. All the tokens exist (are
bounded) within their corresponding path numbers in the
first row of the BIQS structure.

. We use a negative (-) sign before all path
numbers to differentiate them from token. The first
column of the matrix stores the document number. The
entries of the matrix use a bit value (1/0) to represent the
existence or not of the word and element path within the
document number. To represent a new path from an XML
document, this approach initially generates a new column
in the matrix structure. The first row (entry) of the column
stores the path number (from path dictionary) and a value
1 is inserted to the next row of the created column. The
value 1 denotes a path’s existence in the document. The
tokens (from word dictionary) of all the words within the
selected path number are stored similarly by creating new
columns in the matrix structure.

A value 1 is inserted into the next entry of each
of the created columns for the token. Each row of the
matrix structure records all the information of each distinct
XML document. The system similarly completes the
matrix creation for all XML documents. BIQS does not
create new columns within an existing path, for the same
word even for different documents. The technique always
creates new columns for the same word but different path
number, whatever the document number. We consider
the XML documents given in Fig. 2, Fig. 3, Fig. 4, and Fig.
5 for use in demonstrating our proposed bitmap
construction.

3.3 Construction of Dictionary and BIQS with
Example

The word dictionary, path dictionary and attribute

dictionary (comprising Tables I, II and III) have been
created from XML documents shown in Fig. 2, Fig. 3, Fig.
4 and Fig. 5. The attribute dictionary, given in Table III,
shows that an attribute named key has four different values
in different documents such as 2 and 4. In path dictionary,
nasa.datasets.dataset.title and dblp.msthesis.title represent
two different path number.

The system creates a new column in the matrix
structure (given in Table IV) to record the path name
“nasa.datasets.dataset” from document1 (given in Fig. 2),
and the path number (-1) is assigned to the first row of the
created column, and a value 1 is assigned to the next row
of the created column to indicate existence of the
document1. There are no words within this path number
except some attributes. Therefore no token is updated
within this path number. Similarly, for the path number 2,
a new column is created in the structure. For all the words
within this path number, a new separate column is created
and the value 1 is assigned to the next row of the created
column indicating their existence to the corresponding

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

121

document. Thus the token 1 for the word ProperMotion is
recorded within the path number 2. The value 1 is
assigned to the next row of the created column indicate
their existence to the corresponding document. In Table
IV, 1 is the token within path number 2. The created
matrix structure after extracting all the words and paths
from document1 to document4, is given in Table V.

3.4 Methodology to Compress the Bitmap
Structure
The system separates the BIQS structure into two
structures to compress the XML data. The first row is one
structure named Token and Path structure used to
represent the token and path number. This row is indexed
serially starting from 0. Later, these indexes are used for
searching the token and path number from the Token and
Path structure. Another structure named Compressed
(BIQS) Bitmap Index Structure consists of all other
remaining rows of the matrix (except the first row).

In this structure each row is divided into blocks.
In each block, the information of 16 (words and paths) bit
cells is compressed. As each row represents the
information of each XML document, there may be a
different number of blocks for each document and each
block consists of different values for different documents.
The compression is also possible using 32 bit cells. The
token and path structure is presented in Table VI. The
compressed bitmap structure is presented in Table IX. The
value of each 16 bit cells is recorded in decimal form. If
there is not enough of the data to form a block with 16 bit
cells, we fill these bits with zero.

The compressed BIQS structure is given in Table
VIII; the first column of the structure represents the
document number and the other three columns represent
the blocks. The value of each block is generated from the
BIQS structure given in Table V. The values of the Block0
are 65472, 57, 0 and 39. These values represent the
compressed information of data for different XML
documents. This compression does not lose any
information. We use the compressed BIQS structure for

searching the data. Realistically, we are not converting the
binary values (from Table V) into decimal values (into
Table VIII) rather than we store the information for 16
words and paths into a single cell of a block.
The system separates the BIQS structure into two
structures to compress the XML data. The first row is one
structure named Token and Path structure used to
represent the token and path number. This row is indexed
serially starting from 0. Later, these indexes are used for
searching the token and path number from the Token and
Path structure. Another structure named Compressed
(BIQS) Bitmap Index Structure consists of all other
remaining rows of the matrix (except the first row).

In this structure each row is divided into blocks.
In each block, the information of 16 (words and paths) bit
cells is compressed. As each row represents the
information of each XML document, there may be a
different number of blocks for each document and each
block consists of different values for different documents.
The compression is also possible using 32 bit cells. The
token and path structure is presented in Table VI. The
compressed bitmap structure is presented in Table IX. The
value of each 16 bit cells is recorded in decimal form. If
there is not enough of the data to form a block with 16 bit
cells, we fill these bits with zero.

The compressed BIQS structure is given in Table VIII; the
first column of the structure represents the document
number and the other three columns represent the blocks.
The value of each block is generated from the BIQS
structure given in Table V. The values of the Block0 are
65472, 57, 0 and 39. These values represent the
compressed information of data for different XML
documents. This compression does not lose any
information. We use the compressed BIQS structure for
searching the data. Realistically, we are not converting the
binary values (from Table V) into decimal values (into
Table VIII) rather than we store the information for 16
words and paths into a single cell of a block.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

122

Fig. 1 Architecture of the Query Processing Methodology.

<nasa>
<datasets>
<dataset subject="astronomy" xmlns:xlink="http://www.w3.org">
 <title> ProperMotions </title>
 <altname type="ADC">I/1005 </altname>
 <altname type="CDS">I/5 </altname>
 <author>
 <firstname>Jack</firstname>
 <lastname>Spencer</lastname>
 </author>
 </dataset>
 </datasets>
 </nasa>

Fig. 2: XML document-1

<dblp>
 <msthesis key="ms/Brown92">
 <author>Brown </author.
 <title> DB System </title>
 <year>1992</year>
 <school>Madison</school>
 </msthesis>
 <msthesis key="ms/Yurek97">
 <author>Yurek</author>
 <title>DataWarehouse</title>
 <year>1997</year>
 <school>california</school>
 </msthesis>
 </dblp>

Fig. 3: XML document-2

<Yahoo>
<listing>
 <seller_info>
 <seller_name>Katich</seller_name>
 <seller_rating>new</seller_rating>
 </seller_info>
 <item_info>
 <memory>128MB RAM</memory>
 <HD>40GB</HD>
 <cpu>Pentium-III</cpu>
 <item_info>
 </listing>
 <listing>
 <item_info>
 <memory>256MB RAM</memory>
 <HD>80GB</HD>
 <cpu>Pentium-IV</cpu>
 <item_info>
</listing>
</Yahoo>

Fig. 4 :XML Document-3

<dblp>
 <msthesis key="ms/Korth94">
 <author>Korth</author.
 <title> DataMining </title>
 <year>1994</year>
 <school>MIT</school>
 </msthesis>
 <msthesis key="ms/Martin98">
 <author>Martin</author>
 <title>DSP</title>
 <year>1998</year>
 <school>Texas</school>
 </msthesis>
 </dblp>

Fig. 5: XML document-4

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

123

Table 1. Word dictionary. Table 2. Path dictionary. Table 3. Attribute dictionary.

W ord Token

ProperMotions 1

I/005 2

I/5 3

Jack 4

Spencer 5

B rown 6

DB 7

System 8

1992 9

Madison 10

Yurek 11

DataWarehouse 12

1997 13

california 14

Katich 15

new 16

128MB 17

40GB 18

Pentium-III 19

256MB 20

80GB 21

Pentium-IV 22

Korth 23

Datamining 24

1994 25

MIT 26

Martin 27

DSP 28

1998 29

Texas 30

Path
Number

P a th

1 nasa.dat ase t s.dat aset

2 nasa.dat aset s .dat aset .t it le

3 nasa.dat aset s.dat aset .altname

4 n asa.dat aset s.dat ase t .author.first name

5 nasa.dat aset s.dat aset .author .lastname

6 dblp.m sthesis

7 dblp.msthe sis.author

8 dblp.msthesis.t it le

9 dblp.m sth esis.year

10 dblp.msthe sis.school

11 Y ahoo.list ing.seller _info.seller_name

12 Y ahoo.list ing.seller _info.seller_rat ing

13 Yahoo. list ing.it em _info.m emory

14 Yahoo.list ing. it em_info.HD

15 Yahoo.list ing. it em_info.cpu

Attribute
Name Cont ent Doc

Number
Path

Number

subject ast ronomy 1 1

xmllns:xlink "ht tp ://www.w3. org" 1 1

t ype A DC 1 3

t ype CDS 1 3

key ms/brown92 2 6

key ms/yurek97 2 6

key ms/korth94 4 6

key ms/Mart in98 4 6

Table 4: The Structure after completing Document-1

-1 1 -2 2 3 -3 4 -4 5 -5
1 1 1 1 1 1 1 1 1 1 1

P at h number

Docume nt number

W ord T o ken

P resenc e of W ord & P at h
t o corr esponding docum ent

Table 5: BIQS Structure.

-1 1 -2 2 3 -3 4 -4 5 -5 -6 6 11 23 27 -7 7 8 12 24 28 -8 9 13 25 29 -9
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1
3 0
4 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

124

10 14 26 30 -10 15 -11 16 -12 17 20 -13 18 21 -14 19 22 -15
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
4 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6: Token and Path Structure.

Inde x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

-1 1 -2 2 3 -3 4 -4 5 -5 -6 6 11 23 27 -7 7 8 12 24 28 -8 9 13 25 29 -9

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
10 14 26 30 -10 15 -11 16 -12 17 20 -13 18 21 -14 19 22 -15

Table 7: Path Searching from Token and Path Structure.

Secondary
Index

Path
No

T oke n_Path_I
ndex

1 -1 0
2 -2 2

....... 5
........ 7
........ 9
......... 10

............ 15

............ 21
.... 26
.... 31

..... 33

..... 35
.... 38
..... 41

N -P 44

 log 2
P

Step

Table 8. Token searching between two paths.

26 27 28 29 30 31
-9 10 14 26 30 -10

K be t he number o f tokens be tween any two
 p aths in Token and Path Structure

Table 9. Compressed BIQS Structure.

.

Docum ent
Num ber Block-0 Block-1 Block-2

1 65472 0 0
2 57 59193 0
3 0 0 65528
4 39 7399 0

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

125

4. Algorithm of the Technique

We have developed an algorithm shown in Fig. 6. To
understand the algorithm the following data structures are
necessary:
DPath: Distinct Path; DPNumber: Distinct Path Number;
PDic[][]:Path Dictionary; DocNumber: Document
Number; DWord: Distinct Word; WDic[][]: Word
Dictionary; ADic[][]: Attribute Dictionary; Att: Attribute;
NPath: New Path; BMS: BIQS Matrix Structure; NC: New
Column; PIndex: Path Index; NPIndex: New Path Index;
FR: First Row; TNumber: Token Number; WNPIndex:
Word New Path Index; CBS: Compressed Block
Structure; CIndex: Compressed Index; TNDC: Total No of
Dynamic created Column in BMS; WPIndex: Word Path
Index; BIndex: Block Index; BinDec(): Binary to Decimal;
SIndex: Secondary Index; CPnumber: Current Path
Number; IPCPath: Immediate Previous Path of Current
Path; BN: Block Number; IToken: Index of the Token;
OPos: Offset Position; BN: Block Number; TP: Token
Path Structure; WPInfoVal: Word Path Info Value.
Dictionary_Construction (): This function is used to create
the word, path and attribute dictionaries.
Dynamic_Matrix_Structure(): This function constructs the
matrix structure including all tokens, paths, and attributes
with their associated documents.
Searching_Structure(): This function describes the
compression of the XML information, division into
blocks, and storage of XML data into the compressed
bitmap structure.
Index: Is used to store the index number of the searching
token from Token and Path structures.
//Block_no: Each row has multiple block_no; each block
consists of a16 bit information cell.
//Offset position: Determines the position for the existence
of word or path or attribute in the //document.

Algorithm BIQS()
Begin

Dictionary_Construction();
 Dynamic_Matrix_Structure();

Searching_Structure();
End.
Dictionary_Construction()
 Begin
Calculate All the DPath from root to
nested sub-element;
 For each Dpath do
Begin
 PDic[PIndex][1]=DPNumber;
 PDic[PIndex++][2]=DPath;
End

For each DWord do
Begin
 WDic[WIndex][1]=DWord;
 WDic[WIndex++][2]=WTNumber;
End
For each Att do
Begin

 ADic[AIndex][1]=AttName;
ADic[AIndex][2]=AttContent;
ADic[AIndex][3]=DocNumber;
ADic[AIndex++][4]=PNumber;

 End
 End. // Word_Path_Attribute

Dynamic_Matrix_Structure()
 Begin
For each NPath do
Begin
Create a NC in BMS;
//store the path number in the first
row of the created column;
//Store the negative sign before the
path number;
//Insert 1 to the next row of the
created path number;

BMS[NPIndex][FR++]=-PNumber;
BMS[NPIndex][FR]=1;

 End
For each DWord do
Begin
//Create a new column in matrix
structure within the path number;
//Insert the token number onto the
first entry of created column;
//Insert 1 to corresponding doc..number
(next row of created column) for
created token;
 Create a NC in BMS within PNumber;
 BMS[WNPIndex][FR++]=TNumber;
 BMS[WNPIndex][FR]=1;
End

//Separate the first row of (BIQS)
Bitmap Index structure as a TP
Structure;
//For all other rows form BMS

TPS=First Row of the BMS;
For CIndex=i+1 to DocNumber do

Begin
 For WPIndex=1 to TNDC do

//Convert the values of 16 bit memory
cell into a decimal form;
Begin

CBS[BIndex][Col++]=BinDec(BMS[WPI
ndex][1]to BMS[WPIndex][16]);

End

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

126

 BIndex++;
End
End

Searching_Structure()
Begin
//Path number are sorted in ascending
order //through the Token and Path
structure
//Use a secondary index on these path
numbers
//Apply Binary searching to find the
path number from these (index)
structures;
//Apply Binary Searching within this
(current) path number to immediate
previous path //number to find the
Index of the token from token and
path structure;

Search the TNumber of input query
(word) from Wdic;
Apply BS to find PNumber from SIndex;
Apply BS to find IToken within
CPnumber to IPCPath from TP;

 BN=IToken/ 16;
 OPos=IToken % 16;

//For each Block from Compressed Bitmap
Index Structure do
//If a 1 is found in the offset
position, the searching word is found
//so return the row number which is the
document number;

 For each Block of CBS do
 Begin
 WPInfoVal=DecToBin();
If (WPInfoVal[OPos])==1){Return RNo;}
 Else {Return 0;}

 End
 End.

Fig. 6 Algorithm for the Proposed Technique.

5 Searching and querying the Documents

The BIQS technique supports different types of querying
and searching, applied to the compressed structure of the
data. Users search the word dictionary to find the token for
the corresponding word; after obtaining the token, the
system finds (using Binary Search technique) the index
position of the token from the Token and Path structure,
and the path number in which the token is bounded.
Because information for 16 memory cells is compressed in
each block, the Block_no is calculated, dividing the index
number by 16. The Offset_position is also calculated as
the index number modulo 16. From the compressed data
structure (Table IX), the corresponding values of each

block are converted into binary forms to check the word’s
existence in the document. The approach checks the
existence of value 1 in the corresponding offset position in
each of the block values. The presence of the value 1 in
the corresponding offset position indicates the existence of
the word in the corresponding document number. The
system can search for a single word or for multiple words.

To search for an element-path (and path contents),
the system initially searches the path number within the
path dictionary and then searches all the token numbers
within this path number from the Token Path structure.
Whilst searching the path number from Token Path
Structure, always we use Binary search technique. To get
the Index of the Token, from Token and Path Structure,
we also apply Binary search within this (obtained) path
number and immediate previous path number. This is
because all the word’s token for a specific path are
recoded, from the previous path number to the obtained
(current) path number. As the system uses the (-) negative
sign before the path number, it is easy to find the range of
searching within the path numbers. After obtaining the
token number, the corresponding words are searched for in
the word dictionary.

If searching for an attribute (from an XML
document), the technique can search directly from the
attribute dictionary. In the attribute dictionary, every
attribute has its content, name and corresponding
document number recorded. The overall (element’s
content) word searching structure is shown in Fig. 7.

The functionality of the searching scheme is
demonstrated in the following examples:

Query # 1: Find all the author’s firstname from all
documents.
The above query is represented in XPath is as follows:
 /nasa/datasets/dataset/author/firstname
The tree structure of the above query is as follows:

According to BIQS the query is represented as follows:
Select nasa.datasets.dataset.author.firstname
From documents;
 The system supports these types of query. It is required
to find all the contents of this path name from all XML
documents. The technique finds the path

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

127

(nasa.datasets.datset.author.firstname) number from the
path dictionary, and it is 4. The token stored within this
path number (from Token and path structure, Table VI), is
4. The system searches for the words from word dictionary
to the corresponding token 4, which is Jack and see it is
correct from the XML documents shown in Fig. 2-5.

Query #2: Find the title of the msthesis under dblp which

have sub-element (author) containing “Korth” and sub-
element (year) with a value is 1994.

The above query is represented in XPath is as follows:
/dblp/msthesis[contains(./author,“Korth”)and
year=1994]/title
The query tree structure of the above query is as follows:

According to BIQS the query is represented as follows:
Select title
From documents
Where (dblp.msthesis.author= “Korth”and
dblp.msthesis.year=1994)

The system supports these types of query. The
search technique searches for the token of the words Korth,
1994 and finds it to be 23 and 25 from the word dictionary.

The path number of “dblp.msthesis.author” and
“dblp.msthesis.year” are 7 and 9. We see token 23 is
within path number 7 and 25 is within path number 9
(from the Token and Path structure). As both conditions
are true, the technique finds the index of the token 23 is 13
and 24 for token 25. So Block no=13/16=0 and 24/16=1,
the system searches the values of Block-no 0 from (BIQS)
Compressed Bitmap index structure. The offset position=
13%16=13. The offset position 13 is checked to have a
value 1, from all the values of Block-0. We see only in the
4th value 39 (0000000000100111) (which correspond to
4th row) has 1 in the offset position 13 (starting from left
to right, 0 to 15) 1. Hence this represents the existence of
the word in document-4. But this token is not present in
3rd value that is in document-3 or in document-2 or in
document-1.

 Similarly the offset position (24%16=8) 8 is checked
through the values of Block-no 1. We see only in the 4th
value 7399 (0001110011100111) (which correspond to 4th
row) has 1 in the offset position 8 (starting from left to
right, 0 to 15) 1. Hence this represents the existence of the
word in document-4. Also this token is not present in 3rd

value that is in document-3 or in document-2 or in
document-1 in all other values of Block-no 1.

 As the query works on satisfying both of the conditions,
so both of the tokens are found only in document-4 (path
named “dblp.msthesis.author” and “dblp.msthesis.year”)
within path numbers 7 and 9. The paths title, author, and
year are the siblings of “dblp.msthesis”. The path number
of the title is 8 which contains the token 24 for both of the
given satisfied conditions. So the query lists the output
“DataMining” for the title, of the corresponding token 24.

Query # 3: Find all the information of Hard Disk (HD)

from all the documents (given in Fig.2-5).
This query (which is an example of structural join (i.e. //
ancestor-descendant relationship) does not matter where
HD are?
The above query is represented in XPath is as follows:
/Yahoo//HD
The tree structure of the above query is as follows:

According to BIQS (supports these types of query where a
portion of the path name) the query is represented as
follows:
Select HD
From documents;
The BIQS technique, finds the path number (which
matches the paths from path dictionary either full path
name or portion of path name), and it is 14. All the tokens
are stored within this path number (from Token and path
structure, Table VI), and are 18 and 21. The system
searches for the words from word dictionary to the
corresponding tokens (18 and 21) and these are 40GB and
80GB and see it is correct from the XML documents
shown in Fig. 2-5.

Query # 4: Select all the attributes with the name key from
documents.

Select @key
From documents;

In this query the existence of key as an attribute in XML
documents is investigated. The system uses @ sign before
any name of an attribute to distinguish from path name. In
the case of attribute searching, the BIQS technique
searches for the attribute directly in attribute dictionary. It
is found four instance of key exists in the attribute
dictionary. The contents of the attribute are ms/brown92,
ms/yurek97, ms/korth94, and ms/Martin98. The first two
attributes exist in document 2 and the last two in document

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

128

4 (from the attribute dictionary). These attributes represent
the information of the “ms/thesis” which is also associated
with a path number (6) within path dictionary.

Query # 5: Find all the cpu information of item_info.
This query is an example of in which the path does not
start from root.
The above query is written in XPath query language as
follows:
/item_info/cpu
The tree structure of the above query is as follows:

item_info

cpu cpu

According to BIQS the query is as follows:
Select item_info.cpu
From documents
In this query the “item_info.cpu” is part of path name
“Yahoo.listing.item_info.cpu”. The technique finds the
full path name and matches the portion of the path name
given by the query. After satisfying this, the technique
finds the path number from the path dictionary, and it is 15.
The token stored within this path number (from Token and
path structure, Table VI), is 19 and 22. The system
searches for the words from word dictionary to the
corresponding token 19 and 22, which is Pentium-III and
Pentium-V see it is correct from the XML documents
shown in Fig. 2-5.

6 Experimental Results

 To We used Oracle 9i (Enterprise Edition
Release 9.2.0.8.0) and Stylus Studio 2009 XML Enterprise
Suite Release 2, to evaluate the different query results in
the case of a centralized system. We also used the C++
language using BorlandC compiler (32 bit that supports up
to 4 GB RAM) to implement our proposed technique. We
used an Intel Processor with 2.13 GHz, 1.99 GB of RAM
under the Windows XP professional operating system. To
support the Oracle 9i database we used the Linux
operating system. We used the (well structured) XML
datasets (Bib.xml, Yahoo.xml, Protein_Sequence.xml,
Dblp.xml) in [49] to run the comparisons of the XQuery
language and our proposed BIQS technique using file
sizes of .004MB, .024MB, 5.78 MB, 11MB, 130MB, and
683MB. We have presented the other types of the query
used for the experiments of BIQS in Table 10. We took all
the average of these measured times for different queries.
 To compare with other relational databases like
MySQL, we used our own (custom) generated database

named Personal-info comprising different file sizes (5.78
MB, 11 MB, 34.14, 53.03 MB, 104.46 MB, 130 MB, and
683 MB) and consisting of millions of tuples in the
database relations. We measured the time (in sec) with
respect to each query operation using different numbers of
predicates by using Java Eclipse. The Java Eclipse is
connected with the MySQL database for the execution of
different (MySQL DB) query operations. The query
execution time (in sec) using MySQL is presented in Fig.
7. It is clear from Fig. 7 that the measured time for the
query operation increases due to increasing the number of
Predicates and file sizes.

The measured time for different XQuery
operations is shown in Fig. 8. To run the query operation
we use different types of predicates in path expressions.
Fig. 8 clearly shows that the XQuery evaluation time for
AND operations is always larger than for the OR
operations. Also the query time increases due to increasing
the number of conditions or predicates. It is concluded
from Fig.7 and Fig.8 that it takes more time for
semistructured XQuery operations than Relational query
operation.

We also used an Oracle database to evaluate the
query performance for our generated database named
“Personal Information”, with different file sizes. The
query time for both AND & OR operations as measured
with respect to different numbers of predicates in the
WHERE clause. The execution times are presented in Fig.
9 and Fig. 10. We ran the query with respect to all true
conditions, all false conditions, and a combination of the
conditions. We took all the average of these measured
times. It is concluded from Fig.7, Fig.8, Fig. 9 and Fig. 10
that it takes more time for semistructured XQuery
operations than Relation query operations (MySQL) but
less time than Oracle SQL operation.

The measured query processing time for different
query operations using BIQS is shown in Fig. 11 and Fig.
12. The query execution time (Fig. 11 and Fig. 12) is
better than the XQuery execution time (shown in Fig. 8.)
for the same database size. Comparing Fig 8, Fig. 9, Fig.
10, Fig. 11 and Fig 12, it is clear that BIQS is time
efficient. The query processing time presented in Fig. 11,
Fig. 12, and Fig. 13 for BIQS also includes the pre-
processing time (such as dictionary construction time).

The comparison analysis for XQuery execution
time, execution time in Oracle, MySQL, and BIQS are
presented in Fig. 13. It can be seen that BIQS execution
times were slightly slower than MySQL, but better than
those of XQuery, and also that BIQS outperforms the
highly regarded Oracle execution times across the range of
predicates tested. The results show that the improvement
achieved by BIQS increases with the number of predicates.

In order to evaluate the construction and
manipulation of bitmap indexing [30], we used their

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

129

execution time to compare with our presented BIQS
execution time. A set of experiments was also performed
to compare the query execution times of BIQS and
Bitcube [30] as shown in Fig. 14. These experiments used
500, 1000, 1500, 2000 and 2500 element paths (ePaths)
per document and a variety of words per element path. For
all numbers of ePaths per document, and all numbers of
documents, BIQS outperformed.

The comparison analysis for query execution
time of BIQS using different file sizes with other XML
query processing techniques is presented in Fig. 14. The
comparison analysis in Fig.15 is presented based on the
query Q-7 (Structural Join) presented in Table XI on
TreeBank Data set. A tabular form is also presented in
Table X. In Table X, the first row represents the different
file sizes and the other rows represent the query execution
time (in Sec) for structural join operation of different
query processing techniques corresponding to the file sizes.
We have compared the running time of BIQS with the
query execution time of other query processing techniques
presented in [19]. The graph presented in Fig. 15, shows
that the BIQS has better time efficiency than that of some
other (such as TSGeneric+, TwigStack) techniques. The
preprocessing time of BIQS is also presented in Fig. 16.
The compressed and uncompressed comparison is
presented in Fig. 17.

0.01

0.1

1

10

100

1 2 3 4 5 6 7
No of Predicates

Ex
ec

ut
io

n
tim

e
(in

 S
ec

)

File size (5.78 MB) File size(34.14 MB) File size(53.03 MB)

File size(104.46 MB) File size (130 MB) File size(683 MB)

Fig. 7: The Query Execution Time (AND condition) using MySQL

Fig. 8: The XQuery Execution Time for different file sizes.

Fig. 9: The Query Execution time using OR operation in Oracle DB.

Fig. 10: The Query Execution time using AND operation in Oracle DB.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

130

0.01

0.1

1

10

100

1 2 3 4 5 6 7

No of P redicat es

BI
Q

S
Ex

ec
ut

io
n

Ti
m

e
(s

ec
)

File s ize (.004 MB) File s ize (.024 MB) File s ize (5.78 MB)

File s ize (11 MB) File s ize (130 MB) File s ize (683 MB)

Fig. 11: Query Execution Time by BIQS Technique (wrt AND
condition).

0.001

0.01

0.1

1

10

100

1 2 3 4 5 6 7

No of Predicates

BI
Q

S
Ex

ec
ut

io
n

tim
e

(s
ec

)

File size (.004 MB) File size (.024 MB) File size (5.78 MB)
File size (11 MB) File size (130 MB) File size (683 MB)

Fig. 12: The Query Execution Time Using BIQS (wrt OR condition).

0.01

0.1

1

10

100

1000

5.78 MB 11 MB 130 MB 683 MB

File size

Ex
ec

ut
io

n
Ti

m
e

(in
 se

c)

Oracle Xquery BIQS MySQL

Fig. 13: Comparison of Query Execution Time.

Fig. 14: Execution time wrt word/ePath/doc.

Fig. 15: Comparison of Query Execution Time over Different Data size
using Q-7 (Table 10).

Fig. 16: Preprocessing Query Execution Time for BIQS.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

131

Table 10. Query used in our Experiments.

Qu
ery

Dataset XPath Expression

Q-1 DBLP /dblp/msthesis/year
Q-2 Yahoo /Yahoo/listing/Seller_info/Seller_rati

ng
Q-3 Nasa /Nasa/Datasets/dataset/author/lastna

me
Q-4 Yahoo Yahoo/cpu
Q-5 DBLP /dblp/msthesis/[author= “ korth ”

and year=1994]/title
Q-6 Protein

Databse
/ProteinDatabase/ProtenEntry/Refere
nce/Referenceinfo/ authors/author

Q-7 Tree Bank //SS[//JJ]/NP

 Fig. 17: Uncompressed to Compressed XML files using BIQS structure.

7 Conclusions and Future Work

XML is a convenient, semistructured data format for
information exchange and some data processing tasks.
Other activities, particularly searching and sorting of data,
are better supported if the data is represented in a more
structured form, such as that used by relational databases.

This paper describes the BIQS technique to query
semistructured data in a more time efficient way than is
provided by some of the other relational and
semistructured query processing techniques. The presented
BIQS supports the Structural Join query, Path query, and
Tree structure query. The paper presents the comparison
of query execution time of BIQS to the other XML query
processing time (Structural Join and TwigStack) and
relational query (Oracle, MySQL) processing time.
Experimental results show the proposed technique queries
the semistructured data in a time efficient way than is
provided by some of the other existing XML and
relational query processing techniques.

The presented BIQS provides storage and query
performance improvement due to the compression of
semistructured data. Our experiments show that XML data
compression is almost 35-38% comparing to the
uncompressed data. The execution time of BIQS also
demonstrates better time efficiency when compared to the
highly regarded Bitcube, Oracle, and XQuery.

Issues such as Aggregate function, Database updating,
more complex Twig query, aggregate function, deleting,
dynamic data updating will be the future research work.

References

[1] V. Garakani, M. Harizi, and M. Harizi, "Effective

Guidence-Based XML Query Processing," in
International Conference on High Performance
Computing and Communications, Dalian, China 2008,
pp. 605-612.

[2] Al-Khalifa, J. S, K. H.V, P. N, S. J.M, and W. Y,
"Structural Joins: A Primitive for Efficient XML
Query Pattern Matching," in International Conference
on Data Engineering (ICDE), San Jose, CA, 2002, pp.
141-152.

[3] N. Bruno, N. Koudas, and D. Srivasta, "Holistic Twig
Joins:Optimal XML Pattern Matching," in
International Conference on Management of Data
(SIGMOD), Madison, Wisconsin, 2002, pp. 310-321.

[4] A. David, G. David, N. Ashish, C. Knight, and B. Peter,
"Semistructured Data Management in the Enterprise: A
Nimble, High-Throughput, and Scalable Approach," in
The 9th International Conference on Database
Engineering & Application Symposium (IDEAS), 2005.

[5] G. Gottlob, C. Koch, and R. Pichler, "The Complexity
of XPath Query Evaluation," in PODS San Diego, CA,
2003.

[6] J. Haifeng, W. Wei, and L. Hongjun, "Holistic Twig
Joins on Indexed XML Documents," in International
Conference on Very Large Databases (VLDB), Berlin,
Germany, 2003, pp. 273 - 284

[7] S. Hartmann and S. Link, "XML Query
Optimization:Specify your Selectivity," in The 18th
International Workshop on Database and Expert
Systems Applications (DEXA) IEEE Computer Society,
2007.

[8] L. Jiaheng, C. Ting, and W. L. Tok, "Efficient
Processing of XML Twig Patterns with Parent, Child
Edges: A Look-ahed Approach," in International
Conference on Information and Knowledge
Management, Washington Dc, 2004, pp. 673-682

[9] V. Josifovskil, M. Fontoura, and A. Barta, "Querying
XML Streams," The journal on Very Large Databases
(VLDB) vol. 14, pp. 197-210, 2005.

[10] M. Jun-Ki, L. Jihyun, and C. Chin-Wan, "An Efficient
XML Encoding and Labeling method for Query
Processing and Updating on Dynamic XML Data," The
Journal of Systems and Software, vol. 82:2009, pp.
503-515, 2008.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

132

[11] Q. Li and B. Moon, "Indexing and Querying XML
Data for Regular Path Expressions," in The 27th
International Conference on Very Large
Databases(VLDB) Roma, Italy, 2001.

[12] J. Lu, T. W. Ling, C. Y. Chan, and T. Chen, "From
Region Encoding to extend dewey: On efficient
processing of XML twig pattern matching," in
International Conference on Very Large Databases,
Trondheim, Norway, 2005, pp. 193-204.

[13] B. Nicolas, K. Nick, and S. Divesh, "Holistic Twig
Joins: Optimal XML Pattern Matching," in
International Conference on Management of Data
(ACM SIGMOD), Wisconsin, USA, 2002, pp. 310-321.

[14] P. Ramanan, "Covering Indexes for XML Querries:
Bisimulation -Simulation=Negation," in The 29th
International Conference on Very Large
Databases(VLDB) Berlin, Germany, 2003.

[15] J. Shanmugasadaram, J. Kiernan, E. Shekita, C. Fan,
and J. Funderburk, " Querying XML Views of
Relational Data," in The 27th International Conference
on Very Large Databases (VLDB) Roma, Italy, 2001.

[16] A.-K. Shurg and J. H.V, "Multi-level Operator
Combination in XML Query Processing," in CIKM,
Virginia, USA 2002, pp. 134-141.

[17] P. Stelios, P. Jignesh, and J. H.V, "SIGOPT:Using
Schema to Optimize XML Query Processing," in
International Conference on Data Engineering (ICDE),
Istanbul, Turkey, 2007, pp. 1456-1460.

[18] C. Ting, L. Jiaheng, and W. L. Tok, "On Boosting
Holism in XML Twig Pattern Matching Structural
Indexing Techniques," in International Conference on
Management of Data (ACM SIGMOD), Maryland,
USA 2005, pp. 455-466

[19] J. Zhou, M. Xie, and X. Meng, "TwigStack+:Holistic
Twig Join Pruning Using Extended Solution
Extension," Wuhan University Journal of Natural
Sciences (WUJNS), vol. 8:2B, pp. 603-609, 2007.

[20] S. Abiteboul, "Querying Semistructured Data," in The
International Conference on Database Theory (ICDT)
Delphi, Greece., 1997.

[21] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L.
Wiener, "The Lorel Query Language for
Semistructured Data," International Journal on Digital
Libraries, vol. 1(1), pp. 68-88, 1997.

[22] B. F. Cooper, N. Sample, M. J. Franklin, G. R.
Hjaltason, and M. Shadmon, "A Fast Index for
Semistructured Data," in The 27th International
Conference on Very Large Databases (VLDB) Roma,
Italy, 2001.

[23] J. McHugh and J. Widom, "Query Optimization for
XML," in VLDB Edinburgh, Scotland, 1999.

[24] T. Milo and D. Suciu, "Index Structures for Path
Expressions," in ICDT Jarujalem, Israel, 1999.

[25] A. A. d. Sousa, J. L. Perira, and J. A. Carvalho,
"Querying XML Databases," in The 12th International
Conference of the Chilean Computer Science Society
(SCCC) IEEE, 2002.

[26] R. Goldman and J. Widom, "DataGuides:Enabling
Query Formulation and Optimization in Semistructured

Databases," in International Conference on Very Large
Databases (VLDB), Athens, Greece, 1997, pp. 436-445.

[27] F. Rizzolo and A. Mendelzon, "Indexing XML Data
with ToXin," in Research Report Department of
Computer Science, University of Toronto, Canada,
2001.

[28] C.-W. Chung, J.-K. Min, and K. Shim, "APEX: An
Adaptive Path Index for XML Data," in ACM
SIGMOD Madison, Wisconsin, USA, 2002.

[29] N. Zhang, M. T. Ozsu, I. F. llyas, and A. Aboulnaga,
"FIX:Feature-based Indexing Technique for XML
Documents," in The 32nd International Conferences on
Very Large databases(VLDB) Seoul, Korea, 2006.

[30] J. P. Yoon, V. Raghavan, and V. Chakilam, "BitCube:
A Three-Dimensional Bitmap Indexing for XML
Documents," Journal of Intelligent Information
Systems, vol. 17, pp. 241-254, 2001.

[31] M. Benedikt, W. Fan, and F. Geerts, "XPath
Satisfiability in the Presence of DTDs," in PODS
Baltimore, Maryland, 2005.

[32] S. Pal, I. Cseri, O. Seeliger, M. Rys, G. Schaller, W.
Yu, D. Tomic, A. Baras, B. Berg, D. Churin, and E.
Kogan, "XQuery Implementation in Relational
Database System," in The 31st International
Conference on Very Large Databases Trondheim,
Norway, 2005.

[33] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and
D. Suciu, "XML-QL: A Query Language for XML,"
http://www.w3.org/TR/NOTE-xml-ql.

[34] A. Bonifati and S. Ceri, "Comparative Analysis of Five
XML Query Language," SIGMOD, vol. 29:1, pp. 68-
79, 2000.

[35] P. Buneman, M. Fernandez, and D. Suciu, "UnQL: a
query language and algebra for semistructured data
based on structural recursion," The VLDB Journal, vol.
9, pp. 76-110, 2000.

[36] A. Balmin and Y. Papakonstantinou, "A Storing and
Querying XML Data using Denormalized Relational
Databases," The journal on Very Large Databases
(VLDB), vol. 14, pp. 30-49, 2005.

[37] Y. Chen, S. Davidson, C. Hara, and Y. Zheng, "RRXS:
Redundancy reducing XML storage in relations," in
The 29th International Conference on Very Large
Databases (VLDB) Berlin, Germany, 2003.

[38] S.-Y. Chien, Z. Vagena, and D. Zhang, "Efficient
Structural Joins on Indexed XML Documents," in The
28th International Conference on Very Large
Databases (VLDB) Hong Kong, China, 2002.

[39] F. Du, S. Amer, and J. Freire, "ShreX: Managing XML
Documents in Relational Databases " in The 30th
International Conference on Very Large Databases
(VLDB) Toronto, Canada: , 2004.

[40] A. Halverson, V. Josifovski, G. Lohman, H. Pirahesh,
and M. Morschel, "ROX: Relational Over XML," in
The 30th International Conference on Very Large
Databases Toronto, Canada, 2004.

[41] B. M. Alom, F. A. Henskens, and M. R. Hannaford,
"Storing Semistructured Data Into Relational Database
Using Reference Relationship Scheme," in

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

133

International Conference on Software & Data
Technologies (ICSOFT) Porto, Portugal 2008.

[42] A. A. A. Aziz and H. Okasha, "Mapping XML DTDs
to Relational Schemas," in IEEE, 2005.

[43] F. Bry and S. Schaffert, "The XML Query Language
Xcerpt: Design Principles, Examples, and Semantics,"
in LNCS 2593 Berlin Heidelberg: Springer-Verlag,
2003.

[44] A. Deutsch, M. Fernandez, and D. Suciu, "Storing
Semistructured Data with STORED," in International
Conference on Management of Data (SIGMOD)
Pennsylvania, USA., 1999.

[45] A. Deutsch, M. F. Fernandez, and D. Suciu, "Storing
Semistructured Data in Relations," in ICDT, 1999.

[46] D. Florescu and D. Kossman, "Storing and Querying
XML Data using an RDMBS," The IEEE Data
Engineering Bulletin, vol. 22(3), pp. 27-34., 1999.

[47] P. J. Harding, Q. Li, and B. Moon, " XISS/R: XML
Indexing and Storage System Using RDBMS," in The
29th International Conference on Very Large
Databases (VLDB) Berlin, Germany, 2003.

[48] S. Pal, I. Cseri, O. Seeliger, G. Schaller, L.
Giakoumakis, and V. Zolotov, "Indexing XML data
Stored in a Relational Database," in The 30th
International Conference on Very Large Databases
Toronto, Canada., 2004.

[49] http://www.cs.washington.edu/research/xmldatasets/.
[50] J. Shanmugasadaram, R. Krishnamurthy, I. Tatarinov,

E. Shekita, E. Vigias, J. Kiernan, and J. Naughton, " A
General Technique for Querying XML Documents
using a Relational Database System," The journal
(SIGMOD), vol. 30(3), pp. 20-26, 2001.

Authors Biography

B.M. Monjurul ALom who born in
Bagherpara, Jessore, Bangladesh, is a
research (PhD) student in the School of
Electrical Engineering and Computer
Science, The University of Newcastle,
Australia. Mr Alom has completed his
MSc engineering degree from
Bangladesh University of Engineering
and Technology, Dhaka. His research

interest is Distributed (Structured and Semistructured) Database
Management. Mr. Alom was an assistant professor in CSE dept
from 2004 to 2007 and a lecturer from 2000 to 2004 in Dhaka
University of Engineering and Technology, Gazipur, Bangladesh.

 Dr. Frans Henskens is an Associate
Professor in the School of Electrical
Engineering and Computer Science,
Newcastle University Australia. He is also
Head, Discipline of Computer Science &
Software Engineering, Deputy Head,
School of Electrical Engineering &
Computer Science, and Assistant Dean IT

in Faculty of Engineering & Built Environment. His research
interests include engineering of flexible software systems,
bioinformatics, operating systems and computer forensics,
distributed and grid computing, resilience and availability in
database systems.

Dr. Michael Hannaford is Assistant
Dean (Postgraduate Studies) of FEBE,
and a Senior Lecturer in the School of
Electrical Engineering and Computer
Science at the University of Newcastle.
His research interests are in the areas of
Distributed Computing, and
Programming Language Design and

Implementation.

